Skip to main content
Log in

Founder effect in crop-plant evolution

  • Published:
Economic Botany Aims and scope Submit manuscript

Abstract

Seed-crop plants apparently originated from a limited number of mutants in which seed dispersal was changed from that found in nondomesticated populations. Seed nonshattering in cultivated plants may be controlled by a single gene or a small number of genes. Allopolyploid crop plants were derived from a limited number of interspecific hybridizations followed by chromosome doubling. The consequence of this founder effect is a narrow genetic variability in the crop population compared to its wild progenitor. Natural hybridization between the two is prevented by various isolating mechanisms, and gene flow, if it exists, is apparently more effective in the direction from the cultivated to the wild populations. Founder effect in crop-plant evolution indicates the value and the breeding potential of the genetic variability remaining in its wild relatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Allard, R. W. 1970. Problems in maintenance.In O. H. Frankel and E. Bennett, ed, Genetic Resources in Plants. International Biological Programme Handbook No. 11. Blackwell, Oxford.

    Google Scholar 

  • Beadle, W. 1980. The ancestry of corn. Sci. Amer. 242: 96–103.

    Article  Google Scholar 

  • Bilquez, A. E., and J. Lecomte. 1969. Relations entre mils sauvage et mils cultives: etude de l’hybridePennisetum typhoides Stapf.P. violaceum (Lam.) L. Rich. Agron. Trop. 24: 249–257.

    Google Scholar 

  • Brunken, J., J. M. J. de Wet, and J. R. Harlan. 1977. The morphology and domestication of pearl millet. Econ. Bot. 31: 163–174.

    Google Scholar 

  • Chang, T. T. 1964. Present knowledge of rice genetics and cytogenetics. Int. Rice Res. Inst. Tech. Bull. No. 1. Los Baños.

    Google Scholar 

  • Coffman, F. A. 1961. Oats and Oat Improvement. Amer. Soc. Agron., Madison, WI.

    Google Scholar 

  • Dave, B. B. 1943. The wild rice problem in the central provinces and its solution. Indian J. Agric. Sci. 13: 46–53.

    Google Scholar 

  • Doggett, H., and B. N. Majisu. 1968. Disruptive selection in crop development. Heredity 23: 1–23.

    Article  Google Scholar 

  • Donnelly, E. D., J. E. Watson, and J. A. McGuire. 1972. Inheritance of hard seed inVicia. J. Heredity 63: 261–365.

    Google Scholar 

  • Endo, T., and H. Morishma. 1983. Rice.In S. D. Tanksley and T. J. Orton, ed, Isozymes in Plant Genetics and Breeding. Part II. Elsevier, Amsterdam.

    Google Scholar 

  • Forbes, I., and D. Homer. 1968. Hard and soft seededness in blue lupineLupinus angustifolius L.: inheritance and phenotype classification. Crop Sci. 8: 195–197.

    Google Scholar 

  • Harlan, J. R. 1965. The possible role of weed races in the evolution of cultivated plants. Euphytica 14: 173–176.

    Article  Google Scholar 

  • —. 1976. Genetic resources in wild relatives of crops. Crop Sci. 16: 329–332.

    Google Scholar 

  • —, J. M. J. de Wet, and E. G. Price. 1973. Comparative evolution of cereals. Evolution 27: 311–325.

    Article  Google Scholar 

  • Hawkes, J. G. 1962. The origin ofSolanum juzepczukii Buk. andS. curtilobum Juz. et Buk. Z. Pflanzenzucht. 47: 1–14.

    Google Scholar 

  • Hutchinson, J. B. 1965. Crop plant evolution.In J. Hutchinson, ed, Essay on Crop Plant Evolution. Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • —, and S. G. Stephens. 1947. The evolution of the species ofGossypium.In J. B. Hutchinson, R. A. Silow, and S. G. Stephens, ed, The Evolution ofGossypium. Oxford Univ. Press, London.

    Google Scholar 

  • Jaaska, V. 1980. Electrophoretic survey of seedling esterases in wheat in relation to their phylogeny. Theor. Appl. Genet. 56: 273–284.

    Article  CAS  Google Scholar 

  • Kahler, A. L., and R. W. Allard. 1981. Worldwide patterns of genetic variation among four esterase loci in barley (Hordeum vulgare L.). Theor. Appl. Genet. 59: 101–111.

    Article  CAS  Google Scholar 

  • Karper, R. E., and J. R. Quinby. 1947. The inheritance of callus formation and seed shedding in sorghum. J. Heredity 38: 211–214.

    CAS  Google Scholar 

  • Kerber, E. R. 1964. Wheat: reconstruction of the tetraploid component (AABB) of the hexaploid wheat. Science 143: 253–255.

    Article  PubMed  CAS  Google Scholar 

  • Kiang, Y. T., and M. B. Gorman. 1983. Soybean.In S. D. Tanksley and T. J. Orton, ed, Isozymes in Plant Genetics and Breeding. Part II. Elsevier, Amsterdam.

    Google Scholar 

  • Ladizinsky, G. 1978. Chromosomal polymorphism in wild populations ofVicia sativa L. Caryologia 31: 233–241.

    Google Scholar 

  • —. 1979. The genetics of several morphological traits in the lentil. J. Heredity 70: 135–137.

    Google Scholar 

  • —, D. Braun, D. Goshen, and F. J. Muehlbauer. 1984. The biological species of the genusLens. Bot. Gaz. 145:253–261. Mangelsdorf, P. C. 1961. Introgression in maize. Euphytica 10: 157–168.

    Article  Google Scholar 

  • Mayr, E. 1942. Systematics and the Origin of Species. Columbia Univ. Press, New York.

    Google Scholar 

  • McFadden, E. S., and E. R. Sears. 1946. The origin ofTriticum spelta and its free threshing hexaploid relatives. J. Heredity 37: 81–89, 107–116.

    Google Scholar 

  • Morris, R., and E. R. Sears. 1967. The cytogenetics of wheat and its relatives.In K. S. Quisenberry and I. P. Reitz, ed, Wheat and Wheat Improvement. Amer. Soc. Agron., Madison, WI.

    Google Scholar 

  • Nevo, E., D. Zohary, A. H. D. Brown, and M. Haber. 1979. Genetic diversity and environmental associations of wild barleyHordeum spontaneum in Israel. Evolution 33: 815–833.

    Article  CAS  Google Scholar 

  • Nishikawa, U. 1973. Alpha-amylase isozyme and phylogeny of hexaploid wheat. Proc. 4th Wheat Genet. Symp., p. 851–855, Columbia, MO.

    Google Scholar 

  • Oka, H. I., and W. T. Chang. 1959. The impact of cultivation on population of wild rice,Oryza sativa f.spontanea. Phyton 13: 105–117.

    Google Scholar 

  • — 1961. Hybrid swarm between wild and cultivated rice speciesOryza perennis andO. sativa. Evolution 15: 418–430.

    Article  Google Scholar 

  • Olssen, G. 1960. Species crosses within the genusBrassica. I. ArtificialBrassica juncea cross. Hereditas 46: 171–223.

    Article  Google Scholar 

  • Parker, C., and M. L. Dean. 1976. Control of wild rice in rice. Pestic. Sci. 7: 403–410.

    Article  CAS  Google Scholar 

  • Pickersgill, B. 1971. Relationships between weedy and cultivated forms in some species of chili peppers (genusCapsicum). Evolution 25: 683–691.

    Article  Google Scholar 

  • Renfrew, J. M. 1969. The archeological evidence for the domestication of plants: methods and problems.In P. J. Ucko and G. N. Dimbleby, ed, The Domestication and Exploitation of Plants and Animals. G. Duckworth & Co. London.

    Google Scholar 

  • Rick, C. M. 1983. Tomato (Lycopersicon).In S. D. Tanksley and T. J. Orton, ed, Isozymes in Plant Genetics and Breeding. Part II. Elsevier, Amsterdam.

    Google Scholar 

  • —, R. W. Zobel, and J. F. Fobes. 1974. Four peroxidase loci in red fruit tomato species: genetic and geographic distribution. Proc. Natl. Acad. Sci. USA 71: 834–835.

    Article  Google Scholar 

  • Riley, R. 1965. Cytogenetics and evolution of wheat.In J. Hutchinson, ed, Essay on Crop Plant Evolution. Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • Sauer, J. D. 1967. The grain amaranths and their relatives—a revised taxonomic and geographic survey. Ann. Missouri Bot. Gard. 54: 103–137.

    Article  Google Scholar 

  • Sharma, H. C, and J. G. Waines. 1980. Inheritance of tough rachis in crosses ofTriticum monococcum andT. boeoticum. J. Heredity 71: 214–216.

    Google Scholar 

  • —. 1981. Attempted gene transfer from tetraploids to diploidsTriticum. Canad. J. Genet. Cytol. 23: 639–645.

    Google Scholar 

  • Shimatsuma, M. 1961. Cytogenetical studies in the genusCitrullus. IV. Intra and interspecific hybrids betweenC. colocynthis Schrad. andC. vulgaris Schrad. Jap. J. Genet. 35: 303–312.

    Article  Google Scholar 

  • Takahashi, R. 1963. Further studies on phylogenetic differentiation of cultivated barley. Barley Genet. 1: 19–26.

    Google Scholar 

  • UN. 1935. Genomic analysis inBrassica with specifical reference to the experimental formation ofB. napus and peculiar mode of fertilization. Jap. J. Bot. 7: 389–452.

    Google Scholar 

  • Vardi, A., and D. Zohary. 1967. Introgression in wheat via triploid hybrids. Heredity 22: 541–560.

    Article  Google Scholar 

  • Webber, J. M. 1939. Relationships in the genusGossypium as indicated by cytological data. J. Agric. Res. 58: 237–261.

    Google Scholar 

  • Wellhausen, E. J., A. Fuentes O., and A. Hernandez C, in collaboration with P. C. Mangelsdorf. 1957. Races of Maize in Central America. Natl. Acad. Sci. Nat. Res. Council Publication 511, Washington, DC.

    Google Scholar 

  • de Wet, J. M.J., J. R. Harlan, and E. G. Price. 1976. Variability inSorghum bicolor.In J. R. Harlan, J. M. J. de Wet, and A. B. L. Stember, ed, Origins of African Plant Domestication. Moutow, The Hague.

    Google Scholar 

  • Wilkes, H. G. 1977. Hybridization of maize and teosinte, in Mexico and Guatemala and the improvement of maize. Econ. Bot. 31: 254–293.

    Google Scholar 

  • Wilson, H. D., and C. B. Heiser. 1979. The origin and evolutionary relationships of “Hauzontle” (Chenopodium nutalliae Stafford) domesticated chenopod in Mexico. Amer. J. Bot. 66: 198–206.

    Article  Google Scholar 

  • Yarnell, S. H. 1956. Cytogenetics of vegetable crops II. Crucifers. Bot. Rev. 22: 81–160.

    Article  Google Scholar 

  • Zamir, D., N. Navot, and J. Rudich. 1984. Enzyme polymorphism inCitrullus lanatus andC. colocynthis in Israel and Sinai. Pl. Syst. Evol. 146: 163–170.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ladizinsky, G. Founder effect in crop-plant evolution. Econ Bot 39, 191–199 (1985). https://doi.org/10.1007/BF02907844

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02907844

Keywords

Navigation