Skip to main content

Emerging Obstacles of Vegetable Production Due to Climate Change and Mitigation Strategies

  • Chapter
  • First Online:
Advances in Research on Vegetable Production Under a Changing Climate Vol. 2

Abstract

Climate change is of pivotal concern of crop growers and researchers in today’s scenario. Vegetable crops are somewhat more prone to the vagaries of nature. The increasing global warming, changed precipitation patterns, excess amounts of UV radiation is causing menace to vegetable productivity through altered span and period of crop, reduced pollination and fertilization, thus reducing the yield and adverse effect on other physio-biochemical mechanisms, lowering the quality. The patterns of disease-pest infestation and severity has also been modified providing more threat to the crop. Developing climate resilient varieties by conventional breeding techniques or use of marker assisted breeding and development of transgenics are an important option for coping with the abiotic stresses. Besides, adoption of suitable cultural practices, diversified cropping systems, mulches, precision farming and organic farming may be the adaptation and mitigation strategies that may be adopted to combat climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdalla AA, Verkerk K (1968) Growth, flowering, and fruit set of the tomato at high temperature. Neth J Agri Sci 16:71–76. https://doi.org/10.18174/njas.v16i1.17428

    Article  Google Scholar 

  • Abdelmageed AH, Gruda N, Geyer B (2014) Effects of temperature and grafting on the growth and development of tomato plants under controlled conditions. In: Rural poverty reduction through research for development and transformation

    Google Scholar 

  • Abewoy D (2018) Review on impacts of climate change on vegetable production and its management practices. Adv Crop Sci Tech 6:330. https://doi.org/10.4172/2329-8863.1000330

    Article  Google Scholar 

  • Agrawal N, Dasaradhi PVN, Mohmmed A, Malhotra P, Bhatnagar RK, Mukherjee SK (2003) RNA interference, biology, mechanism and applications. Microbiol Mol Biol Rev 67:657–685

    Article  CAS  Google Scholar 

  • Ainsworth EA, Ort DR (2010) How do we improve crop production in a warming world? Plant Physiol 154:526–530. https://doi.org/10.1104/pp.110.161349

    Article  CAS  Google Scholar 

  • Akhtar S, Hazra P (2015) High temperature stress on vegetable crops and breeding for resistance. In: Peter KV, Hazra P (eds) Handbook of vegetables, vol II. Studium Press, LLC, pp 453–473

    Google Scholar 

  • Akhtar S, Naik A, Hazra P (2015) Harnessing heat stress in vegetable crops towards mitigating impacts of climate change (Chapter 10). In: Chaudhary ML, Patel VB, Siddiqui MW, Mahdi SS (eds) Climate dynamics in horticultural science, Principles and applications, vol I. Apple Academic Press, Canada, pp 173–200

    Google Scholar 

  • Akhtar S, Naik A, Solankey SS (2021) Genotypic selection in vegetables for adaptation to climate change. In: Solankey SS, Kumari M, Kumar M (eds) Advances in research on vegetable production under a changing climate, vol 1. Springer Nature, Switzerland, pp 61–89

    Chapter  Google Scholar 

  • Alcazar R, Altabella T, Marco F, Bortolotti C, Reymond M, Koncz C, Tiburcio AF (2010) Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta 231:1237–1249

    Article  CAS  Google Scholar 

  • Altieri MA, Nicholls CI, Henao A, Lana MA (2015) Agroecology and the design of climate change-resilient farming systems. Agron Sustain Dev 35:869–890

    Article  Google Scholar 

  • Alvarez-Viveros MF, Inostroza-Blancheteau C, Timmermann T, Gonzálezz M, Arce-Johnson P (2013) Overexpression of GlyI and GlyII genes in transgenic tomato (Solanum lycopersicum mill.) plants confers salt tolerance by decreasing oxidative stress. Mol Biol Rep 4:3281–3290

    Article  Google Scholar 

  • Anant B, Rai N, Kumar R, Tiwari SK, Singh AK, Rai AK, Singh U, Patel PK, Tiwari V, Rai AB, Singh M, Singh B (2016) Grafting tomato on eggplant as a potential tool to improve waterlogging tolerance in hybrid tomato. Veg Sci 42:82–87

    Google Scholar 

  • Anderson JT, Panetta AM, Mitchell-Olds T (2012) Evolutionary and ecological responses to anthropogenic climate change: update on anthropogenic climate change. Plant Physiol 160:1728–1740

    Article  CAS  Google Scholar 

  • Arenas-Huertero C, Pérez B, Rabanal F, Blanco-Melo D, De la Rosa C, Estrada-Navarrete G, Sanchez F, Covarrubias AA, Reyes JL (2009) Conserved and novel miRNAs in the legume Phaseolus vulgaris in response to stress. Plant Mol Biol 70:385–401. https://doi.org/10.1007/s11103-009-9480-3

    Article  CAS  Google Scholar 

  • Argyris J, Dahal P, Hayashi E, Still DW, Bradford KJ (2008) Genetic variation for lettuce seed thermoinhibition is associated with temperature-sensitive expression of abscisic acid, gibberellin, and ethylene biosynthesis, metabolism, and response genes. Plant Physiol 148:926–947. https://doi.org/10.1104/pp.108.125807

    Article  CAS  Google Scholar 

  • Argyris J, Truco MJ, Ochoa O, Mc Hale L, Dahal P, Van Deynze A, Michelmore RW, Bradford KJ (2011) A gene encoding an abscisic acid biosynthetic enzyme (LsNCED4) collocates with the high temperature germination locus Htg 6.1 in lettuce (Lactuca spp.). Theor Appl Genet 122:95–108. https://doi.org/10.1007/s00122-010-1425-3

    Article  CAS  Google Scholar 

  • Arvin MJ, Donnelly DJ (2008) Screening potato cultivars and wild species to abiotic, stresses using an electrolyte leakage bioassay. J Agric Sci Technol 10:33–42

    Google Scholar 

  • Ashraf M (2010) Inducing drought tolerance in plants: recent advances. Biotechnol Adv 28:169–183

    Article  CAS  Google Scholar 

  • Awmack CS, Woodcock CM, Harrington R, Lether SR (1997) Host plant effects on performance of the aphid Aulacorthum solani (kalt) (Homoptera:Aphididae) at ambient and elevated CO2. Glob Chang Biol 3:545–559

    Article  Google Scholar 

  • Bahadur A, Chatterjee A, Kumar R, Singh M, Naik PS (2011) Physiological and biochemical basis of drought tolerance in vegetables. Veg Sci 38(1):1–16

    Google Scholar 

  • Baldwin EA (2003) Coating and other supplemental treatments to maintain vegetable quality. In: Bartz JA, Brecht JK (eds) Postharvest physiology and pathology of vegetables, 2nd edn. Marcel Dekker, New York, pp 413–456

    Google Scholar 

  • Bale JS, Masters GJ, Hodkinson ID, Awmack C, Bezemer TM (2010) Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Glob Chang Biol 8:1–16

    Article  Google Scholar 

  • Barlow PW, Adam JS (1989) Anatomical disturbances in primary roots of Zea mays following periods of cool temperature. Environ Exp Bot 29(3):323–336

    Article  Google Scholar 

  • Benda GTA (1955) Some effects of ultra-violet radiation on leaves of French bean (Phaseolus vulgaris. L.). Ann Appl Biol 43(1):71–85

    Article  Google Scholar 

  • Bhardwaj ML (2012) Effect of climate change on vegetable production in India in vegetable production under changing climate scenario. In: Vegetable production under changing climate scenario, pp 1–12

    Google Scholar 

  • Bhaskaran S, Savithramma DL (2011) Co-expression of Pennisetum glaucum vacuolar Na+/H+ antiporter and Arabidopsis H+ − pyrophosphatase enhances salt tolerance in transgenic tomato. J Exp Bot 15:5561–5570

    Article  Google Scholar 

  • Bhatt RM, Rao NKS, Harish DM (2013) Significance of grafting in improving tolerance to abiotic stresses in vegetable crops under climate change scenario. In: Climate-resilient horticulture: adaptation and mitigation strategies, pp 159–175

    Google Scholar 

  • Boonekamp PM (2012) Are plant diseases too much ignored in the climate change debate? Eur J Plant Pathol 133:291–294

    Article  Google Scholar 

  • Bosher JM, Labouesse M (2000) RNA interference, genetic wand and genetic watchdog. Nat Cell Biol 2:31–36

    Article  Google Scholar 

  • Bradow JM (1990) Chilling sensitivity of photosynthetic oil-seedlings. 2 Cucurbitaceae. J Exp Bot 41(233):1595–1600

    Article  Google Scholar 

  • Buis R, Barthou H, Roux B (1988) Effect of temporary chilling on foliar and caulinary growth and productivity in soybean (Glycine max). Ann Bot 61(6):705–715

    Article  Google Scholar 

  • Burleigh JR, Black LL, Mateo LG, Cacho D, Aganon CP, Boncato T, Arida IA, Ulrichs C, Ledesma DR (2005) Performance of grafted tomato in Central Luzon, Philippines: a case study on the introduction of a new technology among resource-limited farmers (Online). Crop Manage https://doi.org/10.1094/CM-2005-0701-01-MG

  • Bustan A, Sagi M, Malach YD, Pasternak D (2004) Effects of saline irrigation water and heat waves on potato production in an arid environment. Field Crop Res 90:275–285

    Article  Google Scholar 

  • Cabrera RM, Saltveit ME, Owens K (1992) Cucumber cultivars differ in their response to chilling temperatures. J Am Soc Hortic Sci 117(5):802–807

    Article  Google Scholar 

  • Cannon RJC (2008) Annexure-1 In: Climate-related transboundary pests and diseases, technical background document from the expert consultation held on 25 to 27 February 2008, FAO, Rome

    Google Scholar 

  • Charrler A (1984) Genetic resources of the genus abelmoschus med. (Okra). International Board for Plant Genetic Resources; IBPGR Secretariat-Rome. Available online at: http://pdf.usaid.gov/pdf_docs/PNAAT275.pdf

  • Cheeseman JM (2008) Mechanisms of salinity tolerance in plants. Plant Physiol 87:547–550

    Article  Google Scholar 

  • Chen Y, Wang A, Zhao L, Shen G, Cui L, Tang K (2009) Expression of thymosin a1 concatemer in trans- genic tomato (Solanum lycopersicum) fruits. Biotechnol Appl Biochem 52:303–312

    Article  CAS  Google Scholar 

  • Chigumira NF, Grubben GJH (2004) Cucurbita maxima Duchesne. In: Grubben GJH, Denton OA (eds) PROTA2: vegetables/legumes, PROTA, Wageningen

    Google Scholar 

  • Choi JY, Seo YS, Kim SJ, Kim WT, Shin JS (2011) Constitutive expression of CaXTH3, a hot pepper xyloglucan endotransglucosylase / hydrolase, enhanced tolerance to salt and drought stresses without phenotypic defects in tomato plants (Solanum lycopersicum cv. Dotaerang). Plant Cell Rep 30(5):879–881

    Article  CAS  Google Scholar 

  • Coakley SM, Scherm H, Chakraborty S (1999) Climate change and plant disease management. Annu Rev Phytopathol 37:399–426

    Article  CAS  Google Scholar 

  • Collins NC, Tardieu F, Tuberosa R (2008) Quantitative trait loci and crop performance under abiotic stress: where do we stand? Plant Physiol 147:469–486. https://doi.org/10.1104/pp.108.118117

    Article  CAS  Google Scholar 

  • Cotty PJ, Jamie-Garcia R (2007) Influences of climate on aflatoxin producing fungi and aflatoxin contamination. Int J Food Microbiol 119(1–2):109–115

    Article  CAS  Google Scholar 

  • Dane F, Liu J, Zhang C (2007) Phylogeography of the bitter apple, Citrullus colocynthis. Genet Resour Crop Ev 54:327–336

    Article  Google Scholar 

  • Das DK, Singh J, Vennila S (2011) Emerging crop pest scenario under the impact of climate change-a brief review. J Agric Phys 11:13–20

    CAS  Google Scholar 

  • De la Peña R, Hughes J (2007) Improving vegetable productivity in a variable and changing climate. J SAT Agric Res 4:1–22

    Google Scholar 

  • Dias MC, Brüggemann W (2010) Limitations of photosynthesis in Phaseolus vulgaris under drought stress: gas exchange, chlorophyll fluorescence and Calvin cycle enzymes. Photosynthetica 48:96–102

    Article  CAS  Google Scholar 

  • Dodds GТ, Ludford PM (1990) Surface topology of chilling injury of tomato fruit. HortScience 25(11):1416–1419

    Article  Google Scholar 

  • Drew MC (2009) Plant responses to anaerobic conditions in soil and solution culture. Curr Adv Plant Sci 36:1–14

    CAS  Google Scholar 

  • Fahim MA, Hassanein MK, Abou Hadid AF, Kadah MS (2011) Impacts of climate change on the widespread and epidemics of some tomato diseases during the last decade in Egypt. Acta Hortic 914:317–320

    Article  Google Scholar 

  • Fan W, Zhang M, Zhang H, Zhang P (2012) Improved tolerance to various abiotic stresses in transgenic sweet potato (Ipomoea batatas) expressing spinach betaine aldehyde dehydrogenase. PLoS One 7:e37344

    Article  CAS  Google Scholar 

  • FAO (2008) Climate-related transboundary pests and diseases, technical background document from the expert consultation held on 25 to 27 February 2008, FAO, Rome. Downloaded from ftp://ftp.fao.org/docrep/fao/meeting/013/ai785e.pdf

  • FAO (2009) Global agriculture towards 2050 Issues Brief. High level expert forum, Rome, pp 12–13

    Google Scholar 

  • FAOSTAT (2021) Food and agriculture Organization of the United Nations. FAOSTAT Statistical Database, Rome, FAO

    Google Scholar 

  • Firon N, Shaked R, Peet MM, Pharr DM, Zamski E, Rosenfeld K, Althan L, Pressman E (2006) Pollen grains of heat tolerant tomato cultivars retain higher carbohydrate concentration under heat stress conditions. Scientia Hortic 109(3):212–217. https://doi.org/10.1016/j.scienta.2006.03.007

    Article  CAS  Google Scholar 

  • Fleming RA, Tatchell GM (1995) Shifts in the flight periods of British aphids: a response to climate warming? In: Harrington R, Stork N (eds) Insects in a changing environment. Academic, pp 505–508

    Google Scholar 

  • Flowers TJ (2004) Improving crop salt tolerance. J Exp Bot 55(307):319

    Google Scholar 

  • Folzer H, Dat JF, Capelli N, Rieffel D, Badot PM (2006) Response of sessile oak seedlings (Quercus petraea) to flooding: an integrated study. Tree Physiol 26:759–766

    Article  CAS  Google Scholar 

  • Foolad MR (2014) Recent advances in genetics of salt tolerance in tomato. Plant Cell Tissue Organ Cult 76:101–119

    Article  Google Scholar 

  • Foolad MR, Jones RA (1991) Genetic analysis of salt tolerance during germination in Lycopersicon. Theor Appl Genet 81(321):326

    Google Scholar 

  • Foolad MR, Zhang LP, Subbiah P (2010) Genetics of drought tolerance during seed germination in tomato: inheritance and QTL mapping. Genome 46:536–545

    Article  Google Scholar 

  • Frenkel C, Erez A (1996) Induction of chilling tolerance in cucumber (Cucumis sativus) seedlings by endogenous and applied ethanol. Physiol Plant 96(4):593–600

    Article  CAS  Google Scholar 

  • Gibbs J, Greenway H (2008) Mechanisms of anoxia tolerance in plants. I. Growth, survival and anaerobic catabolism. Funct Plant Biol 30:1–47

    Article  Google Scholar 

  • Gielen H, Remans T, Vangronsveld J, Cuypers A (2012) MicroRNAs in metal stress, specific roles or secondary responses. Int J Mol Sci 13:5826–15847

    Article  Google Scholar 

  • Goel D, Singh AK, Yadav V, Babbar SB, Bansal KC (2010) Overexpression of osmotin gene confers tolerance to salt and drought stresses in transgenic tomato (Solanum lycopersicum L.). Protoplasma 245:133–141

    Article  CAS  Google Scholar 

  • Goel D, Singh AK, Yadav V, Babbar SB, Murata N, Bansal KC (2011) Transformation of tomato with a bacterial coda gene enhances tolerance to salt and water stresses. J Plant Physiol 11:1286–1294

    Article  Google Scholar 

  • Gorecki RJ, Fordonski G, Bieniaszewski Т, Jacunski K (1990) Comparative studies on chilling sensitivity in some legume seeds. Acta Physiol Plant 12(2):149–158

    Google Scholar 

  • Hahn DA, Denlinger DL (2007) Meeting the energetic demands of insect diapause: nutrient storage and utilization. J Insect Physiol 53:760–773

    Article  CAS  Google Scholar 

  • Hahn M, Walbot V (1989) Effect of cold-treatment on protein synthesis and mRNA levels in rice leaves. Plant Physiol 91(3):930–938

    Article  CAS  Google Scholar 

  • Hall A (2001) Crop developmental responses to temperature, photoperiod, and light quality. In: Hall AE (ed) Crop response to environment. CRC, Boca Raton, pp 83–87

    Google Scholar 

  • Hanif R, Iqbal Z, Iqbal M, Hanif S, Rasheed M (2006) Use of vegetables as nutritional food: role in human health. J Agric Biol Sci 1:18–22

    Google Scholar 

  • Hao X, Hale BA, Ormrod DP (1997) The effects of ultraviolet- B radiation and carbon dioxide on growth and photosynthesis of tomato. Can J Bot 75(2):213–219

    Article  CAS  Google Scholar 

  • Harker FR, Maindonald JH (1994) Ripening of nectarine fruit. Changes in the cell wall, vacuole, and membranes detected using electrical impedance measurements. Plant Physiol 106(l):165–171

    Article  CAS  Google Scholar 

  • Harrington R, Fleming RA, Woiwod IP (2010) Climate change impacts on insect management and conservation in temperate regions: can they be predicted? Agric For Entomol 3:233–240

    Article  Google Scholar 

  • Harvell CD, Mitchell CE, Ward JR, Altizer S, Dobson AP (2006) Climate warming and disease risks for terrestrial and marine biota. Science 296:2158–2162

    Article  Google Scholar 

  • Hazra P, Som MG (2006) Vegetable Science. Kalyani Publishers, New Delhi, India

    Google Scholar 

  • Hazra P, Samsul HA, Sikder D, Peter KV (2007) Breeding tomato (Lycopersicon esculentum mill.) resistant to high temperature stress. Int J Plant Breed 1(1):31–40

    Google Scholar 

  • He Y, Zhu Z, Yang J, Ni X, Zhu B (2009) Grafting increases the salt tolerance of tomato by improvement of photosynthesis and enhancement of antioxidant enzymes activity. Environ Exp Bot 66:270–278

    Article  CAS  Google Scholar 

  • Hemavathi UCP, Akula N, Young KE, Chun SC, Kim DH, Park SW (2010) Enhanced ascorbic acid accumulation in transgenic potato confers tolerance to various abiotic stresses. Biotechnol Lett 32:321–330. https://doi.org/10.1007/s10529-009-0140-0

    Article  CAS  Google Scholar 

  • Hmida-Sayari A, Gargouri-Bouzid R, Bidani A, Jaoua L, Savouré A, Jaoua S (2005) Overexpression of Δ1- pyrroline-5-carboxylate synthetase increases proline production and confers salt tolerance in transgenic potato plants. Plant Sci 169:746–752

    Article  CAS  Google Scholar 

  • Hobert O (2008) Gene regulation by transcription factors and microRNAs. Science 319:1785–1786

    Article  CAS  Google Scholar 

  • Holmberg N, Bülow L (1998) Improving stress tolerance in plants by gene transfer. Trends Plant Sci 3(2):61–66

    Article  Google Scholar 

  • Horváth G, Bernáth B, Molnár G (1998) Dragonflies find crude oil visually more attractive than water: multiple-choice experiments on dragonfly polarotaxis. Naturwissenschaften 85:292–297

    Article  Google Scholar 

  • Hu DG, Wang SH, Luo H, Ma QJ, Yao YX, You CX, Hao and Y.J. (2012) Overexpression of MdVHA-B, V-ATPase gene from apple, confers tolerance to drought in transgenic tomato. Sci Hortic 145:94–101

    Article  CAS  Google Scholar 

  • Iglesias-García R, Prats E, Fondevilla S, Satovic Z, Rubiales D (2015) Quantitative trait loci associated to drought adaptation in pea (Pisum sativum L.). Plant Mol Biol Report 33:1768. https://doi.org/10.1007/s11105-015-0872-z

    Article  CAS  Google Scholar 

  • Ismail AM, Hall AE, Close TJ (1997) Chilling tolerance during emergence of cowpea associated with a dehydrin and slow electrolyte leakage. Crop Sci 37(4):1270–1277

    Article  Google Scholar 

  • Isopp H, Frehner M, Long SP, Nösberger J (2008) Sucrose phosphate synthase responds differently to source sink relations and to photosynthetic rates: Lolium perenne L. growing at elevated pCO2 in the field. Plant Cell Environ 23:597–607

    Article  Google Scholar 

  • Jacoby M, Weisshaar B, Vicente-Carbajosa J, Tiedemann J, Kroj T, Parcy F (2002) bZIP transcription factors in Arabidopsis. Trends Plant Sci 7:106–111

    Article  Google Scholar 

  • Jamil M, Rha ES (2014) The effect of salinity (NaCl) on the germination and seedling of sugar beet (Beta vulgaris L.) and cabbage (Brassica oleracea capitata L.). Korean J Plant Res 7:226–232

    Google Scholar 

  • Jat MK, Tetarwal AS (2012) Effect of changing climate on the insect pest population national seminar on sustainable agriculture and food security: challenges in changing climate. Indian Hortic 3:41–49

    Google Scholar 

  • Jennings P, Saltveit ME (1994) Temperature effects on imbibition and germination of cucumber (Cucumis sativus) seeds. J Amer Soc Hortic Sci 119(3):464

    Article  Google Scholar 

  • Jha UC, Bohra A, Singh NP (2014) Heat stress in crop plants: its nature, impacts and integrated breeding strategies to improve heat tolerance. Plant Breed 133:679–701. https://doi.org/10.1111/pbr.1221

    Article  Google Scholar 

  • Jia GX, Zhu ZQ, Chang FQ, Li YX (2002) Transformation of tomato with the BADH gene from Atriplex improves salt tolerance. Plant Cell Rep 21:141–146

    Article  CAS  Google Scholar 

  • Kalamaki MS, Alexandrou D, Lazari D, Merkouropoulos G, Fotopoulos V, Pateraki I, Aggelis A, Carrillo-Lo A, Rubio-Cabetas MJ, Kanellis AK (2009) Over-expression of a tomato N-acetyl-L-glutamate synthase gene (SlNAGS1) in Arabidopsis thaliana results in high ornithine levels and increased tolerance in salt and drought stresses. J Exp Bot 60(6):1859–1871

    Article  CAS  Google Scholar 

  • Kavar T, Maras M, Meglie V (2011) The expression profiles of selected genes in different bean species as response to water deficit. J Cent Eur Agric 12:557–576

    Article  Google Scholar 

  • Kawase M (2011) Anatomical and morphological adaptation of plants to water logging. Hortic Sci 16:30–34

    Google Scholar 

  • Kawashima CG, Yoshimoto N, Maruyama-Nakashita A, Tsuchiya YN, Saito K, Takahashi H (2008) Sulphur starvation induces the expression of microRNA-395 and one of its target genes but in different cell types. Plant J 57:313–321

    Article  Google Scholar 

  • Kawashima CG, Matthewman CA, Huang S, Lee BR, Yoshimoto N, Koprivova A (2011) Interplay of SLIM1 and miR395 in the regulation of sulfate assimilation in Arabidopsis. Plant J 66:863–876

    Article  CAS  Google Scholar 

  • Kaymakanova M, Stoeva N, Mincheva T (2008) Salinity and its effects on the physiological response of bean (Phaseolus vulgaris. L.). J Cent Eur Agric 9:749–756

    Google Scholar 

  • Khan MR (2012, March 27–28) Effect of elevated levels of CO2 and other gaseous pollutants on crop productivity and plant diseases. In: National seminar on sustainable agriculture and food security: challenges in changing climate, pp 197

    Google Scholar 

  • Khare N, Goyary D, Singh NK, Shah P, Rathore M, Anandhan S, Sharma D, Arif M, Ahmed Z (2010) Transgenic tomato cv. Pusa Uphar expressing a bacterial mannitol-1-phosphate dehydrogenase gene confers abiotic stress tolerance. Plant Cell Tissue Org Cult 103:267–277

    Article  CAS  Google Scholar 

  • Klein A, Houtin H, Rond C, Marget P, Jacquin F, Boucherot K, Huart M, Rivière N, Boutet G, Lejeune-Hénaut I, Burstin J (2014) QTL analysis of frost damage in pea suggests different mechanisms involved in frost tolerance. Theor Appl Genet 127:1319–1330

    Article  Google Scholar 

  • Koundinya AVV, Siddhya P, Pandit MK (2014) Impact of climate change on vegetable cultivation – a review. Int J Agric Environ Biotechnol 7(1):145–155

    Article  Google Scholar 

  • Koundinya AVV, Pradeep Kumar P, Ashadevi RK, Hegde V, Arun Kumar P (2018) Adaptation and mitigation of climate change in vegetable cultivation: a review. J Water Clim Chang 9:17–36. https://doi.org/10.2166/wcc.2017.045

    Article  Google Scholar 

  • Kumar SN (2017) Climate change and its impacts on food and nutritional security in India. In: Belavadi VV, Karaba NN, Gangadharappa NR (eds) Agriculture under climate change: threats, strategies and policies, p 48

    Google Scholar 

  • Kumar R, Singh M (2006) Citation information. In: Singh RJ (ed) Genetic resources, chromosome engineering, and crop improvement vegetable crops, vol 3. CRC Press, pp 473–496

    Chapter  Google Scholar 

  • Kumar P, Nanwal RK, Dhindwal AS, Yadav SK (2012) Chapter 7: Competition relations; multi-storied cropping and yield stability in Intercropping. In: Manual on cropping systems and sustainable agriculture. Department of Agronomy, CCS Haryana Agricultural University, Hisar, Haryana, India, pp 77–88

    Google Scholar 

  • Kuo DG, Tsay JS, Chen BW, Lin PY (2014) Screening for flooding tolerance in the genus Lycopersicon. Hortic Sci 17:76–78

    Google Scholar 

  • Kusvuran S (2012) Effects of drought and salt stresses on growth, stomatal conductance, leaf water and osmotic potentials of melon genotypes (Cucumis melo L.). Afr J Agric Res 7(5):775–781

    Google Scholar 

  • Ladizinsky G (1985) Founder effect in crop-plant evolution. Econ Bot 39:191–199. https://doi.org/10.1007/BF02907844

    Article  Google Scholar 

  • Lee SG, Huh YC, Sun ZY, Miguel A, King SR (2008) Cucurbit grafting. Crit Rev Plant Sci 27:50–74

    Article  Google Scholar 

  • Lee JM, Kubota C, Tsao SJ, Bie Z, Echevarria PH (2010) Current status of vegetable grafting: diffusion, grafting techniques, automation. Sci Hortic 127:93–105

    Article  Google Scholar 

  • Lejeune P, Bernier G (1996) Effect of environment on the early steps of ear initiation in maize (Zea mays L.). Plant Cell Environ 19(2):217–224

    Article  Google Scholar 

  • Levitt J (1980) Responses of plants to environmental stresses, Chilling, freezing and high temperatures stresses, vol 1. Academic, Cambridge

    Google Scholar 

  • Lewis T (1997) Thrips as crop pests. CAB International, University Press, Cambridge, pp 740

    Google Scholar 

  • Li WX, Oono Y, Zhu JH, He XJ, Wu JM, Iida K (2008) The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and post transcriptionally to promote drought resistance. Plant Cell 20:2238–2251

    Article  CAS  Google Scholar 

  • Li C, Yan JM, Li YZ, Zhang ZC, Wang QL, Liang Y (2013) Silencing the SpMPK1, SpMPK2, and SpMPK3 genes in tomato reduces abscisic acid – mediated drought tolerance. Int J Mol Sci 14:21983–21996

    Article  Google Scholar 

  • Liao CT, Lin CH (2014) Effect of flooding stress on photosynthetic activities of Momordica charantia. Plant Physiol Biochem 32:479–485

    Google Scholar 

  • Lopes MS, Reynolds MP, McIntyre CL, Mathews KL, Jalal Kamali MR, Mossad M, Feltaous Y, Tahir ISA, Chatrath R, Ogbonnaya F et al (2013) QTL for yield and associated traits in the Seri/Babax population grown across several environments in Mexico, in the West Asia, North Africa, and South Asia regions. Theor Appl Genet 126:971–984. https://doi.org/10.1007/s00122-012-2030-4

    Article  Google Scholar 

  • Lopez MAH, Ulery AL, Samani Z, Picchioni G, Flynn RP (2011) Response of Chile pepper (Capsicum annuum L.) to salt stress and organic and inorganic nitrogen sources: i. growth and yield. Trop Subtrop Agroecosystems 14:137–147

    Google Scholar 

  • Lu SF, Sun YH, Chiang VL (2008) Stress-responsive microRNAs in Populus. Plant J 55:131–151

    Article  CAS  Google Scholar 

  • Luck J, Asaduzzaman M, Banerjee S, Bhattacharya I, Coughlan K, Debnath GC, De Boer D, Dutta S, Forbes G, Griffiths W, Hossain D, Huda S, Jagannathan R, Khan S, O’Leary G, Miah G, Saha A, Spooner-Hart R (2010) The effects of climate change on pest and diseases major food crops in the Asia Pacific region. Asia–Pacific Network for Global Change Research. https://www.apn-gcr.org/resources/files/original/1534fe7a80b1be6e9d00d2cd6934fae0.pdf. Accessed 14 Apr 2012

  • Lukatkin AS, Brazaitytė A, Bobinas C, Duchovskis P (2012) Chilling injury in chilling-sensitive plants: a review. Žemdirbystė=Agriculture 99(2):111–124

    Google Scholar 

  • Malhotra SK (2016) Recent advances in seed spices research-a review. Ann Plant Soil Res 18:300–308

    Google Scholar 

  • Malik AI, Colmer TD, Lambers H, Setter TL, Schortemeyer M (2012) Short term waterlogging has long term effects on the growth and physiology of wheat. New Phytol 153:225–236

    Article  Google Scholar 

  • Markowski A (1988) Sensitivity of different species of field crops to chilling temperature. II. Germination, growth and injuries of seedlings. Acta Physiol Plant 10(3):275–283

    Google Scholar 

  • Martin B, Nienhuis J, King G, Schaefer A (1989) Restriction fragment length polymorphisms associated with water use efficiency in tomato. Science 243:1725–1728

    Article  CAS  Google Scholar 

  • Martinez Rodriguez MM, Estan MT, Moyano E, Garcia Abellan JO, Flores FB (2010) The effectiveness of grafting to improve salt tolerance in tomato when an ‘excluder’genotype is used as scion. Environ Exp Bot 63:392–401

    Article  Google Scholar 

  • Matson PA, Parton WJ, Power AG, Swift MJ (1997) Agricultural intensification and ecosystem properties. Science 277:504–509

    Article  CAS  Google Scholar 

  • Matsubara S (2012) Studies on salt tolerance of vegetables, 3: Salt tolerance of rootstocks. Scientific reports of the faculty of agriculture Okayama University

    Google Scholar 

  • Mboup M, Bahri B, Leconte M, Vallavieille P, D. and Kaltz, O. (2012) Genetic structure and local adaptation of European wheat yellow rust populations: the role of temperature specific adaptation. Evol Appl 5:341–352

    Article  Google Scholar 

  • McCord PH, Sosinski BR, Haynes KG, Clough ME, Yencho GC (2011) QTL mapping of internal heat necrosis in tetraploid potato. Theor Appl Genet 122:129–142. https://doi.org/10.1007/s00122-010-1429-z

    Article  CAS  Google Scholar 

  • McMahon MJ, Permit AJ, Arnold JE (1994) Effects of chilling on Episcia and dieffenbachia. J Am Soc Hortic Sci 119(1):80–83

    Article  Google Scholar 

  • Metwally E, El-Zawily A, Hassan N, Zanata O (1996) Inheritance of fruit set and yields of tomato under high temperature conditions in Egypt. In: First Egypt-Hungary horticulture conference, vol I, pp 112–122

    Google Scholar 

  • Mickelbart MV, Hasegawa PM, Bailey-Serres J (2015) Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability. Nat Rev Genet 16(4):237–251. https://doi.org/10.1038/nrg3901

    Article  CAS  Google Scholar 

  • Milder JC, Majanen T, Scherr SJ (2011) Performance and potential of conservation agriculture for climate change adaptation and mitigation in sub-Saharan Africa: final report on an assessment of WWF and CARE projects in support of the WWF–CARE Alliance’s rural futures initiative. Eco Agriculture Partners, Washington, DC, USA

    Google Scholar 

  • Mishra KB, Iannacone R, Petrozza A, Mishra A, Armentano N, La Vecchia G, Trtilek M, Cellini F, Nedbal L (2012) Engineering drought tolerance in tomato plants is reflected in chlorophyll fluorescence emission. Plant Sci 182:79–86

    Article  CAS  Google Scholar 

  • Mitchell DE, Madore MA (1992) Patterns of assimilate production and translocation in muskmelon (Cucumis melo L.): low temperature effects. Plant Physiol 99(3):966–971

    Article  CAS  Google Scholar 

  • Mondal P, Basuand PB, Bhadoria S (2011) Critical review of precision agriculture technologies and its scope of adoption in India. Am J Exp Agric 1(3):49–68

    Google Scholar 

  • Mukeshimana G, Butare L, Cregan PB, Blair MW, Kelly JD (2014) Quantitative trait loci associated with drought tolerance in common bean. Crop Sci 54:923–938. https://doi.org/10.2135/cropsci2013.06.0427

    Article  Google Scholar 

  • Muller A (2009) Benefits of organic agriculture as a climate change adaptation and mitigation strategy for developing countries. Discussion paper series–EfD DP 09–09. Environment for development. http://www.ifr.ac.uk/waste/ Reports/BenefitsOfOrganicAgriculture.pdf. Accessed 8 Nov 2013

  • Muñoz-Mayor A, Pineda B, Garcia-Abellán JO, Antón T, Garcia-Sogo B, Sanchez-Bel P, Flores FB, Atarés A, Angosto T, Pintor-Toro JA, Moreno V, Bolarin MC (2012) Overexpression of dehydrin tas14 gene improves the osmotic stress imposed by drought and salinity in tomato. J Plant Physiol 169:459–468

    Article  Google Scholar 

  • Neumeister L (2010) Climate change and crop protection -anything can happen. In: Pesticide action network asia and the pacific, Penang, Malaysia, pp 4–41

    Google Scholar 

  • Newton AC, Johnson SN, Gregory PJ (2011) Implications of climate change for diseases, crop yields and food security. Euphytica 179:3–18

    Article  Google Scholar 

  • Ni X, Tian Z, Liu J, Song B, Li J, Shi X, Xie C (2010) StPUB17, a novel potato UND/PUB/ARM repeat type gene, is associated with late blight resistance and NaCl stress. Plant Sci 178:158–169

    Article  CAS  Google Scholar 

  • Nullis C (2018) Communications and public affairs WMO IPCC issues special report on global warming of 1.5 °C. Bulletin 67(2)

    Google Scholar 

  • Okimura M, Matsuo S, Arai K, Okitsu S (1986) Influence of soil temperature on the growth of fruit vegetable grafted on different stocks. Bull Veg Ornam Crops Res Stn, Japan, Ser. C.9: 43–58. (in Japanese with English summary)

    Google Scholar 

  • Opena RT, Chen JT, Kuo CG, Chen HM (1992) Genetic and physiological aspects of tropical adaptation in tomato. In: Adaptation of food crops to temperature and water stress, AVRDC, Shanhua, pp 321–334

    Google Scholar 

  • Orvar BL, Sangwan V, Omann F, Dhindsa RS (2000) Early steps in cold sensing by plant cells: the role of actin cytoskeleton and membrane fluidity. The Plant J 23(6):785–794

    Article  CAS  Google Scholar 

  • Palada MC, Wu DL (2007) Increasing off-season tomato production using grafting technology for peri-urban agriculture in Southeast Asia. Acta Hortic 742:125–131. https://doi.org/10.17660/ActaHortic.2007.742.17

    Article  Google Scholar 

  • Pandey VK, Mishra AC (2012) Effect of mulches on soil moisture and fruit yield in summer tomato. Agric Eng Today 36(1):15–17

    Google Scholar 

  • Pandey SK, Naik PS, Sud KC, Chakrabarti SK (2007) CPRI – perspective plan vision 2025. Central Potato Research Institute, Shimla, HP, India, pp 1–70

    Google Scholar 

  • Pandey S, Ansari WA, Jha A, Bhatt KV, Singh B (2011) Evaluations of melons and indigenous Cucumis spp. genotypes for drought tolerance. In: 2nd International symposium on underutilized plant species, 27th June – 1st July, The Royal Chaulan Kuala Lumpur, Malaysis, (A-61), pp 95

    Google Scholar 

  • Paran I, van der Knaap E (2007) Genetic and molecular regulation of fruit and plant domestication traits in tomato and pepper. J Exp Bot 58(14):3841–3852

    Article  CAS  Google Scholar 

  • Parent C, Capelli N, Berger A, Crèvecoeur M, Dat JF (2008) An overview of plant responses to soil waterlogging. Plant Stress 2:20–27

    Google Scholar 

  • Patade VY, Khatri D, Kumari M, Grover A, Gupta SM, Ahmed Z (2013) Cold tolerance in Osmotin transgenic tomato (Solanum lycopersicum L.) is associated with modulation in transcript abundance of stress responsive genes. Springerplus 2:117

    Article  Google Scholar 

  • Pautasso M, Doring TF, Garbelotto M, Pellis L, Jeger MJ (2012) Impacts of climate change on plant diseases-opinions and trends. Eur J Plant Pathol 133:295–313

    Article  Google Scholar 

  • Peet MM, Willits DH, Gardner R (1997) Response of ovule development and post-pollen production processes in male-sterile tomatoes to chronic, sub-acute high temperature stress. J Exp Bot 48:101–112

    Article  CAS  Google Scholar 

  • Pereira JS, Chaves MM (2007) Plant responses to drought under climate change in Mediterranean-type ecosystems. In: Global change and Mediterranean-type ecosystems, pp 140–160

    Google Scholar 

  • Pertot I, Mach FE, Elad Y (2012) Climate change impact on plant pathogens and plant diseases. In: Envirochange project booklet, pp 4

    Google Scholar 

  • Pinto RS, Reynolds MP, Mathews KL, McIntyre CL, Olivares-Villegas JJ, Chapman SC (2010) Heat and drought adaptive QTL in a wheat population designed to minimize confounding agronomic effects. Theor Appl Genet 121:1001–1021. https://doi.org/10.1007/s00122-010-1351-4

    Article  Google Scholar 

  • Prabhavathi V, Rajam MV (2007) Polyamine accumulation in transgenic eggplant enhances tolerance to multiple abiotic stresses and fungal resistance. Plant Biotechnol 24(3):273–282

    Article  CAS  Google Scholar 

  • Rab A, Saltveit ME (1996a) Differential chilling sensitivity in cucumber (Cucumis sativus) seedlings. Physiol Plant 96(3):375–382

    Article  CAS  Google Scholar 

  • Rab A, Saltveit ME (1996b) Sensitivity of seedling radicles to chilling and heat shock-induced chilling tolerance. J Am Soc Hortic Sci 121(4):711–715

    Article  Google Scholar 

  • Rai N, Yadav DS (2005) Advances. In: Vegetable production. Researcho Book Centre, New Delhi

    Google Scholar 

  • Rai M, Pandey S, Kumar S (2008, May 21–24) Cucurbitaceae. In: Pitrat M (ed) Proceedings of the IXth EUCARPIA meeting on genetics and breeding of Cucurbitaceae, INRA, Avignon (France), pp 285–293

    Google Scholar 

  • Rai N, Tiwari SK, Kumar R, Singh M, Bharadwaj DR (2011, April 4–5) Genetic Resources of Solanaceous Vegetables in India. In: National symposium on vegetable biodiversity. Jawaharlal Nehru Krishi Vishwa Vidyalaya, Jabalpur, M.P, pp 91–103

    Google Scholar 

  • Rai AC, Singh M, Shah K (2013) Engineering drought tolerant tomato plants over-expressing BcZAT12 gene encoding a C2H2 zinc finger transcription factor. Phytochemistry 85:44–50

    Article  CAS  Google Scholar 

  • Raison JK, Lyons JM (1986) Chilling injury: a plea for uniform terminology. Plant Cell Environ 9:685–686

    Article  Google Scholar 

  • Razdan MK, Mattoo AK (2007) Genetic improvement of solanaceous crops: tomato, 2nd edn. Science Publishers, p 47

    Google Scholar 

  • Robinson DS (1990) Food biochemistry and nutritional value. Longman scientific and technical publisher, New York, USA

    Google Scholar 

  • Romero-Puertas MC, Corpas FJ, Rodriguez-Serrano M, Gomez M, del Rio LA, Sandalio LM (2007) Differential expression and regulation of antioxidative enzymes by cadmium in pea plants. J Plant Physiol 164:1346–1357

    Article  CAS  Google Scholar 

  • Ross H (1986) Potato breeding: problems and perspectives. J Plant Breed 13:1–132

    Google Scholar 

  • Roy DB, Rothery P, Moss D (2001) Butterfly numbers and weather: predicting historical trends in abundance and the future effects of climate change. J Animal Ecol 70(2):201–217

    Google Scholar 

  • Sankaranarayanan K, Nalayini P, Praharaj CS (2012) Multi-tier cropping system to enhance resource utilization, profitablity and sustainablity of Btcotton (Gossypium hirsutum) production system. Indian J Agric Sci 82(12):1044–1050

    Google Scholar 

  • Sartaj SA, Chand S, Najarand GR, Teli MA (2013) Organic farming: as a climate change adaptation and mitigation strategy. Curr Agric Res J 1(1):45–50

    Article  Google Scholar 

  • Shah K, Singh M, Rai AC (2013) Effect of heat-shock induced oxidative stress is suppressed in BcZAT12 expressing drought tolerant tomato. Phytochemistry 95:109–117

    Article  CAS  Google Scholar 

  • Sharom M, Willemot C, Thompson JE (1994) Chilling injury induces lipid phase changes in membranes of tomato fruit. Plant Physiol 105(1):305–308

    Article  CAS  Google Scholar 

  • Siddique KHM, Loss SP, Regan KL, Jettner RL (1999) Adaptation and seed yield of cool season grain legumes in Mediterranean environments of South-Western Australia. Aust J Agric Res 50:375–388. https://doi.org/10.1071/A98096

    Article  Google Scholar 

  • Singh HP (2010, October 29–30) Ongoing research in abiotic stress due to climate change in horticulture. In: Curtain raiser meet on research needs arising due to abiotic stresses in agriculture management in India under global climate change scenario, Baramati, Maharashtra, pp 1–23. http://www.niam.res.in/pdfs/DDG_Hort_lecture.pdf

  • Sivakumar R, Nandhitha GK, Boominathan P (2016) Impact of drought on growth characters and yield of contrasting tomato genotypes. Madras Agric J 103:78–82

    Google Scholar 

  • Skog LJ (1998) Chilling injury of horticultural crops. Ontario Ministry of Agriculture, Food and Rural Affairs Factsheet. http://www.omafra.gov.on.ca/english/crops/facts/98–021.htm. Accessed 11 May 2011

  • Skrudlik G, Koscielniak J (1996) Effects of low-temperature treatment at seedling stage on soybean growth, development and final yield. J Agron Crop Sci 176(2):111–117

    Article  Google Scholar 

  • Smith P, Martino D, Cai Z, Gwary D, Janzen H, Kumar P, McCarl B, Ogle S, O’Mara F, Rice C, Scholes B, Sirotenko O (2007) Agriculture. In: Metz B, Davidson OR, Bosch PR, Dave R, Meyer LA (eds) Climate change 2007: mitigation. Contribution of working group III to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK, pp 492–540

    Google Scholar 

  • Solankey SS, Singh RK, Baranwal DK, Singh DK (2015a) Genetic expression of tomato for heat and drought stress tolerance: an overview. Int J Veg Sci 21(5):496–515. https://doi.org/10.1080/19315260.2014.902414

    Article  Google Scholar 

  • Solankey SS, Akhtar S, Aditya (2015b) Multitier cropping system for profitability and scalability in vegetable production. In: Choudhary ML, Aditya (ed) Family farming and rural economic development. New India Publishing Agency, New Delhi, pp. 331–338

    Google Scholar 

  • Steponkus PL (1984) Role of the plasma membrane in freezing injury and cold acclimation. Annu Rev Plant Physiol 35:543–584

    Article  CAS  Google Scholar 

  • Steponkus PL, Uemura M, Webb MS (1993) A contrast of the cryostability of the plasma membrane of winter rye and spring oat-two species that widely differ in their freezing tolerance and plasma membrane lipid composition. In: Steponkus PL (ed) Advances in low-temperature biology, vol 2. JAI Press, London, pp 211–312

    Google Scholar 

  • Sunkar R (2010) MicroRNAs with macro-effects on plant stress responses. Semin Cell Dev Biol 21:805

    Article  CAS  Google Scholar 

  • Sunkar R, Zhu JK (2004) Novel and stress-regulated micro RNAs and other small RNAs from Arabidopsis. Plant Cell 16:2001–2019

    Article  CAS  Google Scholar 

  • Tang L, Kim MD, Yang KS, Kwon SY, Kim SH, Kim JS, Yun DJ, Kwak SS, Lee HS (2008) Enhanced tolerance of transgenic potato plants overexpressing nucleoside diphosphate kinase 2 against multiple environmental stresses. Transgenic Res 17:705–715

    Article  CAS  Google Scholar 

  • Termorshuizen AJ (2008) Climate change and bio invasiveness of plant pathogens: comparing pathogens from wild and cultivated hosts in the past and the present. Pests Clim Chang:6–9

    Google Scholar 

  • Thipyapong P, Melkonian J, Wolfe DW, Steffens JC (2004) Suppression of polyphenol oxidase increases stress tolerance in tomato. Plant Sci 167:693–703

    Article  CAS  Google Scholar 

  • Ting CS, Owens TG, Wolfe DW (1991) Seedling growth and chilling stress effect on photosynthesis in chilling-sensitive and chilling tolerant cultivars of Zea mays. J Plant Physiol 137(5):559–564

    Article  Google Scholar 

  • Toppino L, Acciarri N, Mennella G, Lo Scalzo R, Rotino GL (2009, September 16/19) Introgression breeding in eggplant (Solanum melongena L.) by combining biotechnological and conventional approaches. In: Proceedings of the 53rd Italian society of agricultural genetics annual congress Torino, Italy

    Google Scholar 

  • Tsuda H, Niimura Y, Katoh T (2003) Chill injury in Saintpaulia leaf with special reference to leaf spot formation. J Agric Sci Tokyo Nogyo Daigaku 47(4):283–289

    Google Scholar 

  • Vadez V, Berger JD, Warkentin T, Asseng S, Ratnakumar P (2012) Adaptation of grain legumes to climate change: a review. Agron Sustain Dev 32:31–44

    Article  Google Scholar 

  • Venema JH, Posthumus F, de Vries M, van Hasselt PR (1999) Differential response of domestic and wild Lycopersicon species to chilling under low light: growth, carbohydrate content, photosynthesis and the xanthophyll cycle. Physiol Plant 105(1):81–88

    Article  CAS  Google Scholar 

  • Venema JH, Dijk BE, Bax JM, Van Hasselt PR, Elzenga JTM (2008) Grafting tomato (Solanum lycopersicum) onto the rootstock of a high altitude accession of Solanum habrochaites improves suboptimal temperature tolerance. Environ Exp Bot 63:359–367

    Article  Google Scholar 

  • Ventura Y, Mendlinger S (1999) Effects of suboptimal low temperature on yield, fruit appearance and quality in muskmelon (Cucumis melo L.) cultivars. J Hortic Sci Biotechnol 74(5):602–607

    Article  Google Scholar 

  • Ventura G, Grilli G, Braz LT, Gertrudes E, Lemos M (2007) QTL identification for tolerance to fruit set in tomato by fAFLP markers. Crop Breed Appl Biotechnol 7:234–241

    Article  Google Scholar 

  • Vermeulen SJ, Aggarwal PK, Ainslie A, Angelone C, Campbell BM, Challinor AJ, Hansen J, Ingram JSI, Jarvis A, Kristjanson P, Lau C, Thornton PK, Wollenberg E (2010) Agriculture, food security and climate change: outlook for knowledge, tools and action: CCAFS Report 3. CGIAR–ESSP program on climate change. Agriculture and Food Security, Copenhagen, Denmark. https://cgspace.cgiar.org/rest/bitstreams/15414/retrieve. Accessed 4 Jan 2013

  • Vijayalakshmi K, Fritz AK, Paulsen GM, Bai G, Pandravada S, Gill BS (2010) Modeling and mapping QTL for senescence-related traits in winter wheat under high temperature. Mol Breed 26:163–175. https://doi.org/10.1007/s11032-009-9366-8

    Article  CAS  Google Scholar 

  • Wahid A, Gelani S, Ashraf M, Foolad M (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61:199–223. https://doi.org/10.1016/j.envexpbot.2007.05.011

    Article  Google Scholar 

  • Wang CY (1993) Approaches to reducing chilling injury of fruits and vegetables. Hortic Rev 15:63–95

    Google Scholar 

  • Wang CY (1994) Reduction of chilling by Methyl Jasmonate. Acta Hortic 368:901–907

    Article  CAS  Google Scholar 

  • Wang Y, Wisniewski M, Meilan R, Cui M, Fuchigami L (2006) Transgenic tomato (Lycopersicon esculentum) overexpressing cAPX exhibits enhanced tolerance to UV-B and heat stress. J Appl Hortic 2:87–90

    Article  Google Scholar 

  • Wang BQ, Zhang QF, Liu JH, Li GH (2011) Overexpression of PtADC confers enhanced dehydratation and drought tolerance in transgenic tobacco and tomato: effect on ROS elimination. Biochem Biophys Res Commun 413:10–16

    Article  CAS  Google Scholar 

  • Welbaum GE (2015) Vegetable production and practices. Centre for Agriculture and Bioscience International, p 476

    Google Scholar 

  • WMO (2012) WMO statement on the status of the global climate in 2011. WMO-No. 1085, World Meteorological Organization

    Google Scholar 

  • Wolk WD, Herner RC (1982) Chilling injury of germinating seeds and seedlings. Hort Science 17(2):169–173

    Google Scholar 

  • Xin Z, Browse J (2000) Cold comfort farm: the acclimation of plants to freezing temperatures. Plant Cell Environ 23(9):893–902

    Article  Google Scholar 

  • Yamamura K, Kiritani K (1998) A simple method to estimate the potential increase in the number of generations under global warming in temperate zones. Appl Entomol Zool 33:289–298

    Article  Google Scholar 

  • Yarra R, He SJ, Abbagani S, Ma B, Bulle M, Zhang WK (2012) Overexpression of wheat Na+/H+ anti- porter gene (TaNHX2) enhances tolerance to salt stress in transgenic tomato plants (Solanum lycopersicum L). Plant Cell Tissue Org Cult 111:49–57

    Article  CAS  Google Scholar 

  • Yetisir H, Caliskan ME, Soylu S, Sakar M (2006) Some physiological and growth responses of watermelon [Citrullus lanatus (Thunb.) Matsum. and Nakai] grafted onto Lagenaria siceraria to flooding. Environ Exp Bot 58:1–8

    Article  Google Scholar 

  • Yildirim E, Guvenc I (2006) Salt tolerance of pepper cultivars during germination and seedling growth. Turk J Agric For 30(347):353

    Google Scholar 

  • Yordanov I, Velikova V, Tsonev T (2013) Plant responses to drought, acclimation, and stress tolerance. Photosynthetica 38:171–186

    Article  Google Scholar 

  • Yoshida R, Kanno A, Sato Т, Катеуа Т (1996) Cool temperature-induced chlorosis in rice plants: relationship between the induction and a disturbance of etioplast development. Plant Physiol 110(3):997–1005

    Article  CAS  Google Scholar 

  • Yukawa J (2008) Annexure-3: Northward distribution range extensions of plant pests, possibly due to climate change: examples in Japan. In: Climate-related transboundary pests and diseases, technical background document from the expert consultation held on 25 to 27 February 2008, FAO, Rome

    Google Scholar 

  • Zajac MR, Kubis J (2010) Effect of UV-B radiation on antioxidative enzyme activity in cucumber cotyledons. Acta Biol Cracov Ser Bot 52(2):97–102

    Google Scholar 

  • Zemetra RS, Cuany RL (1991) Variation among inbreds for seed response to low temperatures in maize (Zea mays L.). Maydica 36(1):17–23

    Google Scholar 

  • Zhang HX, Blumwald E (2001) Transgenic salt tolerant tomato plants accumulate salt in foliage but not in fruit. Nat Biotechnol 19:765–768

    Article  CAS  Google Scholar 

  • Zhang Z, Huang R (2010) Enhanced tolerance to freezing in tobacco and tomato overexpressing transcription factor TERF2/LeERF2 is modulated by ethylene biosynthesis. Plant Mol Biol 73(3):241–249

    Article  CAS  Google Scholar 

  • Zhang C, Liu J, Zhang Y, Cai X, Gong P, Zhang J, Wang T, Li H, Ye Z (2011) Overexpression of SlGMEs leads to ascorbate accumulation with enhanced oxidative stress, cold, and salt tolerance in tomato. Plant Cell Rep 30:389–398

    Article  CAS  Google Scholar 

  • Zhao B (2007) Identification of drought-induced microRNAs in rice. Biochem Biophys Res Commun 354:585–590

    Article  CAS  Google Scholar 

  • Zhao BT, Ge LF, Liang RQ, Li W, Ruan KC, Lin HX (2009) Members of miR-169 family are induced by high salinity and transiently inhibit the NF-YA transcription factor. BMC Mol Cell Biol 10:29

    Google Scholar 

  • Zhao M, Ding H, Zhu JK, Zhang F, Li WX (2011) Involvement of miR169 in the nitrogen-starvation responses in Arabidopsis. New Phytol 190:906–915

    Article  CAS  Google Scholar 

  • Zhou X, Harrington R, Woiwod IP, Perry JN, Bale JS (2014) Effects of temperature on aphid phenology. Glob Chang Biol 1:303–313

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Akhtar, S., Sangam, S., Chattopadhyay, T., Naik, A., Solankey, S.S. (2023). Emerging Obstacles of Vegetable Production Due to Climate Change and Mitigation Strategies. In: Solankey, S.S., Kumari, M. (eds) Advances in Research on Vegetable Production Under a Changing Climate Vol. 2. Advances in Olericulture. Springer, Cham. https://doi.org/10.1007/978-3-031-20840-9_2

Download citation

Publish with us

Policies and ethics