Skip to main content
Log in

A thermostable phosphotriesterase from the archaeon Sulfolobus solfataricus: cloning, overexpression and properties

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

A new gene from the hyperthermophilic archaeon Sulfolobus solfataricus MT4, coding for a putative protein reported to show sequence identity with the phosphotriesterase-related protein family (PHP), was cloned by means of the polymerase chain reaction from the S. solfataricus genomic DNA. In order to analyse the biochemical properties of the protein an overexpression system in Escherichia coli was established. The recombinant protein, expressed in soluble form at 5 mg/l of E. coli culture, was purified to homogeneity and characterized. In contrast with its mesophilic E. coli counterpart that was devoid of any tested activity, the S. solfataricus enzyme was demonstrated to have a low paraoxonase activity. This activity was dependent from metal cations with Co2+, Mg2+ and Ni2+ being the most effective and was thermophilic and thermostable. The enzyme was inactivated with EDTA and o-phenantroline. A reported inhibitor for Pseudomonas putida phosphotriesterase (PTE) had no effect on the S. solfataricus paraoxonase. The importance of a stable paraoxonase for detoxification of chemical warfare agents and agricultural pesticides will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

PTE:

Phosphotriesterase

OPH:

Organophosphate hydrolase

OPD:

Organo-phosphate-degrading enzyme

OPs:

Organophosphates

SsoPox:

Sulfolobus solfataricus paraoxonase

ePHP:

E. coli phosphotriesterase-related protein

pNP:

P-nitrophenyl

LB:

Luria-Bertani

IPTG:

Isopropyl-β-D-thiogalactopyranoside

PVDF:

Polyvinylidene fluoride

EST2:

Esterase 2

References

  • Aubert SD, Li Y, Raushel FM (2004) Mechanism for the hydrolysis of organophosphates by the bacterial phosphotriesterase. Biochemistry 43:5707–5715

    Article  CAS  PubMed  Google Scholar 

  • Bencharit S, Morton CL, Xue Y, Potter PM, Redinbo MR (2003) Structural basis of heroin and cocaine metabolism by a promiscuous human drug-processing enzyme. Nat Struct Biol 10:349–356

    Article  CAS  PubMed  Google Scholar 

  • Benning MM, Kuo JM, Raushel FM, Holden HM (1994) Three-dimensional structure of phosphotriesterase: an enzyme capable of detoxifying organophosphate nerve agents. Biochemistry 33:15001–15007

    Article  CAS  PubMed  Google Scholar 

  • Benning MM, Kuo JM, Raushel FM, Holden HM (1995) Three-dimensional structure of the binuclear metal center of phosphotriesterase. Biochemistry 34:7973–7978

    Article  CAS  PubMed  Google Scholar 

  • Benning MM, Hong SB, Raushel FM, Holden HM (2000) The binding of substrate analogs to phosphotriesterase. J Biol Chem 275:30556–30560

    Article  CAS  PubMed  Google Scholar 

  • Benning MM, Shim H, Raushel FM, Holden HM (2001) High resolution X-ray structures of different metal-substituted forms of phosphotriesterase from Pseudomonas diminuta. Biochemistry 40:2712–2722

    Article  CAS  PubMed  Google Scholar 

  • Brown KA (1980) Phosphotriesterases of Flavobacterium sp. Soil Biol Biochem 12:105–112

    Article  CAS  Google Scholar 

  • Brown WC, Campbell JL (1993) A new cloning vector and expression strategy for genes encoding proteins toxic to Escherichia coli. Gene 127:99–103

    Article  CAS  PubMed  Google Scholar 

  • Buchbinder JL, Stephenson RC, Dresser MJ, Pitera JW, Scanlan TS, Fletterick RJ (1998) Biochemical characterization and crystallographic structure of an Escherichia coli protein from the phosphotriesterase gene family. Biochemistry 37:5096–5106

    Article  CAS  PubMed  Google Scholar 

  • Caldwell SR, Newcomb JR, Schlecht KA, Raushel FM (1991) Limits of diffusion in the hydrolysis of substrates by the phosphotriesterase from Pseudomonas diminuta. Biochemistry 30:7438–7444

    Article  CAS  PubMed  Google Scholar 

  • Cheng, T-C, Harvey SP, Stroup AN (1993). Purification and properties of a highly active organophosphorus acid anhydrolase from Alteromonas undina. Appl Environ Microbiol 59:3138–3140

    Google Scholar 

  • Cheng TC, Rastogi VK, DeFrank JJ, Sawiris GP (1998) G-type nerve agent decontamination by Alteromonas prolidase. Ann N Y Acad Sci 864:253–286

    CAS  PubMed  Google Scholar 

  • Donarski WJ, Dumas DP, Heitmeyer DH, Lewis VE, Raushel FM (1989) Structure-activity relationships in the hydrolysis of substrates by the phosphotriesterase from Pseudomonas diminuta. Biochemistry 28:4650–4655

    Article  CAS  PubMed  Google Scholar 

  • Dumas DP, Caldwell SR, Wild JR, Rauschel FM (1989) Purification and properties of the phosphotriesterase from Pseudomonas diminuta. J Biol Chem 264:19659–19665

    CAS  PubMed  Google Scholar 

  • Dumas DP, Durst HD, Landis WG, Raushel FM, Wild JR (1990) Inactivation of organophosphorus nerve agents by the phosphotriesterase from Pseudomonas diminuta. Arch Biochem Biophys 277:155–159

    Article  CAS  PubMed  Google Scholar 

  • Harel M, Aharoni A, Gaidukov L, Brumshtein B, Khersonsky O, Meged R, Dvir H, Ravelli RB, McCarthy A, Toker L, Silman I, Sussman JL, Tawfik DS (2004) Structure and evolution of the serum paraoxonase family of detoxifying and anti-atherosclerotic enzymes. Nat Struct Mol Biol 11:412–419

    Article  CAS  PubMed  Google Scholar 

  • Higerd TB, Spizizen J (1973) Isolation of two acetyl esterases from extracts of Bacillus subtilis. J Bacteriol 114:1184–1192

    CAS  PubMed  Google Scholar 

  • Hong SB, Raushel FM (1999) Stereochemical constraints on the substrate specificity of phosphotriesterase. Biochemistry 38:1159–1165

    Article  CAS  PubMed  Google Scholar 

  • Horne I, Sutherland TD, Harcourt RL, Russell RJ, Oakeshott JG (2002) Identification of an opd (organophosphate degradation) gene in an Agrobacterium isolate . Appl Environ Microbiol 68:3371–3376

    Google Scholar 

  • Horne I, Qiu X, Russell RJ, Oakeshott JG (2003) The phosphotriesterase gene opdA in Agrobacterium radiobacter P230 is transposable. FEMS Microbiol Lett 222:1–8

    Article  CAS  PubMed  Google Scholar 

  • Hou X, Maser RL, Magenheimer BS, Calvet JP (1996) A mouse kidney- and liver-expressed cDNA having homology with a prokaryotic parathion hydrolase (phosphotriesterase)-encoding gene: abnormal expression in injured and polycystic kidneys. Gene 168:157–63

    Article  CAS  PubMed  Google Scholar 

  • Laemmli U (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nat (Lond) 227:680–685

    CAS  Google Scholar 

  • Leatherbarrow RJ (1992) Grafit version 3.0. Erithacus Softwere Ltd, Staines

    Google Scholar 

  • LeJeune KE, Mesiano AJ, Bower SB, Grimsley JK, Wild JR, Russell AJ (1997) Dramatically stabilised phosphotriesterase-polymers for nerve agent degradation. Biotech Bioeng 54:105–114

    Article  CAS  Google Scholar 

  • LeJeune KE, Wild JR, Russell AJ (1998) Nerve agents degraded by enzymatic foams. Nature 395:27–28

    Article  CAS  PubMed  Google Scholar 

  • Lewis VE, Donarski WJ, Wild JR, Raushel FM (1988) Mechanism and stereochemical course at phosphorus of the reaction catalyzed by a bacterial phosphotriesterase. Biochemistry 27:1591–1597

    Article  CAS  PubMed  Google Scholar 

  • Manco G, Adinolfi E, Pisani FM, Ottolina G, Carrea G, Rossi M (1998) Overexpression and properties of a new thermophilic and thermostable esterase from Bacillus acidocaldarius with sequence similarity to hormone-sensitive lipase subfamily. Biochem J 332:203–212

    CAS  PubMed  Google Scholar 

  • Matsudaira P (1987) Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. J Biol Chem 262:10035–10038

    CAS  PubMed  Google Scholar 

  • Millard CB, Lockridge O, Broomfield CA (1998) Organophosphorus acid anhydride hydrolase activity in human butyrylcholinesterase: synergy results in a somanase. Biochemistry 37:237–247

    Article  CAS  PubMed  Google Scholar 

  • Munnecke DM (1976) Enzymatic hydrolysis of organophosphate insecticides, a possible pesticide disposal method. Appl Environ Microbiol 32:7–13

    CAS  PubMed  Google Scholar 

  • Omburo GA, Kuo JM, Mullins LS and Rauschel FM (1992) Characterization of the zinc binding site of bacterial phosphotriesterase. J Biol Chem 267:13278–13283

    CAS  PubMed  Google Scholar 

  • Oosterban RA, Janz HS (1965) In: Florkin M, Stotz EH (eds) Comprehensive Biochemistry vol. 16. Elsevier, Amsterdam pp 1–54

  • Raushel FM (2002) Bacterial detoxification of organophosphate nerve agents. Curr Op Microbiol 5:288–295

    Article  CAS  Google Scholar 

  • Richins RD, Kaneva I, Mulchandani A, Chen W (1997) Biodegradation of organophosphorus pesticides by surface-expressed organophosphorus hydrolase. Nat Biotechnol 15:984–987

    Article  CAS  PubMed  Google Scholar 

  • Richins RD, Mulchandani A, Chen W (2000) Expression, immobilization and enzymatic characterisation of cellulose-binding domain-organophosphate hydrolase fusion enzymes. Biotechnol Bioeng 69:591–596

    Article  CAS  PubMed  Google Scholar 

  • Rochu D, Viguie N, Renault F, Crouzier D, Froment MT, Masson P (2004) Contribution of the active site metal cation to catalytic activity and to conformational stability of phosphotriesterase: a thermo- and pH-dependence study. Biochem J 380:627–633

    Article  CAS  PubMed  Google Scholar 

  • Schrader G (1963) Die Entwicklung neur Insektizider Phosphor-saure-Ester, 3rd edn. Verlag Chemie, Weinheim

    Google Scholar 

  • Sethunathan N, Yoshida T (1973) A Flavobacterium sp. that degrades diazinon and parathion. Can J Microbiol 19:873–875

    CAS  PubMed  Google Scholar 

  • She Q, Singh RK, Confalonieri F, Zivanovic Y, Allard G, Awayez MJ et al (2001) The complete genome of the crenarchaeon Sulfolobus solfataricus P2. Proc Natl Acad Sci USA 98:7835–7840

    Article  CAS  PubMed  Google Scholar 

  • Siddavattam D, Khajamohiddin S, Manavathi B, Pakala SB, Merrick M (2003) Transposon-like organization of the plasmid-borne organophosphate degradation (opd) gene cluster found in Flavobacterium sp. Appl Environ Microbiol 69:2533–2539

    Google Scholar 

  • Studier FW, Rosenberg AH, Dunn JJ and Dubendorff JW (1990) Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol 185:60–89

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Gabriella Fiorentino for Ssopox gene cloning, V. Carratore for amino terminal sequencing and the TIGEM-IGB DNA Sequencing Core for DNA sequencing. This work was supported with funding from Regione Campania Legge 41/94 and PNR Tecnologie Avanzate Tema 6 Biocatalisi. L.M. is a recipient of a fellowship from Regional Center of Competence on Industrial Biotechnology (BioTekNet).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Manco.

Additional information

Communicated by G. Antranikian

Rights and permissions

Reprints and permissions

About this article

Cite this article

Merone, L., Mandrich, L., Rossi, M. et al. A thermostable phosphotriesterase from the archaeon Sulfolobus solfataricus: cloning, overexpression and properties. Extremophiles 9, 297–305 (2005). https://doi.org/10.1007/s00792-005-0445-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-005-0445-4

Keywords

Navigation