Skip to main content
Log in

Clinical applications of 18F-FDG PET in the management of hepatobiliary and pancreatic tumors

  • Published:
Abdominal Imaging Aims and scope Submit manuscript

Abstract

The assessment of hepatobiliary and pancreatic tumors is commonly achieved by ultrasound, computed tomography (CT), and magnetic resonance. The 2-[fluorine-18]fluoro-2-deoxy-d-glucose (FDG) positron emission tomography (PET) detects increased glucose metabolism associated with neoplastic lesions, provides high accuracy in most cancer imaging applications and is now widely used in clinical practice. However, PET is not always useful and accurate knowledge of appropriate indications is essential for a proper clinical management. 18F-FDG is transported into cells and phosphorylated by the enzyme hexokinase to 18F-FDG-6-phosphate, which cannot proceed down the glycolytic pathway and therefore is accumulated in the malignant tissue. PET allows accurate quantification of FDG uptake in tissue, and previous studies have demonstrated that standardized uptake values provide highly reproducible parameters of tumor glucose use (Weber et al., J Nucl Med 40:1771–1777, 1999). The recent development and diffusion of hybrid PET–CT scanners allows functional and anatomic data to be obtained in a single examination, improving lesion localization and resulting in significant diagnostic improvement (Wahl, J Nucl Med 45:82S–95S, 2004). Moreover, CT can be performed diagnostically with the use of intravenous and oral contrast and simultaneous PET–contrast-enhanced CT scanning appears to be an efficient method in cancer evaluation. However, in most centers, a low-dose CT is routinely performed without contrast media infusion.

Proper patient preparation, scanning protocol, combined assessment of PET and CT data, and the evaluation of conventional imaging findings are essential to define disease and to avoid diagnostic pitfalls. The role of PET and PET–CT in malignancies of the liver, biliary tract, and pancreas is here reviewed; normal patterns, representative cases, and common pitfalls are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  1. Weber WA, Ziegler SI, Thodtmann R, Hanauske AR, Schwaiger M (1999) Reproducibility of metabolic measurements in malignant tumors using FDG PET. J Nucl Med 40:1771–1777

    PubMed  CAS  Google Scholar 

  2. Wahl RL (2004) Why nearly all PET of abdominal and pelvic cancers will be performed as PET/CT. J Nucl Med 45:82S–95S

    PubMed  Google Scholar 

  3. Delbeke D, Martin WH, Sandler MP, et al. (1998) Evaluation of benign vs malignant hepatic lesions with positron emission tomography. Arch Surg 133(5):510–515

    Article  PubMed  CAS  Google Scholar 

  4. Zimmerman RL, Burke M, Young NA, Solomides CC, Bibbo M (2002) Diagnostic utility of Glut-1 and CA 15–3 in discriminating adenocarcinoma from hepatocellular carcinoma in liver tumors biopsied by fine-needle aspiration. Cancer 96(1):53–57

    Article  PubMed  Google Scholar 

  5. Torizuka T, Tamaki N, Inokuma T, et al. (1995) In vivo assessment of glucose metabolism in hepatocellular carcinoma with [18F]FDG-PET. J Nucl Med 36(10):1811–1817

    PubMed  CAS  Google Scholar 

  6. Khan MA, Combs CS, Brunt EM, et al. (2000) Positron emission tomography scanning in the evaluation of hepatocellular carcinoma. J Hepatol 32:792–797

    Article  PubMed  CAS  Google Scholar 

  7. Iwata Y, Shiomi S, Sasaki N, et al. (2000) Clinical usefulness of positron emission tomography scanning with fluorine- 18-fluorodeoxyglucose in the diagnosis of liver tumors. Ann Nucl Med 14:121–126

    Article  PubMed  CAS  Google Scholar 

  8. Shin JA, Park JW, An M, et al. (2006) Diagnostic accuracy of 18F-FDG positron emission tomography for evaluation of hepatocellular carcinoma. Korean J Hepatol 12:546–552

    PubMed  Google Scholar 

  9. Shiomi S, Nishiguchi S, Ishizu H, et al. (2001) Usefulness of positron emission tomography with fluorine-18-fluorodeoxyglucose for predicting outcome in patients with hepatocellular carcinoma. Am J Gastroenterol 96:1877–1880

    Article  PubMed  CAS  Google Scholar 

  10. Lee JD, Yun M, Lee JM, et al. (2004) Analysis of gene expression profiles of hepatocellular carcinomas with regard to 18F-fluorodeoxyglucose uptake pattern on positron emission tomography. Eur J Nucl Med Mol Imaging 31:1621–1630

    Article  PubMed  CAS  Google Scholar 

  11. Ho CL, Yu SC, Yeung DW (2003) [11C]-acetate PET imaging in hepatocellular carcinoma and other liver masses. J Nucl Med 44:213–221

    PubMed  Google Scholar 

  12. Li S, Beheshti M, Peck-Radosavljevic M, et al. (2006) Comparison of (11) C-acetate positron emission tomography and (67) Gallium citrate scintigraphy in patients with hepatocellular carcinoma. Liver Int 26:920–927

    Article  PubMed  CAS  Google Scholar 

  13. Hwang KH, Choi DJ, Lee SY, Lee MK, Choe W (2009) Evaluation of patients with hepatocellular carcinomas using [11C]acetate and [18F]FDG PET/CT: A preliminary study. Appl Radiat Isot 67:1195–1198

    Article  PubMed  CAS  Google Scholar 

  14. Yamamoto Y, Nishiyama Y, Kameyama R, et al. (2008) Detection of hepatocellular carcinoma using 11C-choline PET: comparison with 18F-FDG PET. J Nucl Med 49(8):1245–1248

    Article  PubMed  Google Scholar 

  15. Seo S, Hatano E, Higashi T, et al. (2007) Fluorine-18 fluorodeoxyglucose positron emission tomography predicts tumor differentiation, P-glycoprotein expression, and outcome after resection in hepatocellular carcinoma. Clin Cancer Res 13:427–433

    Article  PubMed  CAS  Google Scholar 

  16. Kong YH, Han CJ, Lee SD, et al. (2004) Positron emission tomography with fluorine-18-fluorodeoxyglucose is useful for predicting the prognosis of patients with hepatocellular carcinoma. Korean J Hepatol 10:279–287

    PubMed  Google Scholar 

  17. Yang SH, Suh KS, Lee HW, et al. (2006) The role of (18)F-FDG-PET imaging for the selection of liver transplantation candidates among hepatocellular carcinoma patients. Liver Transpl 12:1655–1660

    Article  PubMed  Google Scholar 

  18. Kim YK, Lee KW, Cho SY, et al. (2010) Usefulness 18F-FDG positron emission tomography/computed tomography for detecting recurrence of hepatocellular carcinoma in posttransplant patients. Liver transplantation 16:767–772

    Article  PubMed  Google Scholar 

  19. Sun L, Guan YS, Pan WM, et al. (2009) Metabolic restaging of hepatocellular carcinoma using whole-body 18F-FDG PET/CT. World J Hepatol 1(1):90–97

    Article  PubMed  Google Scholar 

  20. Kim HO, Kim JS, Shin YM, et al. (2010) Evaluation of metabolic characteristics and viability of lipiodolized hepatocellular carcinomas using 18F-FDG PET/CT. J Nucl Med 51(12):1849–1856

    Article  PubMed  Google Scholar 

  21. Torizuka T, Tamaki N, Inokuma T, et al. (1994) Value of fluorine-18-FDG-PET to monitor hepatocellular carcinoma after interventional therapy. J Nucl Med 35:1965–1969

    PubMed  CAS  Google Scholar 

  22. Chen YK, Hsieh DS, Liao CS, et al. (2005) Utility of FDG-PET for investigating unexplained serum AFP elevation in patients with suspected hepatocellular carcinoma recurrence. Anticancer Res 25:4719–4725

    PubMed  Google Scholar 

  23. Anderson GS, Brinkmann F, Soulen MC, Alavi A, Zhuang H (2003) FDG positron emission tomography in the surveillance of hepatic tumors treated with radiofrequency ablation. Clin Nucl Med 28(3):192–197

    PubMed  Google Scholar 

  24. Sugiyama M, Sakahara H, Torizuka T, et al. (2004) 18F-FDG PET in the detection of extrahepatic metastases from hepatocellular carcinoma. J Gastroenterol 39:961–968

    Article  PubMed  CAS  Google Scholar 

  25. Nagaoka S, Itano S, Ishibashi M, et al. (2006) Value of fusing PET plus CT images in hepatocellular carcinoma and combined hepatocellular and cholangiocarcinoma patients with extrahepatic metastases: preliminary findings. Liver Int 26:781–788

    Article  PubMed  Google Scholar 

  26. Kawaoka T, Aikata H, Takaki S, et al. (2009) FDG positron emission tomography/computed tomography for the detection of extrahepatic metastases from hepatocellular carcinoma. Hepatol Res 39(2):134–142

    Article  PubMed  Google Scholar 

  27. Sun L, Guan YS, Pan WM, et al. (2007) Positron emission tomography/computer tomography in guidance of extrahepatic hepatocellular carcinoma metastasis management. World J Gastroenterol 13:5413–5415

    PubMed  Google Scholar 

  28. Farley DR, Weaver AL, Nagorney DM (1995) ‘‘Natural history’’ of unresected cholangiocarcinoma: patient outcome after noncurative intervention. Mayo Clin Proc 70:425–429

    Article  PubMed  CAS  Google Scholar 

  29. Jarnagin WR, Fong Y, DeMatteo RP, et al. (2001) Staging, resectability, and outcome in 225 patients with hilar cholangiocarcinoma. Ann Surg 234:507–517

    Article  PubMed  CAS  Google Scholar 

  30. Kluge R, Schmidt F, Caca K, et al. (2001) Positron emission tomography with [(18)F]fluoro-2-deoxy-d-glucose for diagnosis and staging of bile duct cancer. Hepatology 33(5):1029–1035

    Article  PubMed  CAS  Google Scholar 

  31. Moon CM, Bang S, Chung JB, et al. (2008) Usefulness of 18F-fluorodeoxyglucose positron emission tomography in differential diagnosis and staging of cholangiocarcinomas. J Gastroenterol Hepatol 23:759–765

    Article  PubMed  Google Scholar 

  32. Corvera CU, Blumgart LH, Akhurst T, et al. (2008) 18F-fluorodeoxyglucose positron emission tomography influences management decisions in patients with biliary cancer. J Am Coll Surg 206(1):57–65

    Article  PubMed  Google Scholar 

  33. Anderson CD, Rice MH, Pinson CW, et al. (2004) Fluorodeoxyglucose PET imaging in the evaluation of gallbladder carcinoma and cholangiocarcinoma. J Gastrointest Surg 8(1):90–97

    Article  PubMed  Google Scholar 

  34. Kato T, Tsukamoto E, Kuge Y, et al. (2002) Clinical role of (18)F-FDG PET for initial staging of patients with extrahepatic bile duct cancer. Eur J Nucl Med Mol Imaging 29(8):1047–1054

    Article  PubMed  CAS  Google Scholar 

  35. Fritscher-Ravens A, Bohuslavizki KH, Broering DC, et al. (2001) FDG PET in the diagnosis of hilar cholangiocarcinoma. Nucl Med Commun 22:1277–1285

    Article  PubMed  CAS  Google Scholar 

  36. Petrowsky H, Wildbrett P, Husarik DB, et al. (2006) Impact of integrated positron emission tomography and computed tomography on staging and management of gallbladder cancer and cholangiocarcinoma. J Hepatol 45(1):43–50

    Article  PubMed  Google Scholar 

  37. Kim JY, Kim MH, Lee TY, et al. (2008) Clinical role of 18F-FDG PET–CT in suspected and potentially operable cholangiocarcinoma: a prospective study compared with conventional imaging. Am J Gastroenterol 103(5):1145–1151

    Article  PubMed  Google Scholar 

  38. Ramos-Font C, Santiago Chinchilla A, Rodríguez-Fernández A, et al. (2009) Gallbladder cancer staging with 18F-FDG PET–CT. Rev Esp Med Nucl 28(2):74–77

    Article  PubMed  CAS  Google Scholar 

  39. Rodríguez-Fernández A, Gómez-Río M, Llamas-Elvira JM, et al. (2004) Positron-emission tomography with fluorine-18-fluoro-2-deoxy-d-glucose for gallbladder cancer diagnosis. Am J Surg 188(2):171–175

    Article  PubMed  Google Scholar 

  40. Abdel-Nabi H, Doerr RJ, Lamonica DM, et al. (1998) Staging of primary colorectal carcinomas with fluorine-18 fluorodeoxyglucose whole-body PET: correlation with histopathologic and CT findings. Radiology 206(3):755–760

    PubMed  CAS  Google Scholar 

  41. Arulampalam TH, Francis DL, Visvikis D, Taylor I, Ell PJ (2004) FDG-PET for the pre-operative evaluation of colorectal liver metastases. Eur J Surg Oncol 30(3):286–291

    Article  PubMed  CAS  Google Scholar 

  42. Truant S, Huglo D, Hebbar M, et al. (2005) Prospective evaluation of the impact of [18F]fluoro-2-deoxy-d-glucose positron emission tomography of resectable colorectal liver metastases. Br J Surg 92(3):362–369

    Article  PubMed  CAS  Google Scholar 

  43. Huebner RH, Park KC, Shepherd JE, et al. (2000) A meta-analysis of the literature for whole-body FDG PET detection of recurrent colorectal cancer. J Nucl Med 41(7):1177–1189

    PubMed  CAS  Google Scholar 

  44. Kinkel K, Lu Y, Both M, Warren RS, Thoeni RF (2002) Detection of hepatic metastases from cancers of the gastrointestinal tract by using noninvasive imaging methods (US, CT, MR imaging, PET): a meta-analysis. Radiology 224(3):748–756

    Article  PubMed  Google Scholar 

  45. Bipat S, van Leeuwen MS, Comans EFI, et al. (2005) Colorectal liver metastases: CT, MR imaging, and PET for diagnosis-meta-analysis. Radiology 237:123–131

    Article  PubMed  Google Scholar 

  46. Selzner M, Hany TF, Wildbrett P, et al. (2004) Does the novel PET/CT imaging modality impact on the treatment of patients with metastatic colorectal cancer of the liver? Ann Surg 240(6):1027–1034

    Article  PubMed  Google Scholar 

  47. Rappeport ED, Loft A, Berthelsen AK, et al. (2007) Contrast-enhanced FDG-PET/CT vs. SPIO-enhanced MRI vs. FDG-PET vs. CT in patients with liver metastases from colorectal cancer: a prospective study with intraoperative confirmation. Acta Radiol 48(4):369–378

    Article  PubMed  CAS  Google Scholar 

  48. Ramos E, Valls C, Martinez L, et al. (2011) Preoperative staging of patients with liver metastases of colorectal carcinoma. Does PET/CT really add something to multidetector CT? Ann Surg Oncol 18:2654–2661

    Article  PubMed  Google Scholar 

  49. Vitola JV, Delbeke D, Sandler MP, et al. (1996) Positron emission tomography to stage suspected metastatic colorectal carcinoma to the liver. Am J Surg 171(1):21–26

    Article  PubMed  CAS  Google Scholar 

  50. Schüssler-Fiorenza CM, Mahvi DM, Niederhuber J, Rikkers LF, Weber SM (2004) Clinical risk score correlates with yield of PET scan in patients with colorectal hepatic metastases. J Gastrointest Surg 8(2):150–157

    Article  PubMed  Google Scholar 

  51. Purandare NC, Rangarajan V, Shah SA, et al. (2011) Therapeutic response to radiofrequency ablation of neoplastic lesions: FDG PET/CT findings. Radiographics 31(1):201–213

    Article  PubMed  Google Scholar 

  52. Whiteford MH, Whiteford HM, Ogunbiyi OA, et al. (2000) Usefulness of FDG-PET scan in the assessment of suspected metastatic or recurrent adenocarcinoma of the colon and rectum. Dis Colon Rectum 43:759–770

    Article  PubMed  CAS  Google Scholar 

  53. Berger KL, Nicholson SA, Dehdashti F, Siegel BA (2000) FDG PET evaluation of mucinous neoplasms: correlation of FDG uptake with histopathologic features. AJR 174:1005–1008

    PubMed  CAS  Google Scholar 

  54. Kubota R, Yamada S, Kubota K, et al. (1992) Intratumoral distribution of F18-fluoro-deoxyglucose in vivo: high accumulation in macrophages and granulation tissues studied by micro-autoradiography. J Nucl Med 33:1972–1980

    PubMed  CAS  Google Scholar 

  55. Donadon M, Bona S, Montorsi M, Torzilli G (2010) FDG-PET positive granuloma of the liver mimicking local recurrence after hepatic resection of colorectal liver metastasis. Hepatogastroenterology 57(97):138–139

    PubMed  Google Scholar 

  56. Akhurst T, Kates TJ, Mazumdar M, et al. (2005) Recent chemotherapy reduces the sensitivity of [18F]fluorodeoxyglucose positron emission tomography in the detection of colorectal metastases. J Clin Oncol 23(34):8713–8716

    Article  PubMed  Google Scholar 

  57. de Geus-Oei LF, Vriens D, van Laarhoven HW, van der Graaf WT, Oyen WJ (2009) Monitoring and predicting response to therapy with 18F-FDG PET in colorectal cancer: a systematic review. J Nucl Med 50(Suppl 1):43S–54S

    Article  PubMed  Google Scholar 

  58. Wray CJ, Ahmad SA, Matthews JB, Lowy AM (2005) Surgery for pancreatic cancer: recent controversies and current practice. Gastroenterology 128:1626–1641

    Article  PubMed  Google Scholar 

  59. Wagner M, Redaelli C, Lietz M, et al. (2004) Curative resection is the single most important factor determining outcome in patients with pancreatic adenocarcinoma. Br J Surg 91:586–594

    Article  PubMed  CAS  Google Scholar 

  60. Reske SN, Grillenberger KG, Glatting G, et al. (1997) Overexpression of glucose transporter 1 and increased FDG uptake in pancreatic carcinoma. J Nucl Med 38:1344–1348

    PubMed  CAS  Google Scholar 

  61. Pakzad F, Groves AM, Ell PJ (2006) The role of positron emission tomography in the management of pancreatic cancer. Semin Nucl Med 36:248–256

    Article  PubMed  Google Scholar 

  62. Higashi T, Tamaki N, Torizuka T, et al. (1998) FDG uptake, GLUT-1 glucose transporter and cellularity in human pancreatic tumors. J Nucl Med 39:1727–1735

    PubMed  CAS  Google Scholar 

  63. Diederichs CG, Staib L, Vogel J, et al. (2000) Values and limitations of 18F-fluorodeoxyglucose positron emission tomography with preoperative evaluation of patients with pancreatic masses. Pancreas 20:109–116

    Article  PubMed  CAS  Google Scholar 

  64. Gambhir SS, Czernin J, Schwimmer J, et al. (2001) A tabulated summary of the FDG PET literature. J Nucl Med 42(suppl 5):1S–93S

    PubMed  CAS  Google Scholar 

  65. Schick V, Franzius C, Beyna T, et al. (2008) Diagnostic impact of 18F-FDG PET–CT evaluating solid pancreatic lesions versus endosonography, endoscopic retrograde cholangio-pancreatography with intraductal ultrasonography and abdominal ultrasound. Eur J Nucl Med Mol Imaging 35:1775–1785

    Article  PubMed  Google Scholar 

  66. Kauhanen SP, Komar G, Seppänem MP, et al. (2009) A prospective diagnostic accuracy study of 18F-fluorodeoxyglucose positron emission tomography/computed tomography, multidetector row computed tomography, and magnetic resonance imaging in primary diagnosis and staging of pancreatic cancer. Ann Surg 250:957–963

    Article  PubMed  Google Scholar 

  67. Bares R, Klever P, Hauptmann S, et al. (1994) F18-fluorodeoxyglucose PET in vivo evaluation of pancreatic glucose metabolism for detection of pancreatic cancer. Radiology 192:79–86

    PubMed  CAS  Google Scholar 

  68. Zimny M, Bares R, Fass J, et al. (1997) Fluorine-18 fluorodeoxyglucose positron emission tomography in the differential diagnosis of pancreatic carcinoma: a report of 106 cases. Eur J Nucl Med 24:678–682

    PubMed  CAS  Google Scholar 

  69. Lytras D, Connor S, Bosonnet L, et al. (2005) Positron emission tomography does not add to computed tomography for the diagnosis and staging of pancreatic cancer. Dig Surg 22:55–62

    Article  PubMed  CAS  Google Scholar 

  70. Inokuma T, Tamaki N, Torizuka T, et al. (1995) Evaluation of pancreatic tumors with positron emission tomography and F-18 18 fluorodeoxyglucose: comparison with CT and US. Radiology 195:345–352

    PubMed  CAS  Google Scholar 

  71. Koyama K, Okamura T, Kawabe J, et al. (2001) Diagnostic usefulness of FDG PET for pancreatic mass lesions. Ann Nucl Med 15:217–224

    Article  PubMed  CAS  Google Scholar 

  72. Bang S, Chung HW, Park SW, et al. (2006) The clinical usefulness of 18-fluorodeoxyglucose positron emission tomography in the differential diagnosis, staging, and response evaluation after concurrent chemoradiotherapy for pancreatic cancer. J Clin Gastroenterol 40:923–929

    Article  PubMed  Google Scholar 

  73. Serrano OK, Chaudhry MA, Leach SD (2010) The role of PET scanning in pancreatic cancer. Adv Surg 44:313–325

    Article  PubMed  Google Scholar 

  74. Okano S, Kakinoki K, Akamoto S, et al. (2011) 18F-fluorodeoxyglucose positron emission tomography in the diagnosis of small pancreatic cancer. World J Gastroenterol 17(2):231–235

    Article  PubMed  Google Scholar 

  75. Seo S, Doi R, Machimoto T (2008) Contribution of 18F-fluorodeoxyglucose positron emission tomography to the diagnosis of early pancreatic carcinoma. J Hepatobiliary Pancreat Surg 15:634–639

    Article  PubMed  Google Scholar 

  76. Pery C, Maurette G, Ansequer C, et al. (2010) Role and limitations of 18F-FDG positron emission tomography (PET) in the management of patients with pancreatic lesions. Gastroenterol Clin Biol 34:465–474

    Article  PubMed  CAS  Google Scholar 

  77. Hong HS, Yun M, Cho A, et al. (2010) The utility of F18 FDG PET/CT in the evaluation of pancreatic intraductal papillary mucinous neoplasm. Clin Nucl Med 35:776–779

    Article  PubMed  Google Scholar 

  78. Sperti C, Pasquali C, Decet G, et al. (2005) F-18-fluorodeoxyglucose positron emission tomography in differentiating malignant from benign pancreatic cysts: a prospective study. J Gastrointest Surg 9(1):22–28

    Article  PubMed  Google Scholar 

  79. Fassan M, Pizzi S, Sperti C, et al. (2008) 18F-FDG PET findings and GLUT-1 expression in IPMNs of the pancreas. J Nucl Med 49:2070

    Article  PubMed  Google Scholar 

  80. Sperti C, Bissoli S, Pasquali C, et al. (2007) 18-Fluorodeoxyglucose positron emission tomography enhances computed tomography diagnosis of malignant intraductal papillary mucinous neoplasms of the pancreas. Ann Surg 246:932–939

    Article  PubMed  Google Scholar 

  81. Tomimaru Y, Takeda Y, Tatsumi M, et al. (2010) Utility of 2-[18F]-fluoro-2-deoxy-d-glucose positron emission tomography in differential diagnosis of benign and malignant intraductal papillary-mucinous neoplasm of the pancreas. Oncol Rep 24(3):613–620

    PubMed  Google Scholar 

  82. Lyshchik A, Higashi T, Nakamoto Y, et al. (2005) Dual phase 18F-fluoro-2-deoxy-d-glucose positron emission tomography as a prognostic parameter in patients with pancreatic cancer. Eur J Nucl Med Mol Imaging 32:389–397

    Article  PubMed  Google Scholar 

  83. Nguyen NQ, Bartholomeusz DF (2011) 18F-FDG-PET/CT in the assessment of pancreatic cancer: is the contrast or a better-designed trial needed? J Gastroenterol Hepatol 26:613–618

    Article  PubMed  Google Scholar 

  84. Wakabayashi H, Nishiyama Y, Otani T, et al. (2008) Role of 18F-fluorodeoxyglucose positron emission tomography imaging in surgery for pancreatic cancer. World J Gastroenterol 14(1):64–69

    Article  PubMed  Google Scholar 

  85. Strobel K, Heinrich S, Bhure U, et al. (2008) Contrast-enhanced 18F-FDG PET/CT: 1-stop-shop imaging for assessing the respectability of pancreatic cancer. J Nucl Med 49:1408–1413

    Article  PubMed  Google Scholar 

  86. Nishiyama Y, Yamamoto Y, Yokoe K, et al. (2005) Contribution of whole body FDG-PET to the detection of distant metastases in pancreatic cancer. Ann Nucl Med 19:491–497

    Article  PubMed  Google Scholar 

  87. Heinrich S, Goerres GW, Schafer M, et al. (2005) Positron emission tomography/computed tomography influences on the management of resectable pancreatic cancer and its cost-effectiveness. Ann Surg 242:235–243

    Article  PubMed  Google Scholar 

  88. Frohlich A, Diederichs CG, Staib L, et al. (1999) Detection of liver metastases from pancreatic cancer using FDG PET. J Nucl Med 40:250–255

    PubMed  CAS  Google Scholar 

  89. Kuwatani M, Kawakami H, Eto K, et al. (2009) Modalities for evaluating chemotherapeutic efficacy and survival time in patients with advanced pancreatic cancer: comparison between FDG-PET, CT, and serum tumor markers. Intern Med 48:867–875

    Article  PubMed  Google Scholar 

  90. Maisey NR, Webb A, Flux GD, et al. (2000) FDG-PET in the prediction of survival of patients with cancer of the pancreas: a pilot study. Br J Cancer 83(3):287–293

    Article  PubMed  CAS  Google Scholar 

  91. Ruf J, Lopez Hanninen E, Oettle H, et al. (2005) Detection of recurrent pancreatic cancer: comparison of FDG-PET with CT/RM. Pancreatology 5:266–272

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Maria De Gaetano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Gaetano, A.M., Rufini, V., Castaldi, P. et al. Clinical applications of 18F-FDG PET in the management of hepatobiliary and pancreatic tumors. Abdom Imaging 37, 983–1003 (2012). https://doi.org/10.1007/s00261-012-9845-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-012-9845-y

Keywords

Navigation