Skip to main content

Domestication of the Triticeae in the Fertile Crescent

  • Chapter
  • First Online:
Genetics and Genomics of the Triticeae

Part of the book series: Plant Genetics and Genomics: Crops and Models ((PGG,volume 7))

Abstract

About 12,000 years ago, humans began the transition from hunter-gathering to a sedentary, agriculture-based society. From its origins in the Fertile Crescent, farming expanded throughout Europe, Asia and Africa, together with various domesticated plants and animals. Where, how and why agriculture originated is still debated. Progress has been made in understanding plant domestication in the last few years. New insights were obtained mainly due to (I) the use of comprehensive germplasm collections covering the whole distribution area for each species; (II) the comparison of many wild and domesticated accessions for each species; (III) the identification of the wild progenitor in the wild gene pool and its comparison with domesticate descendants; (IV) the use of molecular fingerprinting techniques at many loci and the access to new generation high-throughput sequencing technologies; (V) the identification and cloning of genes involved in domestication; and (VI) excavation campaigns.

This chapter reviews the recent knowledge on wheat, barley and rye domestication in the Fertile Crescent and covers several issues concerning the molecular knowledge of the effects induced by domestication and breeding of these crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aaronsohn, A. and Schweinfurth, G. (1906) Die Auffindung des wilden Emmers (Triticum dicoccum) in Nordpalästina. Altneuland Monatsschrift für die Wirtschaft. Erschliessung Palästinas 7–8, 213–220.

    Google Scholar 

  • Abbo, S., Gopher, A., Peleg, Z., Saranga, Y., Fahima, T., Salamini, F. and Lev-Yadun, S. (2006) The ripples of “The Big (agricultural) Bang”: The spread of early wheat cultivation. Genome 49, 861–863.

    Article  PubMed  Google Scholar 

  • Abdel-Ghani, A.H., Parzies, H.K., Omary, A. and Geiger, H.H. (2004) Estimating the outcrossing rate of barley landraces and wild barley populations collected from ecologically different regions of Jordan. Theor. Appl. Genet. 109, 588–595.

    Article  PubMed  Google Scholar 

  • Åberg, E. (1940) The taxonomy and phylogeny of Hordeum L. sect. Critesion Ands. with special reference to Tibetian barleys. Symb. Bot. Upsaliensis 2, 1–156.

    Google Scholar 

  • Allaby, R.G. and Brown, T.A. (2003) AFLP data and the origins of domesticated crops. Genome 46, 448–453.

    Article  PubMed  CAS  Google Scholar 

  • Allaby, R.G. and Brwon, T.A. (2004) Reply to the comment by Salamini et al. on “AFLP data and the origins of domesticated crops”. Genome 47, 621–622.

    Article  CAS  Google Scholar 

  • Alonso-Blanco, C., Bentsink, L., Hanhart, C.J., Blankestijn-de Vries, H. and Koornneef, M. (2003) Analysis of natural variation at seed dormancy loci of Arabidopsis thaliana. Genetics 164, 711–729.

    PubMed  CAS  Google Scholar 

  • Ammerman, A.J. and Cavalli-Sforza, L.L. (1984) The neolithic transition and the genetics of populations in Europe. Princeton, Princeton University Press.

    Google Scholar 

  • Araki, E., Miura, H. and Sawada, S. (1999) Identification of genetic loci affecting amylose content and agronomic traits on chromosome 4A of wheat. Theor. Appl. Genet. 98, 977–984.

    Article  CAS  Google Scholar 

  • Atsmon, D. and Jacobs, E. (1977) A newly bred ‘Gigas’ form of bread wheat (Triticum aestivum L.): morphological features and thermo-photoperiodic responses. Crop Sci. 17, 31–35.

    Article  Google Scholar 

  • Azhaguvel, P., Vidya-Saraswathi, D. and Komatsuda, T. (2006) High-resolution linkage mapping for the non-brittle rachis locus btr1 in cultivated × wild barley (Hordeum vulgare). Plant Sci. 170, 1087–1094.

    Article  CAS  Google Scholar 

  • Azhaguvel, P. and Komatsuda, T. (2007) A phylogenetic analysis based on nucleotide sequence of a marker linked to the brittle rachis locus indicates a diphyletic origin of barley. Ann. Bot. 100, 1009–1015.

    Article  PubMed  CAS  Google Scholar 

  • Babb, S. and Muehlbauer, G.J. (2003) Genetic and morphological characterization of the barley uniculm2 (cul2) mutant. Theor. Appl. Genet. 106, 846–857.

    PubMed  CAS  Google Scholar 

  • Badr, A., Müller, K., Schäfer-Pregl, R., El Rabey, H., Effgen, S., Ibrahim, H.H., Pozzi, C., Rohde, W. and Salamini, F. (2000) On the origin and domestication history of barley (Hordeum vulgare). Mol. Biol. Evol. 17, 499–510.

    PubMed  CAS  Google Scholar 

  • Bar-Yosef, O. (2002) The Natufian culture and the early Neolithic – Social and economic trends. In: P. Bellwood, C. Renfrew (Eds.), Examining the farming/language dispersal hyphothesis. McDonald Institute for Archaeological Research, Cambridge, pp. 113–126.

    Google Scholar 

  • Bekele, E. (1983) A differential rate of regional distribution of barley flavonoid patterns in Ethiopia, and a view on the center of origin of barley. Hereditas 98, 269–280.

    Article  PubMed  CAS  Google Scholar 

  • Bhave, M. and Morris, C.F. (2008a) Molecular genetics of puroindolines and related genes: regulation of expression, membrane binding properties and applications. Plant Mol. Biol. 66, 221–231.

    Google Scholar 

  • Bhave, M. and Morris, C.F. (2008b) Molecular genetics of puroindolines and related genes: allelic diversity in wheat and other grasses. Plant Mol. Biol. 66, 205–219.

    Google Scholar 

  • Blatter, R.H.E., Jacomet, S. and Schlumbaum, A. (2004) About the origin of European spelt (Triticum spelta L.): allelic differentiation of the HMW Glutenin B1-1 and A1-2 subunit genes. Theor. Appl. Genet. 108, 360–367.

    Article  PubMed  CAS  Google Scholar 

  • Börner, A. and Worland, A. (Eds.) (1996) Selected papers from the EWAC-conference: cereal aneuploids for genetic analysis and molecular techniques. Euphytica 89, 1–157.

    Google Scholar 

  • Börner, A., Korzun, V. and Worland, A.J. (1998) Comparative genetic mapping of loci affecting plant height and development in cereals. Euphytica 100, 245–248.

    Article  Google Scholar 

  • Bothmer von, R., Hintum van, T., Knüpffer, H. and Sato, K. (Eds.), (2003) Diversity in barley (Hordeum vulgare). Elsevier, Amsterdam.

    Google Scholar 

  • Braidwood, R.J. and Braidwood, L. (1950) Jarmo: A village of early farmers in Iraq. Antiquity 24, 189–195.

    Google Scholar 

  • Braidwood, R.J., Cambel, H. and Watson, P.J. (1969) Prehistoric investigations in southwestern Turkey. Science 164, 1275–1276.

    Article  PubMed  CAS  Google Scholar 

  • Braidwood, R.J. (1972) Prehistoric investigations in southwestern Asia. Proc. Am. Phil. Soc. 116, 310–320.

    Google Scholar 

  • Braidwood, L.S., Braidwood, R.J., Howe, B., Reed, C.A. and Watson, P.J. (1983) Prehistoric archeology along the Zagros flanks. Oriental Institute Publication 105, University of Chicago Press, Chicago.

    Google Scholar 

  • Brandolini, A., Vaccino, P., Boggini, G., Ozkan, H., Kilian, B. and Salamini, F. (2006) Quantification of genetic relationships among A genomes of wheats. Genome 49, 297–305.

    Article  PubMed  CAS  Google Scholar 

  • Breasted, J.H. (1938) The conquest of civilization. Literary Guild of America, New York.

    Google Scholar 

  • Breseghello, F. and Sorrells, M.E. (2006) Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics 172, 1165–1177.

    Article  PubMed  Google Scholar 

  • Bullrich, L., Appendino, M.L., Tranquilli, G., Lewis, S. and Dubcovsky, J. (2002) Mapping of a thermo-sensitive earliness per se gene on Triticum monococcum chromosome 1Am. Theor. Appl. Genet. 105, 585–593.

    Article  PubMed  CAS  Google Scholar 

  • Bushuk, W. (2001) History, world distribution, production, and marketing. In: W. Bushuk (Ed.), Rye: Production, Chemistry, and Technology. American Association of Cereal Chemists, St Paul, Minnesota.

    Google Scholar 

  • Cai, W. and Morishima, H. (2002) QTL clusters reflect character associations in wild and cultivated rice. Theor. Appl. Genet. 104, 1217–1228.

    Article  PubMed  CAS  Google Scholar 

  • Caldwell, K.S., Russell, J., Langridge, P. and Powell, W. (2006) Extreme population-dependent linkage disequilibrium detected in an inbreeding plant species, Hordeum vulgare. Genetics 172, 557–567.

    Article  PubMed  CAS  Google Scholar 

  • Campbell, B., Baenziger, P.S., Gill, K.S., Eskridge, K.M., Budak, H., Erayman, M., Dweikat, I. and Yen, Y. (2003) Identification of QTLs and environmental interactions associated with agronomic traits on chromosome 3A of wheat. Crop Sci. 43, 1493–1505.

    Article  CAS  Google Scholar 

  • Candolle de, A. (1883) (en fait, octobre 1882). Origine des plantes cultivées. Germer Baillière, Paris.

    Google Scholar 

  • Cao, W., Scoles, G.J. and Hucl, P. (1997) The genetics of rachis fragility and glume tenacity in semi-wild wheat. Euphytica 94, 119–124.

    Article  Google Scholar 

  • Casas, A.M., Yahiaoui, S., Ciudad, F. and Igartua, E. (2005) Distribution of MWG699 polymorphism in Spanish European barleys. Genome 48, 41–45.

    Article  PubMed  CAS  Google Scholar 

  • Chandler, P.M., Marion-Poll, A., Ellis, M. and Gubler, F. (2002) Mutants at the Slender1 locus of barley cv. Himalaya. Molecular and physiological characterization. Plant Physiol. 129, 181–190.

    Article  PubMed  CAS  Google Scholar 

  • Chantret, N., Cenci, A., Sabot, F., Anderson, O. and Dubcovsky, J. (2004) Sequencing of the Triticum monococcum Hardness locus reveals good microcolinearity with rice. Mol. Genet. Genomics 271, 377–386.

    Article  PubMed  CAS  Google Scholar 

  • Chantret, N., Salse, J., Sabot, F., Rahman, S., Bellec, A., Laubin, B., Dubois, I., Sourdille, P., Joudrier, P., Gautier, M.-F., Cattolico, L., Beckert, M., Aubourg, S., Weissenbach, J., Caboche, M., Bernard, M., Leroy, P. and Chalhoub, B. (2005) Molecular basis of evolutionary events that shaped the hardness locus in diploid and polyploid wheat species (Triticum and Aegilops). Plant Cell 17, 1033–1045.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Q.F., Yen, C. and Yang, J.L. (1998) Chromosome location of the gene for brittle rachis in the Tibetan weedrace of common wheat. Genet. Res. Crop. Evol. 45, 21–25.

    Google Scholar 

  • Chikmawati, T., Skovmand, B. and Gustafson, J.P. (2005) Phylogenetic relationships among Secale species revealed by amplified fragment length polymorphism. Genome 48, 792–801.

    Article  PubMed  CAS  Google Scholar 

  • Childe, V.G. (1928) The most ancient east: The oriental prelude to European prehistory. Kegan Paul, Trench, Trubner, London.

    Google Scholar 

  • Childe, V.G. (1936) Man makes himself. Watts, London.

    Google Scholar 

  • Cho, C., Kyu, H.O. and Lee, S.H. (1993) Origin, dissemination and utilization of semi-dwarf genes in Korea In: T. Miller, R.M.D. Koebner (Eds.), Proc. VII Int. Wheat Genetic Symp. Bath Press, Bath, pp. 223–231.

    Google Scholar 

  • Cockram, J., Jones, H., Leigh, F.J., O’Sullivan, D., Powell, W., Laurie, D.A. and Greenland, A.J. (2007) Control of flowering time in temperate cereals: genes, domestication, and sustainable productivity. J. Exper. Bot. 58, 1231–1244.

    Article  CAS  Google Scholar 

  • Damania, A.B. (1998) Diversity of major cultivated plants domesticated in the Near East. In: A.B. Damania, J. Valkoun, G. Willcox, C.O. Qualset, (Eds.), The origins of agriculture and crop domestication. Proceedings of the Harlan Symposium. ICARDA, Aleppo, pp. 51–64.

    Google Scholar 

  • Danyluk, J., Kane, N.A., Breton, G., Limin, A.E. Fowler, B. and Sarhan, F. (2003) TaVRT-1, a putative transcription factor associated with vegetative to reproductive transition in cereals. Plant Physiol. 132, 1849–1860.

    Google Scholar 

  • Darwin, C. (1859) On the origin of species by means of natural selection, or the preservation of favored races in the struggle for life. John Murray, London.

    Google Scholar 

  • Darwin, C. (1868) The variation of animals and plants under domestication. John Murray, London.

    Google Scholar 

  • Davies, M.S. and Hillman, G.C. (1992) Domestication of cereals. In: G.P. Chapman, (Ed.), Grass evolution and domestication. Cambridge University Press, Cambridge, pp. 199–244.

    Google Scholar 

  • Diamond, J. and Belwood, P. (2003) Farmers and their languages: The first expansions. Science 300, 597–603.

    Article  PubMed  CAS  Google Scholar 

  • Doebley, J.F., Gaut, B.S. and Smith, B.D. (2006) The molecular genetics of crop domestication. Cell 127, 1309–1321.

    Article  PubMed  CAS  Google Scholar 

  • Dorofeev, V.F., Filatenko, A.A., Migushova, E.F., Udaczin, R.A. and Jakubziner, M.M. (1979) Wheat. vol. 1. In: V.F. Dorofeev, O.N. Korovina, (Eds.), Flora of Cultivated Plants. Leningrad, Russia.

    Google Scholar 

  • Dubcovsky, J., Chen, C. and Yan, L. (2005) Molecular characterization of the allelic variation at the VRN-H2 vernalization locus in barley. Mol. Breeding 15, 395–407.

    Article  CAS  Google Scholar 

  • Dubcovsky, J., Loukoianov, A., Fu, D., Valarik, M., Sanchez, A. and Yan, L. (2006) Effect of photoperiod on the regulation of wheat vernalization genes VRN1 and VRN2. Plant Mol. Biol. 60, 469–480.

    Article  PubMed  CAS  Google Scholar 

  • Dubcovsky, J. and Dvorak, J. (2007) Genome plasticity a key factor in the success of polyploid wheat under domestication. Science 316, 1862–1866.

    Article  PubMed  CAS  Google Scholar 

  • Duggan, B., Richards, R.A. and Tsuyuzaki, H. (2002) Environmental effects on the expression of the tiller inhibition (tin) gene in wheat. Funct. Plant. Biol. 29, 45–53.

    Article  CAS  Google Scholar 

  • Dunford, R.P., Griffiths, S., Christodoulou, V. and Laurie, D.A. (2005) Characterisation of a barley (Hordeum vulgare L.) homologue of the Arabidopsis flowering time regulator GIGANTEA. Theor. Appl. Genet. 110, 925–931.

    Article  PubMed  CAS  Google Scholar 

  • Dvorak, J. and Zhang, H.B. (1990) Variation in repeated nucleotide sequences sheds light on the phylogeny of the wheat B and G genomes. Proc. Natl. Acad. Sci. USA 87, 9640–9644.

    Article  PubMed  CAS  Google Scholar 

  • Dvorak, J. and Luo, M.C. (2001) Evolution of free-threshing and hulled forms of Triticum aestivum: old problems and new tools. In: P.D.S. Caligari, P.E. Brandham (Eds.), The Linnean, Special Issue No 3. Wheat Taxonomy: the legacy of John Percival. Academic Press, London, pp. 127–136.

    Google Scholar 

  • Dvorak, J., Diterlizzi, P., Zhang, H.B. and Resta, P. (1993) The evolution of polyploid wheats: identification of the A genome donor species. Genome 36, 21–31.

    Article  PubMed  CAS  Google Scholar 

  • Dvorak, J., Luo, M.C. and Yang, Z.L. (1998a) Genetic evidence on the origin of Triticum aestivum L. In: A.B. Damania, J. Valkoun, G. Willcox, C.O. Qualset, (Eds.), The origins of agriculture and crop domestication. Proceedings of the Harlan Symposium. ICARDA, Aleppo, pp. 235–251.

    Google Scholar 

  • Dvorak, J., Luo, M.C., Yang, Z.L. and Zhang, H.B. (1998b) The structure of the Aegilops tauschii genepool and the evolution of hexaploid wheat. Theor. Appl. Genet. 67, 657–670.

    Google Scholar 

  • Dvorak, J. and Akhunov, E. (2005) Tempos of gene locus delations and duplications and their relationship to recombination rate during diploid and polyploid evolution in the Aegilops-Triticum alliance. Genetics 17, 323–332.

    Article  CAS  Google Scholar 

  • Eastmond, P.J. and Jones, R.L. (2005) Hormonal regulation of gluconeogenesis in cereal aleurone is strongly cultivar-dependent and gibberellin action involves SLENDER1 but not GAMYB. Plant J. 44, 483–493.

    Article  PubMed  CAS  Google Scholar 

  • Elias, E.M., Steiger, K.D. and Cantrell, R.G. (1996) Evaluation of lines derived from wild emmer chromosome substitutions II. Agronomic traits. Crop Sci. 36, 228–233.

    Article  Google Scholar 

  • Ellis, M., Rebetzke, G.J., Azanza, F., Richards, R.A. and Spielmeyer, W. (2005) Molecular mapping of gibberellin-responsive dwarfing genes in bread wheat. Theor. Appl. Genet. 111, 423–430.

    Article  PubMed  CAS  Google Scholar 

  • Faris, J. and Gill, B.S. (2002) Genomic targeting and high resolution mapping of the domestication gene Q in wheat. Genome 45, 706–718.

    Article  PubMed  CAS  Google Scholar 

  • Faris, J.D., Fellers, J.P., Brooks, S.A. and Gill, B.S. (2003) A bacterial artificial chromosome contig spanning the major domestication locus Q in wheat and identification of a candidate gene. Genetics 164, 311–321.

    PubMed  CAS  Google Scholar 

  • Faure, S., Higgins, J., Turner, A. and Laurie, D.A. (2007) The FLOWERING LOCUS T-like gene family in barley (Hordeum vulgare). Genetics 176, 599–609.

    Article  PubMed  CAS  Google Scholar 

  • Feldman, M. (1966) Identification of unpaired chromosomes in F1 hybrids involving Triticum aestivum and T. timopheevii. Can. J. Genet. Cytol. 8, 144–151.

    Google Scholar 

  • Fiedler, H. and Leitner, U. (2000) Alexander von Humboldts Schriften. Bibliographie der selbständig erschienenen Werke. (= Beiträge zur Alexander-von-Humboldt-Forschung; 20). Berlin.

    Google Scholar 

  • Frederiksen, S. and Petersen, G. (1997) Morphometrical analyses of Secale (Triticeae, Poaceae). Nordic J. Bot. 17, 185–197.

    Article  Google Scholar 

  • Frederiksen, S. and Petersen, G. (1998) A taxonomic revision of Secale (Triticeae, Poaceae). Nordic J. Bot. 18, 399–420.

    Article  Google Scholar 

  • Fu, D., Szücs, P., Yan, L., Helguera, M., Skinner, J.S., Zitzewitz von, J., Hayes, P.M. and Dubcovsky, J. (2005) Large deletions within the first intron in VRN1 are associated with spring growth habit in barley and wheat. Mol. Gen. Genomics 273, 54–65.

    Article  CAS  Google Scholar 

  • Gandilian, P.A. (1972) On wild growing Triticum species of Armenian SSR. Bot. Zhur. 57, 173–181.

    Google Scholar 

  • Gautier, M., Aleman, M.E., Guirao, A., Marion, D. and Joudrier, P. (1994) Triticum aestivum puroindolines, two basic cystine-rich seed proteins: cDNA sequence analysis and developmental gene expression. Plant Mol. Biol. 25, 43–57.

    Article  PubMed  CAS  Google Scholar 

  • Gautier, M.F., Cosson, P., Guirao, A., Alary, R. and Joudrier, P. (2000) Puroindoline genes are highly conserved in diploid ancestor wheats and related species but absent in tetraploid Triticum species. Plant Sci. 153, 81–91.

    Article  CAS  Google Scholar 

  • Gebel, H.G. (2004) There was no centre: the polycentric evolution of the Near Eastern Neolithic. Neo-lithics 1/04, 28–32.

    Google Scholar 

  • Gepts, P. (1998) What can molecular markers tell us about the process of domestication in common bean? In: A.B. Damania, J. Valkoun, G. Willcox, C.O. Qualset, (Eds.), The origins of agriculture and crop domestication. Proceedings of the Harlan Symposium. ICARDA, Aleppo, pp. 198–209.

    Google Scholar 

  • Giles, R.J. and Brown, T.A. (2006) GluDy allele variations in Aegilops tauschii and Triticum aestivum: implications for the origins of hexaploid wheats. Theor. Appl. Genet. 112, 1563–1572.

    Article  PubMed  CAS  Google Scholar 

  • Giroux, M. and Morris, C.G. (1998) Wheat grain hardness results from highly conserved mutations in the friabilin components puroindoline a and b. Proc. Natl. Acad. Sci. USA 95, 6262–6266.

    Article  PubMed  CAS  Google Scholar 

  • Giroux, M.J., Talbert, L., Habernicht, D.K., Lanning, S., Hempill, A. and Martin, J.M. (2000) Association of puroindoline sequence type and grain hardness in hard red spring wheat. Crop Sci. 40, 370–374.

    Article  CAS  Google Scholar 

  • Goldberg, S.M., Johnson, J., Busam, D., Feldblyum, T., Ferriera, S., Friedman, R., Halpern, A., Khouri, H., Kravitz, S.A., Lauro, F.M., Li, K., Rogers, Y.H., Strausberg, R., Sutton, G., Tallon, L., Thomas, T., Venter, E., Frazier, M. and Venter, J.C. (2006) A Sanger/pyrosequencing hybrid approach for the generation of high-quality draft assemblies of marine microbial genomes. Proc. Natl. Acad. Sci. USA 103, 11240–11245.

    Article  PubMed  CAS  Google Scholar 

  • Gollan, P., Smith, K. and Bhave, M. (2007) Gsp-1 genes comprise a multigene family in wheat that exhibits a unique combination of sequence diversity yet conservation. J. Cereal Sci. 45, 184–198.

    Article  CAS  Google Scholar 

  • Goncharov, N.P., Golovnina, K.A., Kilian, B., Glushkov, S., Blinov, A. and Shumny, V.K. (2008) Evolutionary history of wheats - the main cereal of mankind. In: N. Dobretsov, N. Kolchanov, A. Rozanov, G. Zavarzin (Eds.), Biosphere Origin and Evolution. Springer, pp. 407–419.

    Google Scholar 

  • Griffiths, S., Dunford, R.P., Coupland, G. and Laurie DA. (2003) The evolution of CONSTANS-like gene families in barley, rice and Arabidopsis. Plant Physiol 131, 1855–1867.

    Article  PubMed  CAS  Google Scholar 

  • Gu, Y.Q., Anderson, O.D., Londeorë, C.F., Kong, X., Chibbar, R.N. and Lazo, G.R. (2003) Structural organization of the barley D-hordein locus in comparison with its orthologous regions of wheat genomes. Genome 46, 1084–1097.

    Article  PubMed  CAS  Google Scholar 

  • Hamblin, M.T., Casa, A.M., Sun, H., Murray, S.C., Paterson, A.H., Aquadro, C.F. and Kresovich, S. (2006) Challenges of detecting directional selection after a bottleneck: Lessons from Sorghum bicolor. Genetics 173, 953–964.

    Article  PubMed  CAS  Google Scholar 

  • Hammer, K. (1984) Das Domestikationssyndrom. Kulturpflanze 32, 11–34.

    Article  Google Scholar 

  • Hammer, K., Skolimowska, E. and Knüpffer, H. (1987) Vorarbeiten zur monographischen Darstellung von Wildpflanzensortimenten: Secale L. Kulturpflanze. 35, 135–177.

    Article  Google Scholar 

  • Hammer, K. (1990) Breeding system and phylogenetic relationships in Secale L. Biol. Zentralbl. 109, 45–50.

    Google Scholar 

  • Harlan, J.R. and Zohary, D. (1966) Distribution of wild wheats and barley. Science 153, 1074–1080.

    Article  PubMed  CAS  Google Scholar 

  • Harlan, J.R. (1971) Agricultural origins: Centers and noncenters. Science 174, 468–474.

    Article  PubMed  CAS  Google Scholar 

  • Harlan, J.R. (1975) Our vanishing genetic resources. Science 188, 618–621.

    Article  Google Scholar 

  • Harlan, J.R. (1995) The living fields: Our agricultural heritage. Cambridge University Press, Cambridge.

    Google Scholar 

  • Harris, D.R. (1998) The spread of neolithic agriculture from the Levant to western central Asia. In: A.B. Damania, J. Valkoun, G. Willcox, C.O. Qualset, (Eds.), The origins of agriculture and crop domestication. Proceedings of the Harlan Symposium. ICARDA, Aleppo, pp. 65–82.

    Google Scholar 

  • Haudry, A., Cenci, A., Ravel, C., Bataillon, T., Brunel, D., Poncet, C., Hochu, I., Poirier, S., Santoni, S., Glémin, S. and David, J. (2007) Grinding up wheat: A massive loss of nucleotide diversity since domestication. Mol. Biol. Evol. 24, 1506–1517.

    Article  PubMed  CAS  Google Scholar 

  • Hawkes, J.G. (1998) Back to Vavilov: Why were plants domesticated in some areas and not in others? In: A.B. Damania, J. Valkoun, G. Willcox, C.O. Qualset, (Eds.), The origins of agriculture and crop domestication. Proceedings of the Harlan Symposium. ICARDA, Aleppo, pp. 5–8.

    Google Scholar 

  • Hedden, P. (2003) The genes of the Green Revolution. Trends Genet. 19, 5–9.

    Article  PubMed  CAS  Google Scholar 

  • Heun, M., Schäfer-Pregl, R., Klawan, D., Castagna, R., Accerbi, M., Borghi, B. and Salamini, F. (1997) Site of einkorn wheat domestication identified by DNA fingerprinting. Science 278, 1312–1314.

    Article  CAS  Google Scholar 

  • Hillman, G.C. (1978) On the origins of domestic rye – Secale cereale: the finds from Aceramic Can Hasan III in Turkey. Anatolian Stud. 28, 157–174.

    Article  Google Scholar 

  • Hillman, G.C., Colledge, S.M. and Harris, D.R. (1989) Plant-food economy during the Epipalaeolithic period at Tell Abu Hureyra, Syria: Dietary diversity, seasonality, and modes of exploitation. In: D.R. Harris, G.C. Hillman (Eds.), Foraging and farming: the evolution of plant exploitation. Unwin, London, pp. 240–268.

    Google Scholar 

  • Hillman, G. and Davies, S. (1990) Measured domestication rates in wild wheats and barley under primitive cultivation, and their archaeological implications. J. World Prehistory 4, 157–222.

    Article  Google Scholar 

  • Hillman, G. (2000) Plant food economy of Abu Hureyra. In: A. Moore, G. Hillman, T. Legge (Eds.), Village on the Euphrates, from foraging to farming at Abu Hureyra. Oxford University Press, New York, pp. 372–392.

    Google Scholar 

  • Huang, S., Sirikhachornkit, A., Su, X., Faris, J., Gill, B., Haselkorn, R. and Gornicki, P. (2002) Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of polyploidy wheat. Proc. Natl. Acad. Sci. USA 99, 8133–8138.

    Article  PubMed  CAS  Google Scholar 

  • Humboldt von, A. (1806) Ideen zu einer Geographie der Pflanzen nebst einem Naturgemälde der Tropenländer. Cotta’sche Buchhandlung, Tübingen.

    Google Scholar 

  • Iqbal, N., Reader, S.M., Caligari, P.D.S. and Miller, T.E. (2000) The production and characterization of recombination between chromosome 3 N of Aegilops uniaristata and chromosome 3A of wheat. Heredity 84, 487–492.

    Article  PubMed  CAS  Google Scholar 

  • Jaaska, V. (1981) Aspartate aminotransferase and alcohol dehydrogenase isozymes: Intraspecific differentiation in Aegilops tauschii and the origin of the D genome polyploids in the wheat group. Plant Syst. Evol. 137, 259–273.

    Article  CAS  Google Scholar 

  • Jaaska, V. (1995) Isoenzymes in the evaluation of germplasm diversity in wild diploid relatives of cultivated wheat. In: A.B. Damania (Ed.), Biodiversity and wheat improvement. John Wiley, Chichester. pp. 247–257.

    Google Scholar 

  • Jaaska, V. (1998) On the origin and in statu nascendi domestication of rye and barley: A review. In: A.B. Damania, J. Valkoun, G. Willcox, C.O. Qualset, (Eds.), The origins of agriculture and crop domestication. Proceedings of the Harlan Symposium. ICARDA, Aleppo, pp. 210–217.

    Google Scholar 

  • Jantasuriyarat, C., Vales, M.I., Watson, C.J.W. and Riera-Lizarazu, O. (2004) Identifcation and mapping of genetic loci affecting the free-threshing habit and spike compactness in wheat (Triticum aestivum L.). Theor. Appl. Genet. 108, 261–273.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, B.L. (1975) Identification of the apparent B-genome donor of wheat. Can. J. Genet. Cytol. 17, 21–39.

    Google Scholar 

  • Johnson, B.L. and Dhaliwal, H.S. (1976) Reproductive isolation of Triticum boeoticum and Triticum urartu and the origin of the tetraploid wheats. Am. J. Bot. 63, 1088–1094.

    Article  Google Scholar 

  • Jones, M.K. (2004) Between Fertile Crescents: Minor grain crops and agricultural origins. In: M.K. Jones (Ed.), Traces of ancestry: studies in honour of Colin Renfrew. McDonald Institute for Archaeological Research, Cambridge, pp. 127–135.

    Google Scholar 

  • Kanazin, V., Talbert, H., See, D., DeCamp, P., Nevo, E. and Blake, T. (2002) Discovery and assay of single-nucleotide polymorphisms in barley (Hordeum vulgare). Plant Mol. Biol. 48, 529–537.

    Article  PubMed  CAS  Google Scholar 

  • Kan, Y., Wan, Y., Beaudoin, F., Leader, D.J., Edwards, K., Poole, R., Wang, D. Mitchell, R.A.C. and Shewry, P.R. (2006) Transcriptome analysis reveals differentially expressed storage protein transcripts in seeds of Aegilops and wheat. J. Cereal Sci. 44, 75–85.

    Article  CAS  Google Scholar 

  • Kandemir, N., Yildirim, A., Kudrna, D.A., Hayes, P.M. and Kleinhofs, A. (2004) Marker assisted genetic analysis of non-brittle rachis trait in barley. Hereditas 141, 272–277.

    Article  PubMed  CAS  Google Scholar 

  • Kane, N.A., Danyluk, J., Tardif, G., Ouellet, F., Laliberte, J., Limin, A.E., Fowler, D.B. and Sarhan, F. (2005) TaVRT-2, a member of the StMADS-11 clade of flowering repressors, is regulated by vernalization and photoperiod in wheat. Plant Physiol. 138, 2354–2363.

    Article  PubMed  CAS  Google Scholar 

  • Karsai, I., Szücs, P., Meszaros, K., Filichkina, T., Hayes, P.M., Skinner, J.S., Lang, L. and Bedö, Z. (2005) The Vrn-H2 locus is a major determinant of flowering time in a facultative winter growth habit barley (Hordeum vulgare L.) mapping population. Theor. Appl. Genet. 110, 1458–1466.

    Article  PubMed  CAS  Google Scholar 

  • Kato, K., Miura, H., Akiyama, M., Kuroshima, M. and Sawada, S. (1998) RFLP mapping of the three major genes, Vrn1, Q and B1, on the long arm of chromosome 5A of wheat. Euphytica 101, 91–95.

    Article  CAS  Google Scholar 

  • Kato, K., Miura, H. and Sawada, S. (2000) Mapping QTLs controlling grain yield and its components on chromosome 5A of wheat. Theor. Appl. Genet. 101, 933–943.

    Google Scholar 

  • Kato, K., Sonokawa, R., Miura, H. and Sawada, S. (2003) Dwarfing effect associated with the threshability gene Q on wheat chromosome 5A. Plant Breed. 122, 489–492.

    Article  CAS  Google Scholar 

  • Kerber, E.R. (1964) Wheat: reconstitution of the tetraploid component (AABB) of hexaploids. Science 143, 253–255.

    Article  PubMed  CAS  Google Scholar 

  • Kerber, E.R. and Dyck, P.L. (1969) Inheritance in hexaploid wheat of leaf rust resistance and other characters derived from Aegilops squarrosa. Can. J. Genet. Cytol. 11, 639–647.

    Google Scholar 

  • Kerber, E.R. and Rowland, G.G. (1974) Origin of the free threshing character in hexaploid wheat. Can. J. Genet. Cytol. 16, 145–154.

    Google Scholar 

  • Kihara, H. (1924) Cytologische und genetische Studien bei wichtigen Getreidearten mit besonderer Rücksicht auf das Verhalten der Chromosomen und die Sterilität in den Bastarden. Mem. Coll. Sci. Univ. Kyoto Ser. B 1, 1–200.

    Google Scholar 

  • Kihara, H. (1944) Discovery of the DD-analyser, one of the ancestors of Triticum vulgare. Agric. Hortic. (Tokyo) 19, 13–14.

    Google Scholar 

  • Kihara, H., Yamashita, H. and Tanaka, M. (1965) Morphological, physiological, genetical, and cytological studies in Aegilops and Triticum collected in Pakistan, Afghanistan, Iran. Results of the Kyoto University scientific expedition to the Korakoram and Hindukush in 1955. In: K. Yamashita (Ed.), Cultivated plants and their relatives. Kyoto. pp. 4–41.

    Google Scholar 

  • Kilian, B., Özkan, H., Kohl, J., Haeseler von, A., Barale, F., Deusch, O., Brandolini, A., Yucel, C., Martin, W. and Salamini, F. (2006) Haplotype structure at seven barley genes: relevance to gene pool bottlenecks, phylogeny of ear type and site of barley domestication. Mol. Gen. Genom. 276, 230–241.

    Article  CAS  Google Scholar 

  • Kilian, B., Özkan, H., Deusch, O., Effgen, S., Brandolini, A., Kohl, J., Martin, W. and Salamini, F. (2007a) Independent wheat B and G genome origins in outcrossing Aegilops progenitor haplotypes. Mol. Biol. Evol. 24, 217–227.

    Google Scholar 

  • Kilian, B., Özkan, H., Walther, A., Kohl, J., Dagan, T., Salamini, F. and Martin, W. (2007b) Molecular diversity at 18 loci in 321 wild and 92 domesticate lines reveal no reduction of nucleotide diversity during Triticum monococcum (einkorn) domestication: Implications for the origin of agriculture. Mol. Biol. Evol. 24, 2657–2668.

    Google Scholar 

  • Kislev, M.E., Nadel, D. and Carmi, I. (1992) Epipalaeolithic (19,000 BP) cereal and fruit diet at Ohalo II, Sea of Galilee. Isr. Rev. Palaeobot. Palynol. 73, 161–166.

    Article  Google Scholar 

  • Kislev, M.E. (1980) Triticum parvicoccum sp. nov., the oldest naked wheat. Israel J. Bot. 28, 95–107.

    Google Scholar 

  • Kislev, M.E. (1984) Botanical evidence for ancient naked wheats in the Near East. In: W. von Zeist and W.A. Casparie (Eds.), Plants and Ancient Man. Balkema, Rotterdam, Boston, pp. 141–152.

    Google Scholar 

  • Kislev, M. (2002) Origin of annual crops by agro-evolution. Isr. J. Plant Sci. 50, 85–88.

    Google Scholar 

  • Kolodinska Brantestam, A., Bothmer von, R., Dayteg, C., Rashal, I., Tuvesson, S. and Weibull, J. (2004) Inter simple sequence repeat analysis of genetic diversity and relationships in cultivated barley of Nordic and Baltic origin. Hereditas 141, 186–192.

    Article  PubMed  Google Scholar 

  • Komatsuda, T., Maxim, P., Senthil, N. and Mano, Y. (2004) High-density AFLP map of nonbrittle rachis 1 (btr1) and 2 (btr2) genes in barley (Hordeum vulgare L.). Theor. Appl. Genet. 109, 986–995.

    Article  PubMed  CAS  Google Scholar 

  • Komatsuda, T., Pourkheirandish, M., He, C., Azhaguvel, P., Kanamori, H., Perovic, D., Stein, N., Graner, A., Wicker, T., Tagiri, A., Lundqvist, U., Fujimura, T., Matsuoka, M., Matsumoto, T. and Yano, M. (2007) Six-rowed barley originated from a mutation in a homeodomain-leucine zipper I-class homeobox gene. Proc. Natl. Acad. Sci. USA 104, 1424–1429.

    Article  PubMed  CAS  Google Scholar 

  • Kong, X.Y., Gu, Y.Q., You, F.M., Dubcovsky, J. and Anderson, O.D. (2004) Dynamics of the evolution of orthologous and paralogous portions of a complex locus region in two genomes of allpolyploid wheat. Plant Mol. Biol. 54, 55–69.

    Article  PubMed  CAS  Google Scholar 

  • Koti, K., Karsai, I., Szücs, P., Horvath, C.S., Meszaros, K., Kiss, G.B., Bedö, Z. and Hayes, P.M. (2006) Validation of the two-gene epistatic model for vernalization response in a winter × spring barley cross. Euphytica 152, 17–24.

    Article  CAS  Google Scholar 

  • Kranz, A.R. (1963) Die anatomischen, ökologischen und genetischen Grundlagen der Ährenbrüchigkeit des Roggens. Beitr. Biol. Pflanzen. 38, 445–471.

    Google Scholar 

  • Kuckuck, H. and Schiemann, E. (1957) Über das Vorkommen von Speltz und Emmer (Triticum spelta L. und T. dicoccum Schubl.) im Iran. Z. Pflanzenzüchtg. 38, 383–396.

    Google Scholar 

  • Kuckuck, H. (1959) Neuere Arbeiten zur Entstehung der hexaploiden Kulturweizen. Z. Pflanzenzüchtg. 41, 205–226.

    Google Scholar 

  • Kuraparthy, V., Sood, S. Chunneja, P., Dhaliwal, H.S. and Gill, B.S. (2007) Identification and mapping of tiller inhibition gene (tin3) in wheat. Theor. Appl. Genet. 114, 285–294.

    Article  PubMed  CAS  Google Scholar 

  • Kuraparthy, V., Sood, S. and Gill, B.S. (2008) Genomic targeting and mapping of tiller inhibition gene (tin3) of wheat using ESTs and synteny with rice. Funct. Integr. Genomics 8, 33–42.

    Article  PubMed  CAS  Google Scholar 

  • Ladizinsky, G. (1985) Founder effect in crop-plant evolution. Econ. Bot. 39, 191–199.

    Article  Google Scholar 

  • Laurie, D., Pratchett, N., Bezant, J.H. and Snape, J.W. (1995) RFLP mapping of five major genes and eight quantitative traits loci controlling flowering time in a winter × spring barley (Hordeum vulgare) cross. Genome 38, 575–585.

    Article  PubMed  CAS  Google Scholar 

  • Lev-Yadun, S., Gopher, A. and Abbo, S. (2000) The cradle of agriculture. Science 288, 1602–1603.

    Article  PubMed  CAS  Google Scholar 

  • Li, W. and Gill, B.S. (2006) Multiple genetic pathways for seed shattering in the grasses. Func. Integr. Genom. 6, 300–309.

    Article  CAS  Google Scholar 

  • Li, W., Huang, L. and Gill, B.S. (2008) Recurrent deletions of puroindoline genes at the grain Hardness locus in four independent lineages of polyploidy wheat. Pl. Physiol. 146, 200–212.

    Article  CAS  Google Scholar 

  • Lichter, C. (Ed.) (2007) Die ältesten Monumente der Menschheit. Badisches Landesmuseum Karlsruhe. Theiss Verlag, Stuttgart.

    Google Scholar 

  • Londo, J.P., Chiang, Y.C., Hung, K.H., Chiang, T.Y. and Schaal, B. (2006) Phylogeography of Asian wild rice, Oryza rufipogon, reveals multiple independent domestications of cultivated rice, Oryza sativa. Proc. Natl. Acad. Sci. USA 103, 9578–9583.

    Article  PubMed  CAS  Google Scholar 

  • Luo, M.C., Yang, Z.L. and Dvorak, J. (2000) The Q locus of Iranian and European spelt wheat. Theor. Appl. Genet. 100, 602–606.

    CAS  Google Scholar 

  • Luo, M., Yang, Z.L., Kota, R.S. and Dvorak, J. (2000) Recombination of chromosomes 3Am and 5Am of wheat: the distribution of recombination across chromosomes. Genetics 154, 1301–1308.

    PubMed  CAS  Google Scholar 

  • Luo, M.C., Yang, Z.L., You, F.M., Kawahara, T., Waines, J.G. and Dvorak, J. (2007) The structure of wild and domesticated emmer wheat populations, gene flow between them, and the site of emmer domestication. Theor. Appl. Genet. 114, 947–959.

    Article  PubMed  Google Scholar 

  • Massa, A.N. and Morris (2006) Molecular evolution of the puroindoline-a, puroindoline-b, and grain softness protein-1 genes in the tribe Triticeae. J. Mol. Evol. 63, 526–536.

    Article  PubMed  CAS  Google Scholar 

  • Matsuoka, Y. and Nasuda, S. (2004) Durum wheat as a candidate for the unknown female progenitor of bread wheat: An empirical study with a highly fertile F1 hybrid with Aegilops tauschii Coss. Theor. Appl. Genet. 109, 1710–1717.

    Article  PubMed  Google Scholar 

  • MacKey, J. (1954) Neutron and X-ray experiments in wheat and a revision of the speltoid problem. Hereditas 40, 65–180.

    Google Scholar 

  • McKey, J. (1966) Species relationships in Triticum. Hereditas 2, 237–276.

    Google Scholar 

  • McFadden, E.S. and Sears, E.R. (1946) The origin of Triticum spelta and its free-theshing hexaploid relatives. J. Hered. 37, 81–89, 107–116.

    PubMed  Google Scholar 

  • Molina-Cano, J.L., Fra-Mon, P., Salcedo, G., Aragoncillo, C., Roca de Togores, F. and Garcia-Olmedo, F. (1987) Morocco as a possible domestication center for barley: Biochemical and agromorphological evidence. Theor. Appl. Genet. 73, 531–536.

    Article  CAS  Google Scholar 

  • Molina-Cano, J.L., Russell, J.R., Moralejo, M.A., Escacena, J.L., Arias, G. and Powell, W. (2005) Chloroplast DNA microsatellite analysis supports a polyphyletic origin for barley. Theor. Appl. Genet. 110, 613–619.

    Article  PubMed  CAS  Google Scholar 

  • Mori, N., Liu, Y.G. and Tsunewaki, K. (1995) Wheat phylogeny determined by RFLP analysis of nuclear DNA. 2. Wild tetraploid wheats. Theor. Appl. Genet. 90, 129–134.

    Article  CAS  Google Scholar 

  • Mori, N., Ishii, T., Ishido, T., Hirosawa, S., Watatani, H., Kawahara, T., Nesbitt, M., Belay, G., Takumi, S., Ogihara, Y. and Nakamura, C. (2003) Origin of domesticated emmer and common wheat inferred from chloroplast DNA fingerprinting. 10th International Wheat Genetics Symposium. Paestum, pp. 25–28.

    Google Scholar 

  • Morrell, P.L. and Clegg, M.T. (2007) Genetic evidence for a second domestication of barley (Hordeum vulgare) east of the Fertile Crescent. Proc. Natl. Acad. Sci. USA 104, 3289–3294.

    Article  PubMed  CAS  Google Scholar 

  • Morris, C.F. (2002) Puroindolines: the molecular genetic basis of wheat grain hardness. Plant Mol. Biol. 48, 633–647.

    Article  PubMed  CAS  Google Scholar 

  • Muramatsu, M. (1963) Dosage effect of the spelta gene q of hexaploid wheeat. Genetics 48, 469–482.

    PubMed  CAS  Google Scholar 

  • Muramatsu, M. (1985) Spike type in two cultivars of Triticum dicoccum with the spelta gene q compared with the Q-bearing variety liguliforme. Jpn. J. Breed. 35, 255–267.

    Google Scholar 

  • Muramatsu, M. (1986) The vulgare super gene Q: ist universality in durum wheat and its phenotypic effects in tetraploid and hexaploid wheats. Can. J. Genet. Cytol. 28, 30–41.

    Google Scholar 

  • Nadel, D. (2002) Ohalo II: a 23,000-Year-Old Fisher-Hunter-Gatherer’s Camp on the Sea of Galilee. University of Haifa, Haifa.

    Google Scholar 

  • Nalam, V., Vales, M.I., Watson, C.J.W., Kianian, S.F. and Riera-Lizarazu, O. (2006) Map-based analysis of genes affecting the brittle rachis character in tetraploid wheat (Triticum turgidum). Theor. Appl. Genet. 112, 373–381.

    Article  PubMed  CAS  Google Scholar 

  • Nalam, V., Vales, M.I., Watson, C.J.W., Johnson, E.B. and Riera-Lizarazu, O. (2007) Map-based analysis of genetic loci on chromosome 2D that affect glume tenacity and thresability, components of the free-threshing habit in common wheat (Triticum aestivum L.). Theor. Appl. Genet. 116, 135–145.

    Article  PubMed  Google Scholar 

  • Nesbitt, M. (1995) Plants and people in ancient Anatolia. Biblical Archaeologist. 58, 68–81.

    Article  Google Scholar 

  • Nesbitt, M. and Samuel, D. (1996) From stable crop to extinction? The archaeology and history of the hulled wheats. In: S. Padulosi, K. Hammer, J. Heller (Eds.) Hulled Wheats. International Plant Genetic Resources Institute, Rome, pp. 41–100.

    Google Scholar 

  • Nesbitt, M. (2002) When and where did domesticated cereals first occur in southwest Asia? In: R. Cappers, S. Bottema (Eds.), The dawn of farming in the Near East. Berlin. Ex Oriente, pp. 113–132.

    Google Scholar 

  • Nishikawa, K., Furuta, Y. and Wada, T. (1980) Genetic studies on alpha-amylase isozymes in wheat. III. Intraspecific variation in Aegilops squarrosa and birthplace of hexaploid wheat. Jpn. J. Genet. 55, 325–336.

    Article  Google Scholar 

  • Onishi, I., Hongo, A., Sasakuma, T., Kawahara, T., Kato, K. and Miura, H. (2006) Variation and segregation for rachis fragility in spelt wheat, Triticum spelta L. Gent. Res. Crop Evol. 53, 985–992.

    Article  Google Scholar 

  • Orabi, J., Backes, G., Wolday, A., Yahyaoui, A. and Jahoor, A. (2007) The horn of Africa as a centre of barley diversification and a potential domestication site. Theor. Appl. Genet. 114, 1117–1127.

    Article  PubMed  CAS  Google Scholar 

  • Ozkan, H., Brandolini, A., Schaefer-Pregl, R. and Salamini, F. (2002) AFLP analysis of a collection of tetraploid wheats indicates the origin of emmer and hard wheat domestication in southeast Turkey. Mol. Biol. Evol. 19, 1797–1801.

    Article  PubMed  CAS  Google Scholar 

  • Ozkan, H., Brandolini, A., Pozzi, C., Effgen, S., Wunder, J. and Salamini, F. (2005) A reconsideration of the domestication geography of tetraploid wheats. Theor. Appl. Genet. 110, 1052–1060.

    Article  PubMed  CAS  Google Scholar 

  • Ozkan, H., Brandolini, A., Torun, A., Altintas, S., Eker, S., Kilian, B., Braun, H., Salamini, F. and Cakmak, I. (2007) Natural variation and identification of microelements content in seeds of einkorn wheat (Triticum monococcum). In: H.T. Buck, J.E. Nisi, N. Salomon (Eds.), Wheat Production in Stressed Environments. Springer, pp. 455–462.

    Google Scholar 

  • Pasternak, R. (1998) Investigations of botanical remains from Nevali Cori PPNB, Turkey: a short interim report. In: A.B. Damania, J. Valkoun, G. Willcox, C.O. Qualset, (Eds.), The origins of agriculture and crop domestication. Proceedings of the Harlan Symposium. ICARDA, Aleppo, pp. 170–177.

    Google Scholar 

  • Peng, J., Richards, D.E., Hartley, N.M., Murphy, G.P., Devos, K.M., Flintham, J.E., Beales, J., Fish, L.J., Worland, A.J., Pelica, F., Sudhakar, D., Christou, P., Snape, J.W., Gale, M.D. and Harberd, P. (1999) ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature 400, 256–261.

    Article  PubMed  CAS  Google Scholar 

  • Peng, J., Ronin, Y., Fahima, T., Röder, M.S., Li, Y., Nevo, E. and Korol, A. (2003) Domestication quantitative trait loci in Triticum dicoccoides the progenitor of wheat. Proc. Natl. Acad. Sci. USA 10, 2489–2494.

    Article  CAS  Google Scholar 

  • Perretant, M., Cadalen, T., Charmet, G., Sourdille, P., Nicolas, P., Boeuf, C., Tixier, M.H., Branlard, G., Bernard, S. and Bernard, M. (2000) QTL analysis of bread making quality in wheat using a doubled haploid population. Theor. Appl. Genet. 100, 1167–1175.

    Article  CAS  Google Scholar 

  • Perrino, P., Laghetti, G., D’Antuono, L.F., Al Ajlouni, M., Kanbertay, M., Szabo, A.T. and Hammer, K. (1996) Ecogeographical distribution of hulled wheat species. In: S. Padulosi, K. Hammer, J. Heller (Eds.), Hulled Wheats. International Plant Genetic Resources Institute. Rome, pp. 102–118.

    Google Scholar 

  • Pluzhnikov, A. and Donnelly, P. (1996) Optimal sequencing strategies for surveying molecular genetic diversity. Genetics 144, 1247–1262.

    PubMed  CAS  Google Scholar 

  • Pourkheirandish, M. and Komatsuda, T. (2007) The importance of barley genetics and domestication in a global perspective. Ann. Bot. 100, 999–1008.

    Article  PubMed  Google Scholar 

  • Pozzi, C., Rossini, L., Vecchietti, A. and Salamini, F. (2004) Gene and genome changes during domestication. In: P.K. Gupta, R.K. Varshney (Eds.), Cereal genomics. Kluwier Academic Publisher, London, pp. 165–198.

    Google Scholar 

  • Pozzi, C. and Salamini, F. (2007) Genomics of wheat domestication. In: R. Varshney, R. Tuberosa (Eds.), Genomic assisted crop improvement: Vol 2: Genomics Applications in Crops. Springer, New York, pp. 441–469.

    Google Scholar 

  • Rahman, S., Jolly, J.C., Skerritt, J.H. and Wallosheck, A. (1994) Cloning of a wheat 15 kDA grain softness protein (GSP). GSP is a mixture of puroindoline-like polypetides. Eur. J. Biochem. 223, 917–925.

    Article  PubMed  CAS  Google Scholar 

  • Rao, M. (1972) Mapping of the compactum gene C on chromosome 2D of wheat. Wheat Inf. Serv. 35, 9.

    Google Scholar 

  • Rao, M.V.P. (1977) Mapping of the sphaerococcum gene ‘s’ on chromosome 3D of wheat. Cereal Res. Comm. 5, 15–17.

    Google Scholar 

  • Renfrew, C. (2002) The emerging synthesis’: the archaeogenetics of farming/language dispersals and other spread zones. In: P. Bellwood, C. Renfrew (Eds.), Examining the farming language dispersal hypothesis. McDonald Institute for Archaeological Research, Cambridge, pp. 3–16.

    Google Scholar 

  • Richards, R. (1988) A tiller inhibitor gene in wheat and its effect on plant growth. Aust. J. Agric. Res. 39, 749–757.

    Article  Google Scholar 

  • Rollefson, G., Simmons, A., Donaldson, M., Gillespie, W., Kafafi, Z., Kohler-Rollefson, I., McAdam, E., Ralston, S. and Tubb, K. (1985) Excavations at the pre-pottery Neolithic B village of ‘Ain Ghazal (Jordan), 1983. Mitteilungen der Deutschen Orient-Gesellschaft zu Berlin. 117, 69–116.

    Google Scholar 

  • Rong, J., Millet, E., Manisterski, J. and Feldman, M. (2000) A new powdery mildew resistance gene: introgression from wild emmer into common wheat and RFLP-based mapping. Euphytica 115, 121–126.

    Article  CAS  Google Scholar 

  • Rossini, L., Vecchietti, A., Nicoloso, L., Stein, N., Franzago, S., Salamini, F. and Pozzi, C. (2006) Candidate genes for barley mutants involved in plant architecture: an in silico approach Theor. Appl. Genet. 112, 1073–1085.

    Article  PubMed  CAS  Google Scholar 

  • Russell, J., Booth, A., Fuller, F., Harrower, B., Hedley, P., Machray, G. and Powell, W. (2004) A comparison of sequence-based polymorphism and haplotype content in transcribed and anonymous regions of the barley genome. Genome 47, 389–398.

    Article  PubMed  CAS  Google Scholar 

  • Saisho, D. and Purugganan, M.D. (2007) Molecular phylogeny of domesticated barley traces expansion of agriculture in the Old World. Genetics 177, 1765–1776.

    Article  PubMed  CAS  Google Scholar 

  • Sakamura, T. (1918) Kurze Mitteilung über die Chromosomenzahlen und die Verwandtschaftsverhältnisse der Triticum Arten. Bot. Mag. Tokyo 32, 151–154.

    Google Scholar 

  • Salamini, F. (2003) Hormones and the green revolution. Science 302, 71–72.

    Article  PubMed  CAS  Google Scholar 

  • Salamini, F., Özkan, H., Brandolini, A., Schäfer-Pregl, R. and Martin, W. (2002) Genetics and geography of wild cereal domestication in the Near East. Nat. Rev. Genet. 3, 429–441.

    PubMed  CAS  Google Scholar 

  • Salamini, F., Heun, M., Brandolini, A., Ozkan, H. and Wunder, J. (2004) Comment on “AFLP data and the origins of domesticated crops.” Genome 47, 615–620.

    Article  PubMed  CAS  Google Scholar 

  • Sax, K. and Sax, M.J. (1924) Chromosome behaviour in a genus cross. Genetics 9, 454–464.

    PubMed  CAS  Google Scholar 

  • Schiemann, E. (1939) Gedanken zur Genzentrentheorie Vavilovs. Naturwiss. 27, 377–401.

    Google Scholar 

  • Schiemann, E. and Staudt, G. (1958) Triticum × dimococcum, an amphidiploid with genomes AAAABB. Züchter. 28, 166–184.

    Google Scholar 

  • Schmidt, K. (2001) Göbekli Tepe, southeastern Turkey. A preliminary report on the 1995–1999 excavations. Paléorient 26, 45–54.

    Article  Google Scholar 

  • Schmidt, K. (2006) Sie bauten die ersten Tempel. Verlag CH Beck, München.

    Google Scholar 

  • Sears, E.R. (1954) The aneuploids of common wheat. Res. Bull. Missouri Agric. Exp. Stn. 572, 1–57.

    Google Scholar 

  • Sears, E.R. (1976) A synthetic hexaploid wheat with fragile rachis. Wheat Info. Serv. 41/42, 31–32.

    Google Scholar 

  • Sencer, H.A. and Hawkes, J.G. (1980) On the origin of cultivated rye. Biolog J. Linnean Society 13, 299–313.

    Article  Google Scholar 

  • Shao, Q., Li, C. and Basang, C. (1983) Semi-wild wheat from Xizang (Tibet). In: S. Sakamoto (Ed.), Proceedings of the 6th International Wheat Genetics Symposium, Kyoto, 1983. Plant Germ-Plasm Institute, Faculty of Agriculture, Kyoto University, Kyoto, Japan, pp. 111–114.

    Google Scholar 

  • Shah, M., Gill, K.S., Bezinger, P.S., Yen, Y., Kaeppler, S.M. and Ariyarathne, H.M. (1999) Molecular mapping of loci for agronomic traits on chromosome 3A of bread wheat. Crop Sci. 39, 1728–1732.

    Article  CAS  Google Scholar 

  • Sharma, H. and Waynes, J. (1980) Inheritance of tough rachis in crosses of Triticum monococcum and Triticum boeoticum. J. Hered. 7, 214–216.

    Google Scholar 

  • Simonetti, M., Bellomo, M.P., Laghetti, G., Perrino, P., Simeone, R. and Blanco, A. (1999) Quantitative trait loci influencing free-threshing habit in tetraploid wheats. Gen. Res. Crop Evol. 46, 267–271.

    Article  Google Scholar 

  • Simons, K., Fellers, J.P., Trik, H.N., Zhang, Z., Tai, Y.S., Gill, B.S. and Faris, J.D. (2006) Molecular characterization of the major wheat domestication gene Q. Genetics 172, 547–555.

    Article  PubMed  CAS  Google Scholar 

  • Slageren van, M.W. (1994) Wild wheats: a monograph of Aegilops L. and Amblyopyrum (Jaub. & Spach) Eig (Poaceae). Agriculture University Papers, Wageningen.

    Google Scholar 

  • Snape, J., Law, W., Parker, C.N., Worland, B.B. and Worland, A.J. (1985) Genetical analysis of chromosome 5A of wheat and its influence on important agronomic characters. Theor. Appl. Genet. 71, 518–526.

    Article  Google Scholar 

  • Sogaard, B. and Wettstein-Knowles von, P. (1987) Barley: genes and chromosomes. Carlsberg Res. Commun. 52, 123–196.

    Article  Google Scholar 

  • Sourdille, P., Perretnat, M.R., Charmet, G., Leory, P., Gautire, M.F., Joudrier, P., Nelson, J.C., Sorrells, M.E. and Bernard, M. (1996) Linkage between RFLP markers and genes affecting kernel hardness in wheat. Theor. Appl. Genet. 93, 580–586.

    Article  CAS  Google Scholar 

  • Spielmeyer, W. and Richards, R.A. (2004) Comparative mapping of wheat chromosome 1AS which contains the tiller inhibition gene (tin) with rice chromosome 5S. Theor. Appl. Genet. 109, 1303–1310.

    Article  PubMed  CAS  Google Scholar 

  • Stutz, H.C. (1972) On the origin of cultivated rye. Amer. J. Bot. 59, 59–70.

    Article  Google Scholar 

  • Szücs, P., Karsai, I., Zitzewitz von, J., Meszaros, K., Cooper, L.L., Gu, Y.Q., Chen, T.H., Hayes, P.M. and Skinner, J.S. (2006) Positional relationship between photoperiod response QTL and photoreceptor and vernalization genes in barley. Theor. Appl. Genet. 112, 1277–1285.

    Article  PubMed  CAS  Google Scholar 

  • Szücs, P., Skinner, J.S., Karsai, I., Cuesta-Marcos, A., Haggard, K.G., Corey, A.E., Chen, T.H.H. and Hayes, P.M. (2007) Validation of the VRN-H2/VRN-H1 epistatic model in barley reveals that intron length variation in VRN-H1 may account for a continuum of vernalization sensitivity. Mol. Genet.Genom. 277, 249–261.

    Article  CAS  Google Scholar 

  • Taenzler, B., Esposti, R.F., Vaccino, P., Brandolini, A., Effgen, S., Heun, M., Schäfer-Pregl, R., Borghi, B. and Salamini, F. (2002) Molecular linkage map of Einkorn wheat: mapping of storage-protein and soft-glume genes and bread-making quality QTLs. Genet. Res. Camb. 80, 131–143.

    Article  CAS  Google Scholar 

  • Takahashi, R. (1955) The origin of cultivated barley. In: M. Demerec (Ed.), Advances in Genetics. Academic Press, New York, pp. 227–266.

    Google Scholar 

  • Takahashi, R. (1972) Non-brittle rachis 1 and non-brittle rachis 2. Barley Genet. Newsl. 2, 181–182.

    CAS  Google Scholar 

  • Takeda, K. (1995) Varietal variation and inheritance of seed dormancy in barley. Proc. Seventh International Symp on Pre-Harvest Sprouting in Cereals. Abashiri, Hokkaido, Japan, 205–212.

    Google Scholar 

  • Taketa, S., Kikuchi, S., Awayama, T., Yamamoto, S., Ichii, M. and Kawasaki, S. (2004) Monophyletic origin of naked barley inferred from molecular analyses of a marker closely linked to the naked caryopsis gene (nud). Theor. Appl. Genet. 108, 1236–1242.

    Article  PubMed  CAS  Google Scholar 

  • Taketa, S., Awayama, T., Amano, S., Sakurai, Y. and Ichii, M. (2006) High-resolution mapping of the nud locus controlling the naked caryopsis in barley. Plant Breed. 125, 337–342.

    Article  Google Scholar 

  • Taketa, S., Amano, S., Tsujino, Y., Sato, T., Saisho, D., Kakeda, K., Nomura, M., Suzuki, T., Matsumoto, T., Sato, K., Kanamori, H., Kawasaki, S. and Takeda, K. (2008) Barley grain with adhering hulls is controlled by an ERF family transcription factor gene regulating a lipid biosynthesis pathway. Proc. Natl. Acad. Sci. USA 105, 4062–4067.

    Article  PubMed  CAS  Google Scholar 

  • Talbert, L.E., Smith, L.Y. and Blake, N.K. (1998) More than one origin of hexaploid wheat is indicated by sequence comparison of low-copy DNA. Genome 41, 402–407.

    Article  CAS  Google Scholar 

  • Tanno, K., Taketa, S., Takeda, K. and Komatsuda, T. (2002) A DNA marker closely linked to the vrs1 locus (row-type gene) indicates multiple origins of six-rowed cultivated barley (Hordeum vulgare L.). Theor. Appl. Genet. 104, 54–60.

    Article  PubMed  CAS  Google Scholar 

  • Tanno, K. and Takeda, K. (2004) On the origin of six-rowed barley with brittle rachis, agriocrithon [Hordeum vulgare ssp. vulgare f. agriocrithon (Åberg) Bowd.], based on a DNA marker closely linked to the vrs1 (six-row gene) locus. Theor. Appl. Genet. 110, 145–150.

    Article  PubMed  CAS  Google Scholar 

  • Tanno, K. and Willcox, G. (2006) How fast was wild wheat domesticated? Science 311, 1886.

    Article  PubMed  CAS  Google Scholar 

  • Ternowskaya, T.K. and Zhirov, E.G. (1993) Bread wheat genome D. Genetic control of tender glume and depression at its base. Tsitologiya Genetica 27, 78–83.

    Google Scholar 

  • Thornsberry, J.M., Goodman, M.M., Doebley, J., Kresovich, S., Nielsen, D. and Buckler, E.S. (2001) Dwarf8 polymorphisms associate with variation in flowering time. Nat. Genet. 28, 286–289.

    Article  PubMed  CAS  Google Scholar 

  • Thuillet, A.-C., Bru, D., David, J., Roumet, P., Santoni, S., Sourdille, P. and Bataillon, T. (2002) Direct estimation of mutation rate for 10 microsatellite loci in durum wheat, Triticum turgidum (L.) Thell. Ssp durum desf. Mol. Biol. Evol. 19, 122–125.

    Article  PubMed  CAS  Google Scholar 

  • Thuillet, A.-C., Bataillon, T., Poirier, S., Santoni, S. and David, J.L. (2005) Estimation of long-term effective population sizes through the history of durum wheat using microsatellite data. Genetics 169, 1589–1599.

    Article  PubMed  CAS  Google Scholar 

  • Tranquilli, G., Lijavetzky, D., Muzzi, G. and Dubcovsky, J. (1999) Genetic and physical characterization of grain texture-related loci in diploid wheat. Mol. Gen. Genet. 262, 846–850.

    Article  PubMed  CAS  Google Scholar 

  • Trevaskis, B., Hemming, M.N., Peacock, W.J. and Dennis, E.S. (2006) HvVRN2 responds to daylength, whereas HvVRN1 is regulated by vernalization and developmental status. Plant Physiol 140, 1397–1405.

    Article  PubMed  CAS  Google Scholar 

  • Turnbull, K., Turner, M., Mukai, Y, Yamamoto, M., Morell, M.K., Appels, R. and Rahman, S. (2003) The organization of genes tightly linked to the Ha locus in Ae. tauschii, the D genome donor of wheat. Genome 46, 330–336.

    Article  PubMed  CAS  Google Scholar 

  • Turner, A., Beales, J., Faure, S., Dunford, R.P. and Laurie, D.A. (2005) The pseudo-response regulator Ppd-H1 provides adaptation to photoperiod in barley. Science 310, 1031–1034.

    Article  PubMed  CAS  Google Scholar 

  • Vavilov, N.I. (1917) On the origin of cultivated rye. Bull. Appl. Bot, Genet. Pl. Breed. 10, 561–590.

    Google Scholar 

  • Vavilov, N.I. (1926) Studies on the origin of cultivated plants. Institut Botanique Appliqué et d’Amelioration des Plantes, Leningrad.

    Google Scholar 

  • Vavilov, N.I. (1992) Origin and geography of cultivated plants. (D. Love, transl.), Cambridge University of Press, Cambridge, pp. 316–366.

    Google Scholar 

  • Villareal, R., Mujeeb-Kazi, A. and Rajaram, S. (1996) Inherintance of threshability in synthetic hexaploid by T. aestivum crosses. Plant Breed. 115, 407–409.

    Article  Google Scholar 

  • Watanabe, N. and Ikebata, N. (2000) The effects of homoeologous group 3 chromosomes on grain colour dependent seed dormancy and brittle rachis in tetraploid wheat. Euphytica 115, 215–220.

    Article  Google Scholar 

  • Watanabe, N., Sogiyama, K., Yamagashi, Y. and Skata, Y. (2002) Comparative telosomic mapping of homoeologous genes for brittle rachis in tetraploid and hexaploid wheats. Hereditas 137, 180–185.

    Article  Google Scholar 

  • Watanabe, N. 2005 The occurrence and inheritance of a brittle rachis phenotype in Italian durum wheat cultivars. Euphytica 142, 247–251.

    Article  Google Scholar 

  • Watanabe, N., Takesada, N., Fujii, Y. and Martinek, P. (2005a) Comparative mapping of genes for brittle rachis in Triticum and Aegilops Czech J. Genet. Plant Breed. 41, 39–44.

    Google Scholar 

  • Watanabe, N., Takesada, N., Shibata, Y. and Ban, T. (2005b) Genetic mapping of the genes for glaucous leaf and tough rachis in Aegilops tauschii, the D-genome progenitor of wheat. Euphytica 144, 119–123.

    Google Scholar 

  • Watanabe, N., Fujii, Y., Kato, N., Ban, T. and Martinek, P. (2006a) Microsatellite mapping of the genes for brittle rachis on homoeologous group 3 chromosomes in tetraploid and hexaploid wheats. J. Appl. Genet. 47, 93–98.

    Google Scholar 

  • Watanabe, N., Fujii, Y., Takesada, N. and Martinek, P. (2006b) Cytological and microsatellite mapping of the gene for brittle rachis in a Triticum aestivum-Aegilops tauschii introgression line. Euphytica 151, 63–69.

    Google Scholar 

  • Weiss, E., Kislev, M.E. and Hartmann, A. (2006) Autonomous cultivation before domestication. Science 312, 1608–1610.

    Article  PubMed  CAS  Google Scholar 

  • Wicker, T., Schlagenhauf, E., Graner, A., Close, T.J., Keller, B. and Stein, N. (2006) 454 sequencing put to the test using the complex genome of barley. BMC Genomics 7, 275.

    Article  PubMed  CAS  Google Scholar 

  • Willcox, G. (1996) Evidence for plant exploitation and vegetation history from three early Neolithic pre-pottery sites on the Euphrates (Syria). Veget. Hist. Archaeobot. 5, 143–152.

    Article  Google Scholar 

  • Willcox, G. (1998) Archaeobotanical evidence for the beginnings of agriculture in southwest Asia. In: A.B. Damania, J. Valkoun, G. Willcox, C.O. Qualset, (Eds.), The origins of agriculture and crop domestication. Proceedings of the Harlan Symposium. ICARDA, Aleppo, pp. 25–38.

    Google Scholar 

  • Willcox, G. (2005) The distribution, natural habitats and availability of wild cereals in relation to their domestication in the Near East: Multiple events, multiple centres. Veget. Hist. Archaeobot. 14, 534–541.

    Article  Google Scholar 

  • Worland, A. (1996) The influence of flowering time genes on environmental adaptability in European wheats. Euphytica 89, 49–57.

    Article  Google Scholar 

  • Wright, S.I., Vroh, I., Schroeder, S.G., Yamasaki, M., Doebley, J.F., McMullen, M.D. and Gaut, B.S. (2005) The effects of artificial selection on the maize genome. Science 308, 1310–1314.

    Article  PubMed  CAS  Google Scholar 

  • Yan, L., Loukoianov, A., Tranquilli, G., Helguera, M., Fahima, T. and Dubcovsky, J. (2003) Positional cloning of the wheat vernalization gene VRN1. Proc. Natl. Acad. Sci. USA 100, 6263–6268.

    Article  PubMed  CAS  Google Scholar 

  • Yan, L., Helguera, M., Kato, K., Fukuyama, S., Sherman, J. and Dubcovsky, J. (2004a) Allelic variation at the VRN-1 promotor region in polyploid wheat. Theor. Appl. Genet. 109, 1677–1686.

    Google Scholar 

  • Yan, L., Loukoianov, A., Blech, A., Tranquilli, G., Ramakrishna, W., SanMiguel, P., Bennetzen, J.L., Echenique, V. and Dubcovsky, J. (2004b) The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science 303, 1640–1644.

    Google Scholar 

  • Yan, L., Fu, D., Li, C., Blechl, A., Tranquilli, G., Bonafede, M., Sanchez, A., Valarik, M., Yasuda, S. and Dubcovsky J (2006) The wheat and barley vernalization gene VRN3 is an ortholog of FT. Proc. Natl. Acad. Sci. USA 103, 19581–19586.

    Article  PubMed  CAS  Google Scholar 

  • Zeist van, W. (1970) The oriental institute excavations at Mureybit, Syria: Preliminary report on the 1965 campaign. Part III. Palaeobotany. J. Near East Stud. 29, 167–176.

    Article  Google Scholar 

  • Zeist van, W. and Roller de, G.J. (1991–2) The plant husbandry of aceramic Cayönü, S.E. Turkey. Palaeohistorica 33/34, 65–96.

    Google Scholar 

  • Zhang, W., Qu, L.J., Gu, H., Gao, W., Liu, M., Chen, J. and Chen, Z. (2002) Studies on the origin and evolution of tetraploid wheats based on the internal transcribed spacer (ITS) sequences of nuclear ribosomal DNA. Theor. Appl. Genet. 104, 1099–1106.

    Article  PubMed  CAS  Google Scholar 

  • Zitzewitz von, J., Szücs, P., Dubcovsky, J., Yan, L., Francia, E., Pecchioni, N., Casas, A., Chen, T.H.H., Hayes, P.M. and Skinner, J.S. (2005) Molecular and structural characterization of barley vernalization genes. Plant Mol. Biol. 59, 449–467.

    Article  CAS  Google Scholar 

  • Zohary, D. (1999) Monophyletic vs. polyphyletic origin of the crops on which agriculture was founded in the Near East. Genet. Res. Crop Evol. 46, 133–142.

    Article  Google Scholar 

  • Zohary, D. and Hopf, M. (2000) Domestication of plants in the old world. Oxford University Press, Oxford.

    Google Scholar 

Download references

Acknowledgments

We thank Sigi Effgen, Isabell Fuchs, Jutta Schütze, Charlotte Bulich, Marianne Haberscheid for excellent technical assistance and Margit Pasemann, Birgit Thron, Marianne Limpert, Elke Bohlscheid, Katiuscia Ceron for administration support during the last years. We are grateful to the MPIZ sequence facilities (ADIS) headed by Bernd Weisshaar. We thank Bill Martin, Maarten Koornneef, George Coupland, Moshe Feldman, Andrea Brandolini, Klaus Schmidt (DAI) and Andreas Graner for valuable suggestions. This research was supported by the Deutsche Forschungsgemeinschaft SPP 1127.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Kilian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kilian, B., Özkan, H., Pozzi, C., Salamini, F. (2009). Domestication of the Triticeae in the Fertile Crescent. In: Muehlbauer, G., Feuillet, C. (eds) Genetics and Genomics of the Triticeae. Plant Genetics and Genomics: Crops and Models, vol 7. Springer, New York, NY. https://doi.org/10.1007/978-0-387-77489-3_3

Download citation

Publish with us

Policies and ethics