Skip to main content

Diagnostic Applications of Nuclear Medicine: Pancreatic Cancer

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Nuclear Oncology

Abstract

Pancreatic cancer can be assessed through a variety of imaging techniques including endoscopic ultrasonography (EUS), computed tomography (CT), endoscopic retrograde cholangiopancreatography (ERCP), magnetic resonance imaging (MRI), and magnetic resonance cholangiopancreatography (MRCP).

These imaging modalities are often effective in the evaluation of pancreatic cancers, although sometimes they require the additional use of radiopharmaceuticals with positron and single-photon emission CT (PET and SPECT) imaging techniques. In this chapter, the role of nuclear medicine with various radiolabeled compounds and the rationale for their use in endocrine and nonendocrine pancreatic tumors are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

ACTHoma:

Neuroendocrine tumor producing adrenocorticopic hormone

AI:

Artificial Intelligence

AJCC:

American Joint Committee on Cancer

BRCA1:

Breast cancer type 1 susceptibility protein

BRCA2:

Breast cancer type 2 susceptibility protein

CA 19-9:

Carbohydrate antigen 19-9

CCK2:

Cholecystokinin 2

CRHoma:

Neuroendocrine tumor producing corticotropin-releasing hormone

CT:

X-ray computed tomography

DM:

Diabetes mellitus

DOPA:

Dihydroxyphenylalanine

DOTA:

1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid

DTPA:

Diethylenetriaminepentaacetic acid

EDDA:

Ethylenediamine-N,N′-bis(2-hydroxyphenyl)acetic acid

ENETS:

European Neuroendocrine Tumor Society

ERCP:

Endoscopic retrograde cholangiopancreatography

EUS:

Endoscopic ultrasonography

FAMM:

Multiple mole melanoma syndrome

FNA:

Fine-needle aspiration

FSPG:

(4S)-4-(3- F-Fluoropropyl)-L-glutamate

[18F]FDG:

2-deoxy-2-[18F]fluoro-D-glucose

[18F]FDOPA:

L-3,4-Dihydroxy-6-[18F]fluorophenylalanine

18F-FLT:

3′-18F-fluoro-3′-deoxythymidine

G-CSF:

Granulocyte colony-stimulating factor

GEP-NET:

Gastro-entero-pancreatic neuroendocrine tumor

GHRHoma:

Neuroendocrine tumor producing growth hormone-releasing hormone

GI:

Gastrointestinal

GLP-1:

Exendin

GLP1R:

Glucagon-like peptide 1 receptor

GTV:

Gross tumor volume

hENT-1:

Human equilibrative nucleoside transporter-1

HPF:

High-power field

HYNIC:

Hydrazidonicotinic acid/hydrazinonicotinamide

[11C]5-HTP:

[11C]5-Hydroxy-L-tryptophan

IPMN:

Intraductal papillary mucinous neoplasm

LAN:

Lanreotide

MDCT:

Multidetector row computed tomography

MIBG:

Metaiodobenzylguanidine

MiNENs:

Pancreatic mixed neuroendocrine-non-neuroendocrine neoplasms

MIP:

Maximum intensity projection

MRCP:

Magnetic resonance cholangiopancreatography

MRI:

Magnetic resonance imaging

MTC:

Medullary thyroid carcinoma

mTOR:

Mammalian target of rapamycin

[123I]MIBG:

meta-[123I]iodobenzylguanidine

[131I]MIBG:

meta-[131I]iodobenzylguanidine

NCCN:

National Comprehensive Cancer Network

NEC:

Neuroendocrine carcinoma

NET:

Neuroendocrine tumor

NOC:

1-Nal3-octreotide

PanIN:

Pancreatic intraepithelial neoplasia

PanNECs:

Pancreatic neuroendocrine carcinomas

PanNENs:

Pancreatic neuroendocrine neoplasms

PanNETs:

Pancreatic neuroendocrine tumors

PC:

Pancreatic cancer

PDAC:

Pancreatic ductal adenocarcinoma

PET:

Positron emission tomography

PET/CT:

Positron emission tomography/computed tomography

PET/MR:

Integrated positron emission tomography/magnetic resonance system

PRRT:

Peptide receptor radionuclide therapy

R0:

Surgery achieving negative microscopic resection margins

R1:

Surgery achieving microscopic positive resection margins

R2:

Surgery achieving residual macroscopic disease

RT:

Radiation therapy

SPECT:

Single-photon emission computed tomography

SPECT/CT:

Single-photon emission computed tomography/computed tomography

SR:

Somatostatin receptor

SRS:

Somatostatin receptor scintigraphy

SSA:

Somatostatin analogues

SSTR:

Somatostatin receptors

SUV:

Standardized uptake value

TATE:

Octeotate

TNM:

AJCC/UICC staging system based on parameters “T” (tumor status), “N” (lymph node status), and “M” (distant metastasis status)

TOC:

Octreotide

UICC:

Union Internationale Contre le Cancer (International Union Against Cancer)

US:

Ultrasonography

VAP:

Vapreotide

VIP:

Vasoactive intestinal peptide

WHO:

World Health Organization

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66(1):7–30.

    Article  PubMed  Google Scholar 

  2. Li D, Xie K, Wolff R, Abbruzzese JL. Pancreatic cancer. Lancet (London, England). 2004;363(9414):1049–57.

    Article  CAS  Google Scholar 

  3. Seufferlein T, Bachet JB, Van Cutsem E, Rougier P, ESMO Guidelines Working Group. Pancreatic adenocarcinoma: ESMO-ESDO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2012;23(Suppl 7):vii33–40.

    Article  PubMed  Google Scholar 

  4. Hruban RH, Canto M, Goggins M, Schulick R, Klein AP. Update on familial pancreatic cancer. Adv Surg. 2010;44:293–311.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Goggins M, Canto M, Hruban R. Can we screen high-risk individuals to detect early pancreatic carcinoma? J Surg Oncol. 2000;74(4):243–8.

    Article  CAS  PubMed  Google Scholar 

  6. Templeton AW, Brentnall TA. Screening and surgical outcomes of familial pancreatic cancer. Surg Clin North Am. 2013;93(3):629–45.

    Article  PubMed  Google Scholar 

  7. Klein AP, Brune KA, Petersen GM, et al. Prospective risk of pancreatic cancer in familial pancreatic cancer kindreds. Cancer Res. 2004;64(7):2634–8.

    Article  CAS  PubMed  Google Scholar 

  8. Lynch SM, Vrieling A, Lubin JH, et al. Cigarette smoking and pancreatic cancer: a pooled analysis from the pancreatic cancer cohort consortium. Am J Epidemiol. 2009;170(4):403–13.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Raimondi S, Maisonneuve P, Lowenfels AB. Epidemiology of pancreatic cancer: an overview. Nat Rev Gastroenterol Hepatol. 2009;6(12):699–708.

    Article  PubMed  Google Scholar 

  10. Raimondi S, Lowenfels AB, Morselli-Labate AM, Maisonneuve P, Pezzilli R. Pancreatic cancer in chronic pancreatitis; aetiology, incidence, and early detection. Best Pract Res Clin Gastroenterol. 2010;24(3):349–58.

    Article  PubMed  Google Scholar 

  11. Pannala R, Basu A, Petersen GM, Chari ST. New-onset diabetes: a potential clue to the early diagnosis of pancreatic cancer. Lancet Oncol. 2009;10(1):88–95.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Chari ST, Kelly K, Hollingsworth MA, et al. Early detection of sporadic pancreatic cancer: summative review. Pancreas. 2015;44(5):693–712.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Takhar AS, Palaniappan P, Dhingsa R, Lobo DN. Recent developments in diagnosis of pancreatic cancer. BMJ. 2004;329(7467):668–73.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Diabetes and its relationship to pancreatic carcinoma. Abstract – Europe PMC [Internet]. [cited 2020 Dec 17]; Available from: https://europepmc.org/article/med/12717272

  15. Ozkan H, Kaya M, Cengiz A. Comparison of tumor marker CA 242 with CA 19-9 and carcinoembryonic antigen (CEA) in pancreatic cancer. Hepatogastroenterology. 2003;50(53):1669–74.

    PubMed  Google Scholar 

  16. Willett CG, Daly WJ, Warshaw AL. CA 19-9 is an index of response to neoadjunctive chemoradiation therapy in pancreatic cancer. Am J Surg. 1996;172(4):350–2.

    Article  CAS  PubMed  Google Scholar 

  17. Yeo TP, Hruban RH, Leach SD, et al. Pancreatic cancer. Curr Probl Cancer. 2002;26(4):176–275.

    Article  PubMed  Google Scholar 

  18. Karmazanovsky G, Fedorov V, Kubyshkin V, Kotchatkov A. Pancreatic head cancer: accuracy of CT in determination of resectability. Abdom Imaging. 2005;30(4):488–500.

    Article  CAS  PubMed  Google Scholar 

  19. Miura F, Takada T, Amano H, Yoshida M, Furui S, Takeshita K. Diagnosis of pancreatic cancer. HPB (Oxford). 2006;8(5):337–42.

    Article  Google Scholar 

  20. Brennan DDD, Zamboni GA, Raptopoulos VD, Kruskal JB. Comprehensive preoperative assessment of pancreatic adenocarcinoma with 64-section volumetric CT. Radiographics. 2007;27(6):1653–66.

    Article  PubMed  Google Scholar 

  21. Morana G, Cancian L, Pozzi Mucelli R, Christian C. Staging cancer of the pancreas. Cancer Imaging. 2010;10:S137–41.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Appel BL, Tolat P, Evans DB, Tsai S. Current staging systems for pancreatic cancer. Cancer J. 2012;18(6):539–49.

    Article  PubMed  Google Scholar 

  23. Fusaroli P, Kypraios D, Caletti G, Eloubeidi MA. Pancreatico-biliary endoscopic ultrasound: a systematic review of the levels of evidence, performance and outcomes. World J Gastroenterol. 2012;18(32):4243–56.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Sahani DV, Bonaffini PA, Catalano OA, Guimaraes AR, Blake MA. State-of-the-art PET/CT of the pancreas: current role and emerging indications. Radiographics. 2012;32(4):1133–58. discussion 1158–1160.

    Article  PubMed  Google Scholar 

  25. Conrad C, Fernández-Del CC. Preoperative evaluation and management of the pancreatic head mass. J Surg Oncol. 2013;107(1):23–32.

    Article  PubMed  Google Scholar 

  26. Shrikhande SV, Barreto SG, Goel M, Arya S. Multimodality imaging of pancreatic ductal adenocarcinoma: a review of the literature. HPB (Oxford). 2012;14(10):658–68.

    Article  Google Scholar 

  27. Raman SP, Horton KM, Fishman EK. Multimodality imaging of pancreatic cancer-computed tomography, magnetic resonance imaging, and positron emission tomography. Cancer J. 2012;18(6):511–22.

    Article  PubMed  Google Scholar 

  28. Dibble EH, Karantanis D, Mercier G, Peller PJ, Kachnic LA, Subramaniam RM. PET/CT of cancer patients: part 1, pancreatic neoplasms. AJR Am J Roentgenol. 2012;199(5):952–67.

    Article  PubMed  Google Scholar 

  29. Kinney T. Evidence-based imaging of pancreatic malignancies. Surg Clin. 2010;90(2):235–49.

    Google Scholar 

  30. Klimstra DS, Pitman MB, Hruban RH. An algorithmic approach to the diagnosis of pancreatic neoplasms. Arch Pathol Lab Med. 2009;133(3):454–64.

    Article  PubMed  Google Scholar 

  31. Lawrence B, Gustafsson BI, Chan A, Svejda B, Kidd M, Modlin IM. The epidemiology of gastroenteropancreatic neuroendocrine tumors. Endocrinol Metab Clin North Am. 2011;40(1):1–18, vii.

    Article  PubMed  Google Scholar 

  32. Yao JC, Hassan M, Phan A, et al. One hundred years after “carcinoid”: epidemiology of and prognostic factors for neuroendocrine tumors in 35,825 cases in the United States. J Clin Oncol. 2008;26:3063–72.

    Article  PubMed  Google Scholar 

  33. Zhou J, Enewold L, Stojadinovic A, et al. Incidence rates of exocrine and endocrine pancreatic cancers in the United States. Cancer Causes Control. 2010;21(6):853–61.

    Article  PubMed  Google Scholar 

  34. Nagtegaal ID, Odze RD, Klimstra D, et al. The 2019 WHO classification of tumours of the digestive system. Histopathology. 2020;76(2):182–8.

    Article  PubMed  Google Scholar 

  35. Falconi M, Plöckinger U, Kwekkeboom DJ, et al. Well-differentiated pancreatic nonfunctioning tumors/carcinoma. NEN. 2006;84(3):196–211.

    CAS  Google Scholar 

  36. O’Toole D, Salazar R, Falconi M, et al. Rare functioning pancreatic endocrine tumors. NEN. 2006;84(3):189–95.

    Google Scholar 

  37. Modlin I, Moss S, Gustafsson BI, Lawrence B, Schimmack S, Kidd M. The archaic distinction between functioning and nonfunctioning neuroendocrine neoplasms is no longer clinically relevant. Langenbeck Arch Surg. 2011;396(8):1145–56.

    Article  Google Scholar 

  38. Halfdanarson TR, Rabe KG, Rubin J, Petersen GM. Pancreatic neuroendocrine tumors (PNETs): incidence, prognosis and recent trend toward improved survival. Ann Oncol. 2008;19(10):1727–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jensen RT, Cadiot G, Brandi ML, et al. ENETS Consensus Guidelines for the management of patients with digestive neuroendocrine neoplasms: functional pancreatic endocrine tumor syndromes. Neuroendocrinology. 2012;95(2):98–119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pavel M, Baudin E, Couvelard A, et al. ENETS Consensus Guidelines for the management of patients with liver and other distant metastases from neuroendocrine neoplasms of foregut, midgut, hindgut, and unknown primary. Neuroendocrinology. 2012;95(2):157–76.

    Article  CAS  PubMed  Google Scholar 

  41. DeLellis RA, Lloyd RV, Heitz PY, Eng C. Pathology and genetics of tumours of endocrine organs. WHO classification of tumours. 3rd ed. 8Lyon: IARC; 2004.

    Google Scholar 

  42. van Roessel S, Kasumova GG, Verheij J, et al. International validation of the eighth edition of the American Joint Committee on Cancer (AJCC) TNM staging system in patients with resected pancreatic cancer. JAMA Surg. 2018;153(12):e183617.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Tempero MA, Malafa MP, Chiorean EG, et al. Pancreatic adenocarcinoma, version 1.2019. J Natl Compr Canc Netw. 2019;17(3):202–10.

    Article  PubMed  Google Scholar 

  44. Callery MP, Chang KJ, Fishman EK, Talamonti MS, William Traverso L, Linehan DC. Pretreatment assessment of resectable and borderline resectable pancreatic cancer: expert consensus statement. Ann Surg Oncol. 2009;16(7):1727–33.

    Article  PubMed  Google Scholar 

  45. Yao JC, Eisner MP, Leary C, et al. Population-based study of islet cell carcinoma. Ann Surg Oncol. 2007;14(12):3492–500.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Yoshida T, Hijioka S, Hosoda W, et al. Surgery for pancreatic neuroendocrine tumor G3 and carcinoma G3 should be considered separately. Ann Surg Oncol. 2019;26(5):1385–93.

    Article  PubMed  Google Scholar 

  47. Lee ES, Lee JM. Imaging diagnosis of pancreatic cancer: a state-of-the-art review. World J Gastroenterol. 2014;20(24):7864–77.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Torigian DA, Zaidi H, Kwee TC, et al. PET/MR imaging: technical aspects and potential clinical applications. Radiology. 2013;267(1):26–44.

    Article  PubMed  Google Scholar 

  49. Nagamachi S, Nishii R, Wakamatsu H, et al. The usefulness of 18F-FDG PET/MRI fusion image in diagnosing pancreatic tumor: comparison with 18F-FDG PET/CT. Ann Nucl Med. 2013;27(6):554–63.

    Article  PubMed  Google Scholar 

  50. Tatsumi M, Isohashi K, Onishi H, et al. [18F]FDG PET/MRI fusion in characterizing pancreatic tumors: comparison to PET/CT. Int J Clin Oncol. 2011;16(4):408–15.

    Article  PubMed  Google Scholar 

  51. De Gaetano AM, Rufini V, Castaldi P, et al. Clinical applications of 18F-FDG PET in the management of hepatobiliary and pancreatic tumors. Abdom Imaging. 2012;37(6):983–1003.

    Article  PubMed  Google Scholar 

  52. Duan H, Baratto L, Iagaru A. The role of PET/CT in the imaging of pancreatic neoplasms. Semin Ultrasound, CT MRI. 2019;40(6):500–8.

    Article  Google Scholar 

  53. Izuishi K, Yamamoto Y, Sano T, Takebayashi R, Masaki T, Suzuki Y. Impact of 18-fluorodeoxyglucose positron emission tomography on the management of pancreatic cancer. J Gastrointest Surg. 2010;14(7):1151–8.

    Article  PubMed  Google Scholar 

  54. Raman SP, Fishman EK, Lennon AM. Endoscopic ultrasound and pancreatic applications: what the radiologist needs to know. Abdom Imaging. 2013;38(6):1360–72.

    Article  PubMed  Google Scholar 

  55. Murakami K. FDG-PET for hepatobiliary and pancreatic cancer: Advances and current limitations. World J Clin Oncol. 2011;2(5):229–36.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Zhang Y, Cheng C, Liu Z, et al. Radiomics analysis for the differentiation of autoimmune pancreatitis and pancreatic ductal adenocarcinoma in 18F-FDG PET/CT. Med Phys. 2019;46(10):4520–30.

    Article  CAS  PubMed  Google Scholar 

  57. Pakzad F, Groves AM, Ell PJ. The role of positron emission tomography in the management of pancreatic cancer. Semin Nucl Med. 2006;36(3):248–56.

    Article  PubMed  Google Scholar 

  58. Masson E. Role and limitations of [18F]FDG positron emission tomography (PET) in the management of patients with pancreatic lesions. EM-Consulte. [cited 2021 Jan 6]; Available from: https://www.em-consulte.com/article/266968/figures/role-and-limitations-of-18-f-fdg-positron-emission

  59. Hong H-S, Yun M, Cho A, et al. The utility of F-18 FDG PET/CT in the evaluation of pancreatic intraductal papillary mucinous neoplasm. Clin Nucl Med. 2010;35(10):776–9.

    Article  PubMed  Google Scholar 

  60. Sperti C, Pasquali C, Decet G, Chierichetti F, Liessi G, Pedrazzoli S. F-18-fluorodeoxyglucose positron emission tomography in differentiating malignant from benign pancreatic cysts: A prospective study. J Gastrointest Surg. 2005;9(1):22–9.

    Article  PubMed  Google Scholar 

  61. Fassan M, Pizzi S, Sperti C, et al. 18F-FDG PET findings and GLUT-1 expression in IPMNs of the pancreas. J Nucl Med. 2008;49(12):2070.

    Google Scholar 

  62. Sperti C, Bissoli S, Pasquali C, et al. 18-fluorodeoxyglucose positron emission tomography enhances computed tomography diagnosis of malignant intraductal papillary mucinous neoplasms of the pancreas. Ann Surg. 2007;246(6):932–7; discussion 937–939.

    Article  PubMed  Google Scholar 

  63. Tomimaru Y, Takeda Y, Tatsumi M, et al. Utility of 2-[18F]fluoro-2-deoxy-D-glucose positron emission tomography in differential diagnosis of benign and malignant intraductal papillary-mucinous neoplasm of the pancreas. Oncol Rep. 2010;24(3):613–20.

    PubMed  Google Scholar 

  64. Javery O, Shyn P, Mortele K. FDG PET or PET/CT in patients with pancreatic cancer: when does it add to diagnostic CT or MRI? Clin Imaging. 2013;37(2):295–301.

    Article  PubMed  Google Scholar 

  65. Nishiyama Y, Yamamoto Y, Yokoe K, et al. Contribution of whole body FDG-PET to the detection of distant metastasis in pancreatic cancer. Ann Nucl Med. 2005;19(6):491.

    Article  PubMed  Google Scholar 

  66. Bares R, Klever P, Hauptmann S, et al. F-18 fluorodeoxyglucose PET in vivo evaluation of pancreatic glucose metabolism for detection of pancreatic cancer. Radiology. 1994;192(1):79–86.

    Article  CAS  PubMed  Google Scholar 

  67. Zimny M, Bares R, Fass J, et al. Fluorine-18 fluorodeoxyglucose positron emission tomography in the differential diagnosis of pancreatic carcinoma: a report of 106 cases. Eur J Nucl Med. 1997;24(6):678–82.

    CAS  PubMed  Google Scholar 

  68. Lytras D, Connor S, Bosonnet L, et al. Positron emission tomography does not add to computed tomography for the diagnosis and staging of pancreatic cancer. DSU. 2005;22(1–2):55–62.

    CAS  Google Scholar 

  69. Kauhanen SP, Komar G, Seppänen MP, et al. A prospective diagnostic accuracy study of [18F]fluorodeoxyglucose positron emission tomography/computed tomography, multidetector row computed tomography, and magnetic resonance imaging in primary diagnosis and staging of pancreatic cancer. Ann Surg. 2009;250(6):957–63.

    Article  PubMed  Google Scholar 

  70. Wang X-Y, Yang F, Jin C, Fu D-L. Utility of PET/CT in diagnosis, staging, assessment of resectability and metabolic response of pancreatic cancer. World J Gastroenterol. 2014;20(42):15580–9.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Asagi A, Ohta K, Nasu J, et al. Utility of contrast-enhanced FDG-PET/CT in the clinical management of pancreatic cancer: impact on diagnosis, staging, evaluation of treatment response, and detection of recurrence. Pancreas. 2013;42(1):11–9.

    Article  PubMed  Google Scholar 

  72. Strobel K, Heinrich S, Bhure U, et al. Contrast-enhanced [18F]FDG PET/CT: 1-stop-shop imaging for assessing the resectability of pancreatic cancer. J Nucl Med. 2008;49(9):1408–13.

    Article  PubMed  Google Scholar 

  73. Chang JS, Choi SH, Lee Y, et al. Clinical usefulness of [18F]fluorodeoxyglucose-positron emission tomography in patients with locally advanced pancreatic cancer planned to undergo concurrent chemoradiation therapy. Int J Radiat Oncol Biol Phys. 2014;90(1):126–33.

    Article  PubMed  Google Scholar 

  74. Bang S, Chung HW, Park SW, et al. The clinical usefulness of 18-fluorodeoxyglucose positron emission tomography in the differential diagnosis, staging, and response evaluation after concurrent chemoradiotherapy for pancreatic cancer. J Clin Gastroenterol. 2006;40(10):923–9.

    Article  PubMed  Google Scholar 

  75. Diederichs CG, Staib L, Vogel J, et al. Values and limitations of [18F]fluorodeoxyglucose-positron-emission tomography with preoperative evaluation of patients with pancreatic masses. Pancreas. 2000;20(2):109–16.

    Article  CAS  PubMed  Google Scholar 

  76. Heinrich S, Goerres GW, Schäfer M, et al. Positron emission tomography/computed tomography influences on the management of resectable pancreatic cancer and its cost-effectiveness. Ann Surg. 2005;242(2):235–43.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Imai H, Doi R, Kanazawa H, et al. Preoperative assessment of para-aortic lymph node metastasis in patients with pancreatic cancer. Int J Clin Oncol. 2010;15(3):294–300.

    Article  PubMed  Google Scholar 

  78. Kuwatani M, Kawakami H, Eto K, et al. Modalities for evaluating chemotherapeutic efficacy and survival time in patients with advanced pancreatic cancer: comparison between FDG-PET, CT, and serum tumor markers. Intern Med. 2009;48(11):867–75.

    Article  PubMed  Google Scholar 

  79. Maisey NR, Webb A, Flux GD, et al. FDG-PET in the prediction of survival of patients with cancer of the pancreas: a pilot study. Br J Cancer. 2000;83(3):287–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Higashi T, Sakahara H, Torizuka T, et al. Evaluation of intraoperative radiation therapy for unresectable pancreatic cancer with FDG PET. J Nucl Med. 1999;40(9):1424–33.

    CAS  PubMed  Google Scholar 

  81. Schellenberg D, Quon A, Minn AY, et al. [18F]fluorodeoxyglucose PET is prognostic of progression-free and overall survival in locally advanced pancreas cancer treated with stereotactic radiotherapy. Int J Radiat Oncol Biol Phys. 2010;77(5):1420–5.

    Article  PubMed  Google Scholar 

  82. Sperti C, Pasquali C, Chierichetti F, Ferronato A, Decet G, Pedrazzoli S. 18-Fluorodeoxyglucose positron emission tomography in predicting survival of patients with pancreatic carcinoma. J Gastrointest Surg. 2003;7(8):953–9; discussion 959–960.

    Article  PubMed  Google Scholar 

  83. Springett GM, Hoffe SE. Borderline resectable pancreatic cancer: on the edge of survival. Cancer Control. 2008;15(4):295–307.

    Article  PubMed  Google Scholar 

  84. Higashi T, Fisher SJ, Brown RS, Nakada K, Walter GL, Wahl RL. Evaluation of the early effect of local irradiation on normal rodent bone marrow metabolism using FDG: preclinical PET studies. J Nucl Med. 2000;41(12):2026–35.

    CAS  PubMed  Google Scholar 

  85. Ruf J, Lopez Hänninen E, Oettle H, et al. Detection of recurrent pancreatic cancer: comparison of FDG-PET with CT/MRI. Pancreatology. 2005;5(2–3):266–72.

    Article  PubMed  Google Scholar 

  86. Urban D, Catane R. Serum tumor markers in oncology. Isr Med Assoc J. 2009;11(2):103–4.

    PubMed  Google Scholar 

  87. Higashi T, Saga T, Nakamoto Y, et al. Diagnosis of pancreatic cancer using fluorine-18 fluorodeoxyglucose positron emission tomography (FDG PET) – usefulness and limitations in “clinical reality”. Ann Nucl Med. 2003;17(4):261–79.

    Article  PubMed  Google Scholar 

  88. Radiation therapy combined with Adriamycin or 5-fluorouracil for the treatment of locally unresectable pancreatic carcinoma. Gastrointestinal Tumor Study Group. Abstract – Europe PMC [Internet]. [cited 2021 Jan 6]; Available from: https://europepmc.org/article/med/2864997

  89. Klaassen DJ, MacIntyre JM, Catton GE, Engstrom PF, Moertel CG. Treatment of locally unresectable cancer of the stomach and pancreas: a randomized comparison of 5-fluorouracil alone with radiation plus concurrent and maintenance 5-fluorouracil--an Eastern Cooperative Oncology Group study. J Clin Oncol. 1985;3(3):373–8.

    Article  CAS  PubMed  Google Scholar 

  90. Topkan E, Yavuz AA, Aydin M, Onal C, Yapar F, Yavuz MN. Comparison of CT and PET-CT based planning of radiation therapy in locally advanced pancreatic carcinoma. J Exp Clin Cancer Res. 2008;27:41.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Huguet F, Girard N, Guerche CS-E, Hennequin C, Mornex F, Azria D. Chemoradiotherapy in the management of locally advanced pancreatic carcinoma: a qualitative systematic review. J Clin Oncol. 2009;27(13):2269–77.

    Article  CAS  PubMed  Google Scholar 

  92. Parlak C, Topkan E, Onal C, Reyhan M, Selek U. Prognostic value of gross tumor volume delineated by FDG-PET-CT based radiotherapy treatment planning in patients with locally advanced pancreatic cancer treated with chemoradiotherapy. Radiat Oncol. 2012;7:37.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Kobayashi K, Bhargava P, Raja S, et al. Image-guided biopsy: what the interventional radiologist needs to know about PET/CT. Radiographics. 2012;32(5):1483–501.

    Article  PubMed  Google Scholar 

  94. Klaeser B, Mueller MD, Schmid RA, Guevara C, Krause T, Wiskirchen J. PET-CT-guided interventions in the management of FDG-positive lesions in patients suffering from solid malignancies: initial experiences. Eur Radiol. 2009;19(7):1780–5.

    Article  PubMed  Google Scholar 

  95. O’Sullivan PJ, Rohren EM, Madewell JE. Positron emission tomography–CT imaging in guiding musculoskeletal biopsy. Radiol Clin North Am. 2008;46(3):475–86.

    Article  PubMed  Google Scholar 

  96. Cerci JJ, Pereira Neto CC, Krauzer C, Sakamoto DG, Vitola JV. The impact of coaxial core biopsy guided by FDG PET/CT in oncological patients. Eur J Nucl Med Mol Imaging. 2013;40(1):98–103.

    Article  PubMed  Google Scholar 

  97. Purandare NC, Kulkarni AV, Kulkarni SS, et al. [18F]FDG PET/CT-directed biopsy: does it offer incremental benefit? Nucl Med Commun. 2013;34(3):203–10.

    Article  CAS  PubMed  Google Scholar 

  98. Tomozawa Y, Inaba Y, Yamaura H, et al. Clinical value of CT-guided needle biopsy for retroperitoneal lesions. Korean J Radiol. 2011;12(3):351–7.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Martin B, Paesmans M, Mascaux C, et al. Ki-67 expression and patients survival in lung cancer: systematic review of the literature with meta-analysis. Br J Cancer. 2004;91(12):2018–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. de Azambuja E, Cardoso F, de Castro G, et al. Ki-67 as prognostic marker in early breast cancer: a meta-analysis of published studies involving 12,155 patients. Br J Cancer. 2007;96(10):1504–13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Herrmann K, Eckel F, Schmidt S, et al. In vivo characterization of proliferation for discriminating cancer from pancreatic pseudotumors. J Nucl Med. 2008;49(9):1437–44.

    Article  CAS  PubMed  Google Scholar 

  102. Challapalli A, Barwick T, Pearson RA, et al. 3′-Deoxy-3′-[18F]fluorothymidine positron emission tomography as an early predictor of disease progression in patients with advanced and metastatic pancreatic cancer. Eur J Nucl Med Mol Imaging. 2015;42(6):831–40.

    Article  CAS  PubMed  Google Scholar 

  103. Mittra ES, Koglin N, Mosci C, et al. Pilot preclinical and clinical evaluation of (4S)-4-(3-[18F]fluoropropyl)-L-glutamate ([18F]FSPG) for PET/CT imaging of intracranial malignancies. PLoS One. 2016;11(2):e0148628.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Baek S, Choi C-M, Ahn SH, et al. Exploratory clinical trial of (4S)-4-(3-[18F]fluoropropyl)-L-glutamate for imaging xC- transporter using positron emission tomography in patients with non-small cell lung or breast cancer. Clin Cancer Res. 2012;18(19):5427–37.

    Article  CAS  PubMed  Google Scholar 

  105. Kavanaugh G, Williams J, Morris AS, et al. Utility of [18F]FSPG PET to image hepatocellular carcinoma: first clinical evaluation in a US population. Mol Imaging Biol. 2016;18(6):924–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Cheng M-F, Huang Y-Y, Ho B-Y, et al. Prospective comparison of (4S)-4-(3-[18F]fluoropropyl)-L-glutamate versus [18F]fluorodeoxyglucose PET/CT for detecting metastases from pancreatic ductal adenocarcinoma: a proof-of-concept study. Eur J Nucl Med Mol Imaging. 2019;46(4):810–20.

    Article  CAS  PubMed  Google Scholar 

  107. Binderup T, Knigge U, Loft A, et al. Functional imaging of neuroendocrine tumors: a head-to-head comparison of somatostatin receptor scintigraphy, [123I]MIBG scintigraphy, and [18F]FDG PET. J Nucl Med. 2010;51(5):704–12.

    Article  PubMed  Google Scholar 

  108. Ezziddin S, Logvinski T, Yong-Hing C, et al. Factors predicting tracer uptake in somatostatin receptor and MIBG scintigraphy of metastatic gastroenteropancreatic neuroendocrine tumors. J Nucl Med. 2006;47(2):223–33.

    CAS  PubMed  Google Scholar 

  109. Kayani I, Bomanji JB, Groves A, et al. Functional imaging of neuroendocrine tumors with combined PET/CT using 68Ga-DOTATATE (DOTA-DPhe1,Tyr3-octreotate) and [18F]FDG. Cancer. 2008;112(11):2447–55.

    Article  PubMed  Google Scholar 

  110. Kauhanen S, Seppänen M, Minn H, Nuutila P. Clinical PET imaging of insulinoma and beta-cell hyperplasia. Curr Pharm Des. 2010;16(14):1550–60.

    Article  CAS  PubMed  Google Scholar 

  111. Sundin A, Vullierme M-P, Kaltsas G, Plöckinger U. Mallorca Consensus Conference participants, European Neuroendocrine Tumor Society. ENETS Consensus Guidelines for the Standards of Care in Neuroendocrine Tumors: radiological examinations. Neuroendocrinology. 2009;90(2):167–83.

    Article  CAS  PubMed  Google Scholar 

  112. Low MJ. Clinical endocrinology and metabolism. The somatostatin neuroendocrine system: physiology and clinical relevance in gastrointestinal and pancreatic disorders. Best Pract Res Clin Endocrinol Metab. 2004;18(4):607–22.

    Article  CAS  PubMed  Google Scholar 

  113. de Herder WW, Hofland LJ, van der Lely AJ, Lamberts SWJ. Somatostatin receptors in gastroentero-pancreatic neuroendocrine tumours. Endocr Relat Cancer. 2003;10(4):451–8.

    Article  PubMed  Google Scholar 

  114. Veenstra MJ, de Herder WW, Feelders RA, Hofland LJ. Targeting the somatostatin receptor in pituitary and neuroendocrine tumors. Expert Opin Ther Targets. 2013;17(11):1329–43.

    Article  CAS  PubMed  Google Scholar 

  115. de Herder WW, Lamberts SWJ. Somatostatin analog therapy in treatment of gastrointestinal disorders and tumors. Endocrinology. 2003;20(3):285–90.

    Google Scholar 

  116. Sundin A. Radiological and nuclear medicine imaging of gastroenteropancreatic neuroendocrine tumours. Best Pract Res Clin Gastroenterol. 2012;26(6):803–18.

    Article  PubMed  Google Scholar 

  117. Kwekkeboom DJ, Kam BL, van Essen M, et al. Somatostatin-receptor-based imaging and therapy of gastroenteropancreatic neuroendocrine tumors. Endocr Relat Cancer. 2010;17(1):R53–73.

    Article  CAS  PubMed  Google Scholar 

  118. de Herder WW, Kwekkeboom DJ, Feelders RA, et al. Somatostatin receptor imaging for neuroendocrine tumors. Pituitary. 2006;9(3):243–8.

    Article  PubMed  CAS  Google Scholar 

  119. Oberg K, Kvols L, Caplin M, et al. Consensus report on the use of somatostatin analogs for the management of neuroendocrine tumors of the gastroenteropancreatic system. Ann Oncol. 2004;15(6):966–73.

    Article  CAS  PubMed  Google Scholar 

  120. Lamberts SW, van der Lely AJ, de Herder WW, Hofland LJ. Octreotide. N Engl J Med. 1996;334(4):246–54.

    Article  CAS  PubMed  Google Scholar 

  121. Bodei L, Mueller-Brand J, Baum RP, et al. The joint IAEA, EANM, and SNMMI practical guidance on peptide receptor radionuclide therapy (PRRNT) in neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2013;40(5):800–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Kwekkeboom DJ, Krenning EP, Lebtahi R, et al. ENETS consensus guidelines for the standards of care in neuroendocrine tumors: peptide receptor radionuclide therapy with radiolabeled somatostatin analogs. Neuroendocrinology. 2009;90(2):220–6.

    Article  CAS  PubMed  Google Scholar 

  123. Balon HR, Goldsmith SJ, Siegel BA, et al. Procedure guideline for somatostatin receptor scintigraphy with 111In-pentetreotide. J Nucl Med. 2001;42(7):1134–8.

    CAS  PubMed  Google Scholar 

  124. Shah T, Kulakiene I, Quigley A-M, et al. The role of 99mTc-depreotide in the management of neuroendocrine tumours. Nucl Med Commun. 2008;29(5):436–40.

    Article  CAS  PubMed  Google Scholar 

  125. Heppeler A, Froidevaux S, Eberle AN, Maecke HR. Receptor targeting for tumor localisation and therapy with radiopeptides. Curr Med Chem. 2000;7(9):971–94.

    Article  CAS  PubMed  Google Scholar 

  126. Cwikla JB, Mikolajczak R, Pawlak D, et al. Initial direct comparison of 99mTc-TOC and 99mTc-TATE in identifying sites of disease in patients with proven GEP NETs. J Nucl Med. 2008;49(7):1060–5.

    Article  PubMed  Google Scholar 

  127. Muehllechner P, Decristoforo C, von Guggenberg E, et al. 99mTc-EDDA/HYNIC-Tyr3-octreotide for staging and follow-up of patients with neuroendocrine gastro-entero-pancreatic tumors. Q J Nucl Med Mol Imaging. 2005;49:237–44.

    Google Scholar 

  128. Bombardieri E, Giammarile F, Aktolun C, et al. [131I]/[123I]metaiodobenzylguanidine (mIBG) scintigraphy: procedure guidelines for tumour imaging. Eur J Nucl Med Mol Imaging. 2010;37(12):2436–46.

    Article  PubMed  Google Scholar 

  129. Kaltsas G, Korbonits M, Heintz E, et al. Comparison of somatostatin analog and meta- iodobenzylguanidine radionuclides in the diagnosis and localization of advanced neuroendocrine tumors. J Clin Endocrinol Metab. 2001;86(2):8.

    Article  Google Scholar 

  130. Recent advances in radiological and radionuclide imaging and therapy of neuroendocrine tumours. Abstract – Europe PMC [Internet]. [cited 2021 Jan 7]; Available from: https://europepmc.org/article/med/15248818

  131. Buscombe JR, Cwikla JB, Caplin ME, Hilson AJW. Long-term efficacy of low activity meta-[131I]iodobenzylguanidine therapy in patients with disseminated neuroendocrine tumours depends on initial response. Nucl Med Commun. 2005;26(11):969–76.

    Article  CAS  PubMed  Google Scholar 

  132. van der Lely AJ, de Herder WW. Carcinoid syndrome: diagnosis and medical management. Arq Bras Endocrinol Metabol. 2005;49(5):850–60.

    Article  PubMed  Google Scholar 

  133. Jacobson AF, Deng H, Lombard J, Lessig HJ, Black RR. [123I]meta-iodobenzylguanidine scintigraphy for the detection of neuroblastoma and pheochromocytoma: results of a meta-analysis. J Clin Endocrinol Metab. 2010;95(6):2596–606.

    Article  CAS  PubMed  Google Scholar 

  134. Gotthardt M, Béhé MP, Beuter D, et al. Improved tumour detection by gastrin receptor scintigraphy in patients with metastasised medullary thyroid carcinoma. Eur J Nucl Med Mol Imaging. 2006;33(11):1273–9.

    Article  PubMed  Google Scholar 

  135. Nock BA, Maina T, Béhé M, et al. CCK-2/Gastrin receptor–targeted tumor imaging with 99mTc-labeled minigastrin analogs. J Nucl Med. 2005;46(10):1727–36.

    CAS  PubMed  Google Scholar 

  136. Fröberg AC, de Jong M, Nock BA, et al. Comparison of three radiolabelled peptide analogues for CCK-2 receptor scintigraphy in medullary thyroid carcinoma. Eur J Nucl Med Mol Imaging. 2009;36(8):1265–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Wild D, Christ E, Caplin ME, et al. Glucagon-like peptide-1 versus somatostatin receptor targeting reveals 2 distinct forms of malignant insulinomas. J Nucl Med. 2011;52(7):1073–8.

    Article  PubMed  Google Scholar 

  138. Wild D, Maecke H, Christ E, Gloor B, Reubi JC. Glucagon-like peptide 1–receptor scans to localize occult insulinomas. N Engl J Med. 2008;359:766–8.

    Article  CAS  PubMed  Google Scholar 

  139. Christ E, Wild D, Forrer F, et al. Glucagon-like peptide-1 receptor imaging for localization of insulinomas. J Clin Endocrinol Metab. 2009;94(11):4398–405.

    Article  CAS  PubMed  Google Scholar 

  140. Christ E, Wild D, Ederer S, et al. Glucagon-like peptide-1 receptor imaging for the localisation of insulinomas: a prospective multicentre imaging study. Lancet Diabetes Endocrinol. 2013;1(2):115–22.

    Article  CAS  PubMed  Google Scholar 

  141. Doherty GM, Doppman JL, Shawker TH, et al. Results of a prospective strategy to diagnose, localize, and resect insulinomas. Surgery. 1991;110(6):989–96; discussion 996–997.

    CAS  PubMed  Google Scholar 

  142. Pach D, Sowa-Staszczak A, Jabrocka-Hybel A, et al. Glucagon-like peptide-1 receptor imaging with [Lys40(Ahx-HYNIC-99mTc/EDDA)NH2]-exendin-4 for the diagnosis of recurrence or dissemination of medullary thyroid cancer: a preliminary report. Int J Endocrinol. 2013:384508.

    Google Scholar 

  143. Sowa-Staszczak A, Pach D, Mikołajczak R, et al. Glucagon-like peptide-1 receptor imaging with [Lys40(Ahx-HYNIC-99mTc/EDDA)NH2]-exendin-4 for the detection of insulinoma. Eur J Nucl Med Mol Imaging. 2013;40(4):524–31.

    Article  CAS  PubMed  Google Scholar 

  144. Velikyan I, Eriksson O. Advances in GLP-1 receptor targeting radiolabeled agent development and prospective of theranostics. Theranostics. 2020;10(1):437–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Hessenius C, Bäder M, Meinhold H, et al. Vasoactive intestinal peptide receptor scintigraphy in patients with pancreatic adenocarcinomas or neuroendocrine tumours. Eur J Nucl Med. 2000;27(11):1684–93.

    Article  CAS  PubMed  Google Scholar 

  146. Virgolini I, Kurtaran A, Leimer M, et al. Location of a VIPoma by iodine-123-vasoactive intestinal peptide scintigraphy. J Nucl Med. 1998;39(9):1575–9.

    CAS  PubMed  Google Scholar 

  147. Virgolini I, Raderer M, Kurtaran A, et al. Vasoactive intestinal peptide-receptor imaging for the localization of intestinal adenocarcinomas and endocrine tumors. N Engl J Med. 1994;331(17):1116–21.

    Article  CAS  PubMed  Google Scholar 

  148. Wild D, Bomanji JB, Benkert P, et al. Comparison of 68Ga-DOTANOC and 68Ga-DOTATATE PET/CT within patients with gastroenteropancreatic neuroendocrine tumors. J Nucl Med. 2013;54(3):364–72.

    Article  CAS  PubMed  Google Scholar 

  149. Haug AR, Cindea-Drimus R, Auernhammer CJ, et al. The role of 68Ga-DOTATATE PET/CT in suspected neuroendocrine tumors. J Nucl Med. 2012;53(11):1686–92.

    Article  CAS  PubMed  Google Scholar 

  150. Schraml C, Schwenzer NF, Sperling O, et al. Staging of neuroendocrine tumours: comparison of [68Ga]DOTATOC multiphase PET/CT and whole-body MRI. Cancer Imaging. 2013;13(1):63–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Ambrosini V, Campana D, Nanni C, et al. Is 68Ga-DOTA-NOC PET/CT indicated in patients with clinical, biochemical or radiological suspicion of neuroendocrine tumour? Eur J Nucl Med Mol Imaging. 2012;39(8):1278–83.

    Article  CAS  PubMed  Google Scholar 

  152. Johnbeck CB, Knigge U, Loft A, et al. Head-to-head comparison of 64Cu-DOTATATE and 68Ga-DOTATOC PET/CT: a prospective study of 59 patients with neuroendocrine tumors. J Nucl Med. 2017;58(3):451–7.

    Article  CAS  PubMed  Google Scholar 

  153. Binderup T, Knigge U, Loft A, Federspiel B, Kjaer A. [18F]fluorodeoxyglucose positron emission tomography predicts survival of patients with neuroendocrine tumors. Clin Cancer Res. 2010;16(3):978–85.

    Article  CAS  PubMed  Google Scholar 

  154. Abgral R, Leboulleux S, Déandreis D, et al. Performance of 18fluorodeoxyglucose-positron emission tomography and somatostatin receptor scintigraphy for high Ki67 (≥10%) well-differentiated endocrine carcinoma staging. J Clin Endocrinol Metab. 2011;96(3):665–71.

    Article  CAS  PubMed  Google Scholar 

  155. Severi S, Nanni O, Bodei L, et al. Role of [18F]FDG PET/CT in patients treated with 177Lu-DOTATATE for advanced differentiated neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2013;40(6):881–8.

    Article  CAS  PubMed  Google Scholar 

  156. van Essen M, Sundin A, Krenning EP, Kwekkeboom DJ. Neuroendocrine tumours: the role of imaging for diagnosis and therapy. Nat Rev Endocrinol. 2014;10(2):102–14.

    Article  PubMed  CAS  Google Scholar 

  157. Rufini V, Baum RP, Castaldi P, et al. Role of PET/CT in the functional imaging of endocrine pancreatic tumors. Abdom Imaging. 2012;37(6):1004–20.

    Article  PubMed  Google Scholar 

  158. Orlefors H, Sundin A, Garske U, et al. Whole-body 11C-5-hydroxytryptophan positron emission tomography as a universal imaging technique for neuroendocrine tumors: comparison with somatostatin receptor scintigraphy and computed tomography. J Clin Endocrinol Metab. 2005;90(6):3392–400.

    Article  CAS  PubMed  Google Scholar 

  159. Orlefors H, Sundin A, Ahlström H, et al. Positron emission tomography with 5-hydroxytryprophan in neuroendocrine tumors. J Clin Oncol. 1998;16(7):2534–41.

    Article  CAS  PubMed  Google Scholar 

  160. Sankowski AJ, Ćwikła JB, Nowicki ML, et al. The clinical value of MRI using single-shot echoplanar DWI to identify liver involvement in patients with advanced gastroenteropancreatic-neuroendocrine tumors (GEP-NETs), compared to FSE T2 and FFE T1 weighted image after i.v. Gd-EOB-DTPA contrast enhancement. Med Sci Monit. 2012;18(5):MT33–40.

    Article  PubMed  PubMed Central  Google Scholar 

  161. Berzaczy D, Giraudo C, Haug AR, et al. Whole-body 68Ga-DOTANOC PET/MRI versus 68Ga-DOTANOC PET/CT in patients with neuroendocrine tumors. Clin Nucl Med. 2017;42(9):669–74.

    Article  PubMed  PubMed Central  Google Scholar 

  162. Hope TA, Pampaloni MH, Nakakura E, et al. Simultaneous 68Ga-DOTA-TOC PET/MRI with gadoxetate disodium in patients with neuroendocrine tumor. Abdom Imaging. 2015;40(6):1432–40.

    Article  PubMed  Google Scholar 

  163. Seith F, Schraml C, Reischl G, et al. Fast non-enhanced abdominal examination protocols in PET/MRI for patients with neuroendocrine tumors (NET): comparison to multiphase contrast-enhanced PET/CT. Radiol Med. 2018;123(11):860–70.

    Article  PubMed  Google Scholar 

  164. Beiderwellen KJ, Poeppel TD, Hartung-Knemeyer V, et al. Simultaneous 68Ga-DOTATOC PET/MRI in patients with gastroenteropancreatic neuroendocrine tumors: initial results. Invest Radiol. 2013;48(5):273–9.

    Article  CAS  PubMed  Google Scholar 

  165. Bramswig NC, Kaestner KH. Organogenesis and functional genomics of the endocrine pancreas. Cell Mol Life Sci. 2012;69(13):2109–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Canellas R, Burk KS, Parakh A, Sahani DV. Prediction of pancreatic neuroendocrine tumor grade based on CT features and texture analysis. AJR Am J Roentgenol. 2018;210(2):341–6.

    Article  PubMed  Google Scholar 

  167. Somers I, Bipat S. Contrast-enhanced CT in determining resectability in patients with pancreatic carcinoma: a meta-analysis of the positive predictive values of CT. Eur Radiol. 2017;27(8):3408–35.

    Article  PubMed  PubMed Central  Google Scholar 

  168. Roth HR, Lu L, Farag A, et al. DeepOrgan: multi-level deep convolutional networks for automated pancreas segmentation. arXiv:150606448 [cs] 2015 [cited 2021 Jan 8]; Available from: http://arxiv.org/abs/1506.06448

  169. Summers RM. Progress in fully automated abdominal CT interpretation. AJR Am J Roentgenol. 2016;207(1):67–79.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Tabacchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Tabacchi, E., Nanni, C., Bossert, I., Maffione, A.M., Fanti, S. (2022). Diagnostic Applications of Nuclear Medicine: Pancreatic Cancer. In: Volterrani, D., Erba, P.A., Strauss, H.W., Mariani, G., Larson, S.M. (eds) Nuclear Oncology. Springer, Cham. https://doi.org/10.1007/978-3-319-26067-9_17-4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26067-9_17-4

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26067-9

  • Online ISBN: 978-3-319-26067-9

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Diagnostic Applications of Nuclear Medicine: Pancreatic Cancer
    Published:
    22 April 2022

    DOI: https://doi.org/10.1007/978-3-319-26067-9_17-4

  2. Diagnostic Applications of Nuclear Medicine: Pancreatic Cancer
    Published:
    02 June 2017

    DOI: https://doi.org/10.1007/978-3-319-26067-9_17-3

  3. Diagnostic Applications of Nuclear Medicine: Pancreatic Cancer
    Published:
    28 March 2017

    DOI: https://doi.org/10.1007/978-3-319-26067-9_17-2

  4. Original

    Diagnostic Applications of Nuclear Medicine: Pancreatic Cancer
    Published:
    04 October 2016

    DOI: https://doi.org/10.1007/978-3-319-26067-9_17-1