Skip to main content
Log in

Synthesis of silver nanoparticles using haloarchaeal isolate Halococcus salifodinae BK3

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

Numerous bacteria, fungi, yeasts and viruses have been exploited for biosynthesis of highly structured metal sulfide and metallic nanoparticles. Haloarchaea (salt-loving archaea) of the third domain of life Archaea, on the other hand have not yet been explored for nanoparticle synthesis. In this study, we report the intracellular synthesis of stable, mostly spherical silver nanoparticles (AgNPs) by the haloarchaeal isolate Halococcus salifodinae BK3. The culture on adaptation to silver nitrate exhibited growth kinetics similar to that of the control. NADH-dependent nitrate reductase was involved in silver tolerance, reduction, synthesis of AgNPs, and exhibited metal-dependent increase in enzyme activity. The AgNPs preparation was characterized using UV–visible spectroscopy, XRD, TEM and EDAX. The XRD analysis of the nanoparticles showed the characteristic Bragg peaks of face-centered cubic silver with crystallite domain size of 22 and 12 nm for AgNPs synthesized in NTYE and halophilic nitrate broth (HNB), respectively. The average particle size obtained from TEM analysis was 50.3 and 12 nm for AgNPs synthesized in NTYE and HNB, respectively. This is the first report on the synthesis of silver nanoparticles by haloarchaea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

NTYE:

NaCl, tryptone, yeast extract

AgNPs:

Silver nanoparticles

MNPs:

Metallic nanoparticles

HNB:

Halophilic nitrate broth

XRD:

X-ray diffraction

TEM:

Transmission electron microscopy

EDAX:

Energy dispersive x-ray analysis

SAED:

Selected area electron diffraction

NR:

Nitrate reductase

fcc:

Face-centered cubic

EDTA:

Ethylene diamine tetra acetic acid

PMSF:

Phenyl methane sulfonyl fluoride

IAA:

Iodoacetate

NED:

N-(1-Naphthyl) ethylene diamine hydrochloride

DTNB:

5,5′-Dithio-bis (2-nitrobenzoic acid)

T-SH:

Total thiol

NP-SH:

Non-protein thiol

PB-SH:

Protein-bound thiol

CFE:

Cell-free extract

ZoI:

Zone of inhibition

GSH:

Glutathione

γGC:

Gamma glutamyl cysteine

GCR:

bis-γ-Glutamyl cysteine reductase

MTP:

Multiply-twinned particles

References

  • Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan MI, Kumar R (2003) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf B 28:313–318

    Article  CAS  Google Scholar 

  • Avery SV (2001) Metal toxicity in yeast and the role of oxidative stress. Adv Appl Microbiol 49:111–142

    Article  PubMed  CAS  Google Scholar 

  • Babu MMG, Sridhar J, Gunasekaran P (2011) Global transcriptome analysis of Bacillus cereus ATCC 14579 in response to silver nitrate stress. J Nanobiotechnol 9:49. doi:10.1186/1477-3155-9-49

    Article  Google Scholar 

  • Bai HJ, Zhang ZM, Guo Y, Yang GE (2009) Biosynthesis of cadmium sulfide nanoparticles by photosynthetic bacteria Rhodopseudomonas palustris. Colloids Surf B 70:142–146

    Article  CAS  Google Scholar 

  • Basavaraja S, Balaji SD, Lagashetty A, Rajasab AH, Venkataraman A (2008) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum. Mater Res Bull 43:1164–1170

    Article  CAS  Google Scholar 

  • Berney M, Weilenmann HU, Ihssen J, Bassin C, Egli T (2006) Specific growth rate determines the sensitivity of Escherichia coli to thermal, UVA, and solar disinfection. Appl Environ Microbiol 72:2586–2593

    Article  PubMed  CAS  Google Scholar 

  • Borrelly GPM, Harrison MD, Robinson AK, Cox SG, Robinson NJ, Whitehall SK (2002) Surplus zinc is handled by Zym1 metallothionein and Zhf endoplasmic reticulum transporter in Schizosaccharomyces pombe. J Biol Chem 277:30394–30400

    Article  PubMed  CAS  Google Scholar 

  • Breidt F, Romick TL, Fleming HF (1994) Rapid method for the determination of bacterial growth kinetics. J Rapid Methods Autom Microbiol 3:59–68

    Article  Google Scholar 

  • Catauro M, Raucci MG, De Gaetano F, Marotta A (2004) Antibacterial and bioactive silver-containing Na2O × CaO × SiO2 glass prepared by sol-gel method. J Mater Sci Mater Med 15:831–837

    Article  PubMed  CAS  Google Scholar 

  • Danilcauk M, Lund A, Saldo J, Yamada H, Michalik J (2006) Conduction electron spin resonance of small silver particles. Spectrochimaca Acta Part A 63:189–191

    Article  Google Scholar 

  • Deepak V, Kalishwaralal K, Ram Kumar Pandian S, Gurunathan S (2011) An insight into the bacterial biogenesis of silver nanoparticles, industrial production and scale-up. In: Rai M, Durán N (eds) Metal nanoparticles in microbiology. Springer, Berlin, pp 17–35

    Chapter  Google Scholar 

  • Durán N, Marcato PD, Alves O, Souza G (2005) Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J Nanobiotechnol 3:8. doi:10.1186/1477-3155-3-8

    Article  Google Scholar 

  • Fahey RC (2001) Novel thiols of prokaryotes. Annu Rev Microbiol 55:333–356

    Article  PubMed  CAS  Google Scholar 

  • Farrar WE (1985) Antibiotic resistance in developing countries. J Infect Dis 152:1103–1106

    Article  PubMed  CAS  Google Scholar 

  • Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO (2008) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52:662–668

    Article  Google Scholar 

  • Furno F, Morley KS, Wong B, Sharp BL, Arnold PL, Howdle SM, Bayston R, Brown PD, Winship PD (2004) Silver nanoparticles and polymeric medical devices: a new approach to prevention of infection? J Antimicrob Chemother 54:1019–1024

    Article  PubMed  CAS  Google Scholar 

  • Ge W, Zamri D, Mineyama H, Valix M (2011) Bioaccumulation of heavy metals on adapted Aspergillus foetidus. Adsorption 17:901–910

    Article  CAS  Google Scholar 

  • Gericke M, Pinches A (2006) Biological synthesis of metal nanoparticles. Hydrometallurgy 83:132–140

    Article  CAS  Google Scholar 

  • Guimaraes-Soares L, Pascoal C, Cassio F (2007) Effects of heavy metals on the production of thiol compounds by the aquatic fungi Fontanospora fusiramosa and Flagellospor acurta. Ecotoxicol Environ Saf 66:36–43

    Article  PubMed  CAS  Google Scholar 

  • Hariharan H, Al-dhabi NA, Karuppiah P, Rajaram SK (2012) Microbial synthesis of selenium nanocomposite using Saccharomyces cerevisiae and its antimicrobial activity against pathogens causing nosocomial infection. Chalcogenide Lett 9:509–515

    CAS  Google Scholar 

  • Harley SM (1993) Use of a simple, colorimetric assay to demonstrate conditions for induction of nitrate reductase in plants. Am Biol Teach 55:161–164

    Article  Google Scholar 

  • Hayashi Y, Mutoh N (1994) Cadystin (phytochelatin) in fungi. In: Winkelmann G, Winge DR (eds) Metal ions in fungi. Marcel Dekker, New York, pp 311–337

    Google Scholar 

  • Hofmeister H (1999) Fivefold twinning in nanosized particles and nanocrystalline thin films—ubiquitous metastable structures. Mater Sci Forum 325:312–314

    Google Scholar 

  • Hutter E, Fendler JH (2004) Exploitation of localized surface plasmon resonance. Adv Mater 16:1685–1706

    Article  CAS  Google Scholar 

  • Hwang ET, Lee JH, Chae YJ, Kim YS, Kim BC, Sang B-I, Gu MB (2008) Analysis of the toxic mode of action of silver nanoparticles using stress-specific bioluminescent bacteria. Small 4:746–750

    Article  PubMed  CAS  Google Scholar 

  • Jianping X, Jim YL, Daniel ICW, Yen PT (2007) Identification of active biomolecules in the high-yield synthesis of single-crystalline gold nanoplates in algal solutions. Small 3:668–672

    Google Scholar 

  • Kalimuthu K, Suresh Babu R, Venkataraman D, Bilal M, Gurunathan S (2008) Biosynthesis of silver nanocrystals by Bacillus licheniformis. Colloids Surf B 65:150–153

    Article  CAS  Google Scholar 

  • Kapoor S, Lawless D, Kennepohl P, Meisel D, Serpone N (1994) Reduction and aggregation of silver ions in aqueous gelatine solutions. Langmuir 10:3018–3022

    Article  CAS  Google Scholar 

  • Kaur A, Pan M, Meislin M, Facciotti MT, El-Gewely R, Baliga NS (2006) A systems view of haloarchaeal strategies to with stand stress from transition metals. Genome Res 16:841–854

    Article  PubMed  CAS  Google Scholar 

  • Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang CY, Kim YK, Lee YS, Jeong DH, Cho MH (2007) Antimicrobial effects of silver nanoparticles. Nanomedicine 3:95–101

    Article  PubMed  CAS  Google Scholar 

  • Kim SH, Lee HS, Ryu DS, Choi SJ, Lee DS (2011) Antibacterial activity of silver-nanoparticles against Staphylococcus aureus and Escherichia coli. Korean J Microbiol Biotechnol 39:77–85

    CAS  Google Scholar 

  • Kneer R, Kutchan TM, Hochberger A, Zenk MH (1992) Saccharomyces cerevisiae and Neurospora crassa contain heavy metal sequestering phytochelatin. Arch Microbiol 157:305–310

    Article  PubMed  CAS  Google Scholar 

  • Kowshik M, Ashtaputre S, Kharrazi S, Vogel W, Urban J, Kulkarni SK, Paknikar KM (2003) Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3. Nanotechnology 14:95–100

    Article  CAS  Google Scholar 

  • Lengke M, Fleet M, Southam G (2006) Biosynthesis of silver nanoparticles by filamentous cyanobacteria from a silver (I) nitrate complex. Langmuir 10:1021–1030

    Google Scholar 

  • Li Y, Duan X, Qian Y, Yang L, Liao H (1999) Nanocrystalline silver particles: synthesis, agglomeration, and sputtering induced by electron beam. J Colloid Interface Sci 209:347–349

    Article  PubMed  CAS  Google Scholar 

  • Malki L, Yanku M, Borovok I, Cohen G, Mevarech M, Aharonowitz Y (2009) Identification and characterization of gshA, a gene encoding the glutamate-cysteine ligase in the halophilicarchaeon Haloferax volcanii. J Bacteriol 191:5196–5204

    Article  PubMed  CAS  Google Scholar 

  • Mallick K, Witcomb MJ, Scurell MS (2004) Polymer stabilized silver nanoparticles: a photochemical synthesis route. J Mater Sci 39:4459–4463

    Article  CAS  Google Scholar 

  • Mani K, Salgaonkar BB, Braganca JM (2012) Culturable halophilic archaea at the initial and crystallization stages of salt production in a natural solar saltern of Goa, India. Aquat Biosyst 8:15. doi:10.1186/2046-9063-8-15

    Article  PubMed  CAS  Google Scholar 

  • Marks LD (1994) Experimental studies of small particle structures. Rep Prog Phys 57:603–649

    Article  CAS  Google Scholar 

  • Matsumura Y, Yoshikata K, Kunisaki S, Tsuchido T (2003) Mode of bacterial action of silver zeolite and its comparison with that of silver nitrate. Appl Environ Microbiol 69:4278–4281

    Article  PubMed  CAS  Google Scholar 

  • Mie G (1908) Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen.Ann Phys 25:377-445 American translation at http://diogenes.iwt.uni-bremen.de/vt/laser/papers/SAND78-6018-Mie-1908-translation.pdf

  • Miersch J, Tschimedbalshir M, Barlocher F, Grams Y, Pierau B, Schierhorn A, Krauss GJ (2001) Heavy metals and thiol compounds in Mucor racemosus and Articulospora tetracladia. Mycol Res 105:883–889

    Article  CAS  Google Scholar 

  • Mokhtari N, Daneshpajouh S, Atashdehghan R, Seyedbagheri S, Abdi K, Sarkar S, Minaian S, Shahverdi HR, Shahverdi AR (2008) Biological synthesis of very small silver nanoparticles by culture supernatant of Klebsiella pneumonia: the effects of visible-light irradiation and the liquid mixing process. Mater Res Bull 44:1415–1421

    Article  Google Scholar 

  • Monroe S, Polk R (2000) Antimicrobial use and bacterial resistance. Curr Opin Microbiol 3:496–501

    Article  PubMed  CAS  Google Scholar 

  • Morones JB, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JP, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–2353

    Article  PubMed  CAS  Google Scholar 

  • Mulvaney P (1996) Surface plasmon spectroscopy of nanosized metal particles. Langmuir 12:788–800

    Article  CAS  Google Scholar 

  • Münger K, Germann UA, Lerch K (1987) The Neurospora crassa metallothionein gene. Regulation of expression and chromosomal location. J Biol Chem 262:7363–7367

    PubMed  Google Scholar 

  • Nepijko SA, Hofmeister H, Sack-Kongehl H, Schlogl R (2000) Multiply twinned particles beyond the icosahedron. J Cryst Growth 213:129–134

    Article  CAS  Google Scholar 

  • Newton GL, Javor B (1985) Gamma-Glutamyl cysteine and thiosulfate are the major low-molecular-weight thiols in halobacteria. J Bacteriol 161:438–441

    PubMed  CAS  Google Scholar 

  • Ng WV, Kennedy SP, Mahairas GG, Berquist B, Pan M, Shukla HD, Lasky SR, Baliga NS, Thorsson V, Sbrogna J, Swartzell S, Weir D, Hall J, Dahl TA, Welti R, Goo YA, Leithauser B, Keller K, Cruz R, Danson MJ, Hough DW, Maddocks DG, Jablonski PE, Krebs MP, Angevine CM, Dale H, Isenbarger TA, Peck RF, Pohlschroder M, Spudich JL, Jung KW, Alam M, Freitas T, Hou S, Daniels CJ, Dennis PP, Omer AD, Ebhardt H, Lowe TM, Liang P, Riley M, Hood L, DasSarma S (2000) Genome Sequence of Halobacterium species NRC-1. PNAS 97:12176–12181

    Article  PubMed  CAS  Google Scholar 

  • Oren A (2008) Microbial life at high salt concentrations: phylogenetic and metabolic diversity. Saline Syst 4:2. doi:10.1186/1746-1448-4-2

    Article  PubMed  Google Scholar 

  • Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27:76–83

    Article  PubMed  CAS  Google Scholar 

  • Ramezani F, Ramezani M, Talebi S (2010) Mechanistic aspects of biosynthesis of nanoparticles by several microbes. Nanocon 10:12–14

    Google Scholar 

  • Salamanca-Buentello F, Persad DL, Court EB, Martin DK, Daar AS, Singer PA (2005) Nanotechnology and the developing world. PLoS Med 2:e97

    Article  PubMed  Google Scholar 

  • Sedlak J, Lindsay RH (1968) Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Elman’s reagent. Anal Biochem 25:192–205

    Article  PubMed  CAS  Google Scholar 

  • Seshadri S, Saranya K, Kowshik M (2011) Green synthesis of lead sulfide nanoparticles by the lead resistant marine yeast, Rhodosporidium diobovatum. Biotechnol Prog 27:1464–1469

    Article  PubMed  CAS  Google Scholar 

  • Seshadri S, Prakash A, Kowshik M (2012) Biosynthesis of silver nanoparticles by marine bacterium Idiomarina sp. PR58-8. Bull Mater Sci 35:1201–1205

    Article  CAS  Google Scholar 

  • Shahverdi AR, Minaian S, Shahverdi HR, Jamalifar H, Nohi A (2007) Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: a novel biological approach. Process Biochem 42:919–923

    Article  CAS  Google Scholar 

  • Shankar SS, Rai A, Ahmad A, Sastry M (2004) Biosynthesis of silver and gold nanoparticles from extracts of different parts of the geranium plant. Appl Nanosci 1:69–77

    Google Scholar 

  • Sharma VK, Yngard RA, Lin Y (2008) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interface Sci 145:83–96

    Article  PubMed  Google Scholar 

  • Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275:177–182

    Article  PubMed  CAS  Google Scholar 

  • Speiser DM, Ortiz DF, Kreppel L, Scheel G, McDonald G, Ow DW (1992) Purine biosynthetic genes are required for cadmium tolerance in Schizosaccharomyces pombe. Mol Cell Biol 12:5301–5310

    PubMed  CAS  Google Scholar 

  • Srivastava P, Kowshik M (2013) Mechanisms of metal resistance and homeostasis in haloarchaea. Archaea 16. doi:10.1155/2013/732864

  • Sundquist AR, Fahey RC (1989) The function of γ-glutamylcysteine and bis-γ-glutamylcysteine reductase in Halobacterium halobium. J Biol Chem 264:719–725

    PubMed  CAS  Google Scholar 

  • Sweeney RY, Mao C, Gao X, Burt JL, Belcher AM, Georgiou G, Iverson BL (2004) Bacterial biosynthesis of cadmium sulphide nanocrystals. Chem Biol 11:1553–1559

    Article  PubMed  CAS  Google Scholar 

  • Thakkar KN, Mhatre SS, Parikh YR (2010) Biological synthesis of metallic nanoparticles. Nanomed NBM 6:262–275

    Google Scholar 

  • Underwood S, Mulvaney P (1994) Effect of the solution refractive index on the color of gold colloids. Langmuir 10:3427–3430

    Article  CAS  Google Scholar 

  • Vaidyanathan R, Gopalram S, Kalishwaralal K, Deepak V, Pandian SR, Gurunathan S (2010) Enhanced silver nanoparticle synthesis by optimization of nitrate reductase activity. Colloids Surf B 75:335–341

    Article  CAS  Google Scholar 

  • Vo-Dinh T (2008) Nano biosensing using plasmonic nanoprobes. IEEE J Sel Topics Quantum Electron 14:198–205

    Article  CAS  Google Scholar 

  • Wang G, Kennedy SP, Fasiludeen S, Rensing C, DasSarma S (2004) Arsenic resistance in Halobacterium sp. strain NRC-1 examined by using an improved gene knockout system. J Bacteriol 186:3187–3194

    Article  PubMed  CAS  Google Scholar 

  • Winge DR, Nielson KB, Gray WR, Hamer DH (1985) Yeast metallothionein sequence and metal binding properties. J Biol Chem 260:14464–14470

    PubMed  CAS  Google Scholar 

  • Zafrilla B, Martínez-Espinosa RM, Alonso MA, Bonete MJ (2010) Biodiversity of Archaea and floral of two inland saltern ecosystems in the Alto Vinalopó Valley, Spain. Saline Syst 6:10. doi:10.1186/1746-1448-6-10

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Ministry of Earth Science (MoES), Government of India for their funding of the project MoES/11-MRDF/1/38/P/10-PC-III. We would like to thank Dr. Neha Hebalkar at ARCI, Hyderabad and the SAIF at IIT-Bombay for their help with TEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meenal Kowshik.

Additional information

Communicated by H. Atomi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 17 kb)

792_2013_563_MOESM2_ESM.tif

Supplemnetary Fig. S1 Effect of silver nitrate on the concentrations of total (T-SH), non-protein (NP-SH) and protein-bound (PB-SH) thiols in H. salifodinae BK3 exposed to 0.05 and 0.5 mM AgNO3. Control = 0 mM AgNO3. Values are mean ± SD for three experiments. (TIFF 8499 kb)

792_2013_563_MOESM3_ESM.tif

Supplementary Fig. S2 Effect of silver nitrate on growth profiles of H. salifodinae BK3 a in HNB without AgNO3 (control); b upon first exposure to AgNO3 by addition of 0.5 mM AgNO3 in HNB; c for cells adapted to AgNO3 upon addition of 0.5 mM AgNO3 in HNB. Values are mean ± SD (error bars) for three experiments. (TIFF 11254 kb)

792_2013_563_MOESM4_ESM.tif

Supplementary Fig. S3 UV–visible absorbance spectrum of the AgNPs synthesized by H. salifodinae BK3. a The spectra of AgNPs synthesized in NTYE (black) and in HNB (red); b Comparison of the UV–Visible profile of AgNPs prepared in HNB immediately after synthesis (blue) and after 6 months of storage (green). (TIFF 7995 kb)

792_2013_563_MOESM5_ESM.tif

Supplementary Fig. S4 X-ray diffraction pattern of AgNPs synthesized by H. salifodinae BK3 in a NTYE and b HNB. (TIFF 7995 kb)

792_2013_563_MOESM6_ESM.tif

Supplementary Fig. S5 Representative TEM micrographs showing triangular and disc like morphology of the AgNPs synthesized by H. salifodinae BK3 in the presence of 0.5 mM AgNO3. (TIFF 1256 kb)

Supplementary Fig. S6 EDAX spectrum of the AgNPs synthesized by H. salifodinae BK3 in a NTYE and b HNB. (TIFF 269 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Srivastava, P., Bragança, J., Ramanan, S.R. et al. Synthesis of silver nanoparticles using haloarchaeal isolate Halococcus salifodinae BK3 . Extremophiles 17, 821–831 (2013). https://doi.org/10.1007/s00792-013-0563-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-013-0563-3

Keywords

Navigation