Skip to main content
Log in

Modeling and mapping QTL for senescence-related traits in winter wheat under high temperature

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Senescence is a genetically programmed and environmentally influenced process resulting in the destruction of chlorophyll and remobilization of nutrients to younger or reproductive parts of plants. Delayed senescence, or stay-green, contributes to a long grain-filling period and stable yield under stress. To model senescence and identify quantitative trait loci (QTL) for the trait, a population of recombinant inbred lines (RIL) from a cross between winter wheat cultivars, ‘Ventnor’ and ‘Karl 92’ was evaluated for heat tolerance under optimum temperature of 20/15°C (day/night) and continuous heat stress of 30/25°C from 10 days after anthesis (DAA) until maturity. Ventnor is a heat-tolerant cultivar and Karl 92 is a relatively heat-susceptible cultivar. Green leaf area was measured and used to model percent greenness retained over the reproductive period. Chlorophyll content and chlorophyll fluorescence were recorded on flag leaves. Senescence was converted to a quantitative trait using the model. Based on the modeled parameters, the RILs were categorized into three groups. When senescence-related traits were evaluated, nine QTL for heat tolerance were found on chromosome 2A, two each on chromosomes 6A and 6B and one each on chromosome 3A, 3B, and 7A. Both parents contributed favorable alleles for most of the senescence-related traits. Microsatellite markers Xgwm356 and Xgwm5 prominently linked to the senescence-related traits may be useful in marker-assisted breeding. These and the linked AFLP (amplified fragment length polymorphism) markers XCGT.TGCG-349, XCGT.GTG-343, and XCGT.CTCG-406, if converted to STS (sequence tagged sites), can be used for further molecular dissection of the QTL for post-anthesis heat tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Al-Khatib K, Paulsen GM (1990) Photosynthesis and productivity during high-temperature stress of wheat genotypes from major world regions. Crop Sci 30:1127–1132

    Article  Google Scholar 

  • Ambler JR, Morgan PW, Jordan WR (1987) Genetic regulation of senescence in a tropical grass. In: Thomson WW, Nothnagel EA, Huffaker RC (eds) Plant senescence: its biochemistry and physiology. American Society of Plant Physiologists, Rockville, pp 43–53

    Google Scholar 

  • Basten CJ, Weir BS, Zeng ZB (2002) QTL cartographer, Version 1.16. Department of Statistics. North Carolina State University, Raleigh

    Google Scholar 

  • Bertin P, Gallais A (2001) Genetic variation of nitrogen use efficiency in a set of recombinant inbred lines. II. QTL detection and coincidences. Maydica 46:53–68

    Google Scholar 

  • Bhadula SK, Elthon TE, Habben JE, Helentjaris TG, Jiao S, Ristic Z (2001) Heat-stress induced synthesis of chloroplast protein synthesis elongation factoe (EF-Tu) in a heat-tolerant maize line. Planta 212:359–366

    Article  CAS  PubMed  Google Scholar 

  • Buchanan-Wollaston V (1997) The molecular biology of leaf senescence. J Exp Bot 48:181–199

    Article  Google Scholar 

  • Cha KW, Lee YJ, Koh HJ, Lee BM, Nam YW, Paek NC (2002) Isolation, characterization and mapping of stay green mutant in rice. Theor Appl Genet 104:526–532

    Article  CAS  PubMed  Google Scholar 

  • Chandler JM (2001) Current molecular understanding of the genetically programmed process of leaf senescence. Physiol Plant 113:1–8

    Article  Google Scholar 

  • Chen X, Sun Q, Sun C (2002) Performance and evaluation of spring wheat heat tolerance. J China Agri Univ 5:43–49

    Google Scholar 

  • Cheng Z, Presting GG, Buell CR, Wing RA, Jiang J (2001) High-resolution pachytene chromosome mapping of bacterial artificial chromosomes anchored by genetic markers reveals the centromere location and the distribution of genetic recombination along chromosome 10 of rice. Genetics 157:1749–1757

    CAS  PubMed  Google Scholar 

  • Crasta OR, Xu WW, Rosenow DT, Mullet J, Nguyen HT (1999) Mapping of post-flowering drought resistance traits in grain sorghum: association between QTLs influencing premature senescence and maturity. Mol Gen Genet 262:579–588

    Article  CAS  PubMed  Google Scholar 

  • Devos KM, Gale MD (1997) Comparative genetics in grasses. Plant Mol Biol 35:3–15

    Article  CAS  PubMed  Google Scholar 

  • Distelfeld A, Uauy C, Fahima T, Dubcovsky J (2006) Physical map of the wheat high-grain protein content gene Gpc-B1 and development of a high-throughput molecular marker. New Phytol 169:753–763

    Article  CAS  PubMed  Google Scholar 

  • Evans LT (1993) Crop evaluation, adaptation and yield. Cambridge University Press, UK

    Google Scholar 

  • Evans LT, Wardlaw IF, Fischer RA (1975) Wheat. In: Evans LT (ed) Crop physiology: some case histories. Cambridge University Press, Cambridge, pp 101–149

    Google Scholar 

  • Fracheboud Y, Ribaut JM, Vargas M, Messmer R, Stamp P (2002) Identification of quantitative trait loci for cold-tolerance of photosynthesis in maize (Zea mays L.). J Exp Bot 53(376):1967–1977

    Article  CAS  PubMed  Google Scholar 

  • Gentinetta E, Ceppi D, Lepori C, Perico G, Motto M, Salamini F (1986) A major gene for delayed senescence in maize. Pattern of photosynthates accumulation and inheritance. Plant Breed 97:193–203

    Article  CAS  Google Scholar 

  • Haussamann BIG, Mahalakshmi V, Reddy BVS, Seetharama N, Hash CT, Geiger HH (2002) QTL mapping for stay-green in two sorghum recombinant inbred populations. Theor Appl Genet 106:133–142

    Google Scholar 

  • Institute Inc SAS (1999) The SAS systems for windows, release 8.00. SAS Institute, Cary

    Google Scholar 

  • Jiang GH, He YQ, Xu CG, Li XH, Zhang Q (2004) The genetic basis of stay-green in rice analyzed in population of dihybrid lines derived from indica by japonica cross. Theor Appl Genet 108:688–698

    Article  CAS  PubMed  Google Scholar 

  • Kebede H, Subudhi PK, Rosenow DT, Nguyen HT (2001) Quantitative trait loci influencing drought tolerance in grain sorghum (Sorghum bicolor L. Moench). Theor Appl Genet 103:266–276

    Article  CAS  Google Scholar 

  • Liang C, Jaiswal P, Hebbard C, Avraham S, Buckler ES, Casstevens T, Hurwitz B, McCouch S, Ni J, Pujar A, Ravenscroft D, Ren L, Spooner W, Tecle I, Thomason J, Tung CW, Wei X, Yap I, Youens-Clark K, Ware D, Stein L (2007) Gramene: a growing plant comparative genomics resource. Nucleic Acids Res. http://www.gramene.org/Release #27. 4 Nov 2007

  • Moffatt JM, Sears RG, Paulsen GM (1990) Wheat high temperature tolerance during reproductive growth. I. Evaluation by chlorophyll fluorescence. Crop Sci 30:881–885

    CAS  Google Scholar 

  • Mohammadi V, Qannadha MR, Zali AA, Yazdi-Samadi B (2004) Effects of post-anthesis heat stress on head traits of wheat. Int J Agri Biol 6:42–44

    Google Scholar 

  • Noodén LD, Guiamet JJ, John I (1997) Senescence mechanism. Physiol Plant 101:746–753

    Article  Google Scholar 

  • Qi L, Echalier B, Friebe B, Gill BS (2003) Molecular characterization of a set of wheat deletion stocks for use in chromosome bin mapping of ESTs. Funct Integr Genomics 3:39–55

    CAS  PubMed  Google Scholar 

  • Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW (1984) Ribosomal DNA spacer-length polymorphism in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci 81:8014–8018

    Article  CAS  PubMed  Google Scholar 

  • Sanchez AC, Subudhi PK, Rosenow DT, Nguyen HT (2002) Mapping QTLs associated with drought resistance in sorghum (Sorghum bicolor L.Moench). Plant Mol Biol 48:713–726

    Article  CAS  PubMed  Google Scholar 

  • Seber GAF, Wild CJ (1989) Growth model. Chapter 7. Nonlinear regression. Wiley, New York

    Google Scholar 

  • Somers DJ, Isaac P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114

    Article  CAS  PubMed  Google Scholar 

  • Sorrells ME, La Rota M, Bermudez-Kandianis CE, Greene RA, Kantety R, Munkvold JD, Miftahudin MA, Ma X, Gustafson PJ, Qi LL, Echalier B, Gill BS, Matthews DE, Lazo GR, Chao S, Anderson OD, Edwards H, Linkiewicz AM, Dubcovsky J, Akhunov ED, Dvorak J, Zhang D, Nguyen HT, Peng J, Lapitan NLV, Gonzalez-Hernandez JL, Anderson JA, Hossain K, Kalavacharla V, Kianian SF, Dong-Woog C, Close TJ, Dilbirligi M, Gill KS, Steber C, Walker-Simmons MK, McGuire PE, Qualset CO (2003) Comparative DNA sequence analysis of wheat and rice genomes. Genome Res 13:1818–1827

    Google Scholar 

  • Sourdille P, Singh S, Cadalen T, Brown-Guedira GL, Gay G, Qi L, Gill BS, Dufour P, Murigneux A, Bernard M (2004) Microsatellite-based deletion bin system for the establishment of genetic-physical map relationships in wheat (Triticum aestivum L.). Funct Integr Genomics 4:12–25

    Article  CAS  PubMed  Google Scholar 

  • Spano G, Di Fonzo N, Perrotta C, Platani C, Ronga G, Lawlar DW, Napier JA, Shewry PR (2003) Physiological characterization of ‘stay green’ mutant in durum wheat. J Exp Biol 54:1415–1420

    CAS  Google Scholar 

  • Subudhi PK, Rosenow DT, Nguyen HT (2000) Quantitative trait loci for stay green trait in sorghum (Sorghum bicolor L. Moench): consistency across genetic backgrounds and environments. Theor Appl Genet 101:733–741

    Article  CAS  Google Scholar 

  • Tao YZ, Hanzell RG, Jordan DR, Butler DG, Kelly AM, McIntyre CL (2000) Identification of genomic regions associated with stay green in sorghum by testing RILs in multiple environments. Theor Appl Genet 100:1225–1232

    Article  CAS  Google Scholar 

  • Thomas H, Howarth CJ (2000) Five ways to stay green. J Exp Bot 51:329–337

    Article  CAS  PubMed  Google Scholar 

  • Thomas H, Smart CM (1993) Crops that stay green. Ann Appl Biol 123:193–219

    Article  Google Scholar 

  • Tuinstra MR, Grote EM, Goldsbrough PB, Ejeta G (1997) Genetic analysis of post-flowering drought tolerance and components of grain development in Sorghum bicolor (L.) Moench. Mol Breed 3:439–448

    Article  CAS  Google Scholar 

  • Uauy C, Distelfeld A, Fahima T, Blechl A, Dubcovsky J (2006) A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science 314:1298–1301

    Article  CAS  PubMed  Google Scholar 

  • Verma V, Foulkes MJ, Worland AJ, Sylvester-Bradley R, Caligari PDS, Snape JW (2004) Mapping quantitative trait loci for flag leaf senescence as a yield determinant in winter wheat under optimal and drought stressed environments. Euphytica 135:255–263

    Article  CAS  Google Scholar 

  • Vos P, Hogers R, Reijans M, van de Lee T, Hornes M, Friters A, Pot J, Peleman J, Kupier M, Zabeau M (1995) AFLP: technique for DNA fingure printing. Nucl Acids Res 23:4407–4414

    Article  CAS  PubMed  Google Scholar 

  • Wardlaw IF (2002) Interaction between drought and chronic high temperature during kernel filling in wheat in a controlled environment. Ann Bot 90:469–476

    Article  PubMed  Google Scholar 

  • Xu W, Rosenow DT, Nguyen HT (2000a) Stay-green trait in grain sorghum: relationship between visual rating and leaf chlorophyll concentration. Plant Breed 119:365–367

    Article  CAS  Google Scholar 

  • Xu W, Subudhi PK, Crasta OR, Rosenow DT, Mullet JE, Nguyen HT (2000b) Molecular mapping for QTLs conferring stay-green in grain sorghum (Sorghum bicolor L.Moench). Genome 43:461–469

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Sears RG, Gill BS, Paulsen GM (2002) Genotypic differences in utilization of assimilate sources during maturation of wheat under chronic heat and heat shock stresses. Euphytica 125:179–188

    Article  CAS  Google Scholar 

  • Yvan F (2002) Using chlorophyll fluorescence to study photosynthesis. http://www.ab.ipw.agrl.ethz.ch/~yfracheb/flex.htm

  • Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Kansas Wheat Commission for financial support of the project. We especially thank Dr. George Milliken, department of statistics at Kansas State University for his help in modeling the data. We would also like to thank Drs. Mitch Tuinstra and Paul St. Amand for extending their laboratory facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allan K. Fritz.

Additional information

Contribution no. 09-161-J from the Kansas Agricultural Experiment Station.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vijayalakshmi, K., Fritz, A.K., Paulsen, G.M. et al. Modeling and mapping QTL for senescence-related traits in winter wheat under high temperature. Mol Breeding 26, 163–175 (2010). https://doi.org/10.1007/s11032-009-9366-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-009-9366-8

Keywords

Navigation