Skip to main content

Diagnostic Applications of Nuclear Medicine: Pancreatic Cancer

Nuclear Oncology

Abstract

Pancreatic cancer can be assessed through a variety of imaging techniques including endoscopic ultrasonography (EUS), computed tomography (CT), endoscopic retrograde cholangiopancreatography (ERCP), magnetic resonance imaging (MRI), and magnetic resonance cholangiopancreatography (MRCP).

These imaging modalities are often effective in the evaluation of pancreatic cancers although sometimes they require the use of radiopharmaceuticals with positron and single-photon emission CT (PET and SPECT) imaging techniques. In this chapter the role of nuclear medicine with various radiolabeled compounds and the rationale for their use in endocrine and nonendocrine pancreatic tumors are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

ACTHoma:

Adrenocorticotropic hormone

AJCC:

American Joint Cancer Committee

CA:

Carbohydrate antigen

CCK2:

Cholecystokinin 2

CRHoma:

Corticotropin-releasing hormone

DM:

Diabetes mellitus

DOPA:

Dihydroxyphenylalanine

ENETS:

European Neuroendocrine Tumor Society

ERCP:

Endoscopic retrograde cholangiopancreatography

EUS:

Endoscopic ultrasonography

FAMM:

Familial atypical multiple mole melanoma syndrome

FDG:

Fluorodeoxyglucose

FLT:

Fluorothymidine

FNA:

Fine-needle aspiration

G-CSF:

Granulocyte colony-stimulating factor

GHRHoma:

Growth hormone-releasing hormone

GI:

Gastrointestinal

GLP-1:

Glucagon-like peptide-1

GLP1R:

Glucagon-like peptide 1 receptor

GTV:

Gross tumor volume

hENT-1:

Human equilibrative nucleoside transporter-1

HPF:

High-power field

IPMN:

Intraductal papillary mucinous neoplasms

Lys40:

Ahx-HYNIC-99mTc/EDDA)NH2)-exendin-4 1

MDCT:

Multi-detector row computed tomography

MIBG:

Metaiodobenzylguanidine

MRCP:

Magnetic resonance cholangiopancreatography

MRI:

Magnetic resonance imaging

MTCs:

Medullary thyroid carcinomas

mTOR:

Mammalian target of rapamycin

NCCN:

National Comprehensive Cancer Network

NEC:

Neuroendocrine carcinoma

NET:

Neuroendocrine tumor

PanIN:

Pancreatic intraepithelial neoplasia

PC:

Pancreatic cancer

pNEN:

Pancreatic neuroendocrine neoplasms

pNET:

Pancreatic neuroendocrine tumors

PRRT:

Peptide receptor radionuclide therapy

RT:

Radiotherapy

SPECT:

Single-photon emission computed tomography

SR-positive:

Somatostatin receptor

SRS:

Somatostatin receptor scintigraphy

SSA:

Somatostatin analogues

SSTR:

Somatostatin receptor

SUV:

Standardized uptake values

TNM:

Primary tumor (T), regional lymph nodes (N), distant metastasis (M)

US:

Ultrasonography

VIP:

Vasoactive intestinal peptide

WHO:

World Health Organization

References

  1. Raimondi S, Maisonneuve P, Lowenfels AB. Epidemiology of pancreatic cancer: an overview. Nat Rev Gastroenterol Hepatol. 2009;6:699–708.

    Article  PubMed  Google Scholar 

  2. Hariharan D, Saied A, Kocher HM. Analysis of mortality rates for pancreatic cancer across the world. HPB (Oxford). 2008;10:58–62.

    Article  CAS  Google Scholar 

  3. Hidalgo M. Pancreatic cancer. N Engl J Med. 2010;362:1605–17.

    Article  CAS  PubMed  Google Scholar 

  4. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin. 2013;63:11–30.

    Article  PubMed  Google Scholar 

  5. Klinkenbijl JH, Jeekel J, Sahmoud T, van Pel R, Couvreur ML, Veenhof CH, et al. Adjuvant radiotherapy and 5-fluorouracil after curative resection of cancer of the pancreas and periampullary region: phase III trial of the EORTC gastrointestinal tract cancer cooperative group. Ann Surg. 1999;230:776–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Klinkenbij JH, Jeekel J, Schmitz PI, Rombout PA, Nix GA, Bruining HA, et al. Carcinoma of the pancreas and periampullary region: palliation versus cure. Br J Surg. 1993;80:1575–8.

    Article  Google Scholar 

  7. Neoptolemos JP, Stocken DD, Friess H, Bassi C, Dunn JA, Hickey H, et al. A randomized trial of chemoradiotherapy and chemotherapy after resection of pancreatic cancer. N Engl J Med. 2004;350:1200–10.

    Article  CAS  PubMed  Google Scholar 

  8. Oettle H, Post S, Neuhaus P, Gellert K, Langrehr J, Ridwelski K, et al. Adjuvant chemotherapy with gemcitabine vs observation in patients undergoing curative-intent resection of pancreatic cancer: a randomized controlled trial. JAMA. 2007;17(297):267–77.

    Article  Google Scholar 

  9. Sohn TA, Yeo CJ, Cameron JL, Koniaris L, Kaushal S, Abrams R, et al. A Resected adenocarcinoma of the pancreas - 616 patients: results, outcomes, and prognostic indicators. J Gastrointest Surg. 2000;4:567–79.

    Article  CAS  PubMed  Google Scholar 

  10. Wagner M, Redaelli C, Lietz M, Seiler CA, Friess H, Büchler MW, et al. Curative resection is the single most important factor determining outcome in patients with pancreatic adenocarcinoma. Br J Surg. 2004;91:586–94.

    Article  CAS  PubMed  Google Scholar 

  11. Hruban RH, Canto MI, Goggins M, Schulick R, Klein AP. Update on familial pancreatic cancer. Adv Surg. 2010;44:293–311.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Goggins M, Canto M, Hruban R. Can we screen high-risk individuals to detect early pancreatic carcinoma? J Surg Oncol. 2000;74:243–8.

    Article  CAS  PubMed  Google Scholar 

  13. Templeton AW, Brentnall TA. Screening and surgical outcomes of familial pancreatic cancer. Surg Clin North Am. 2013;93:629–45.

    Article  PubMed  Google Scholar 

  14. Klein AP, Brune KA, Petersen GM, Goggins M, Tersmette AC, Offerhaus GJ. Prospective risk of pancreatic cancer in familial pancreatic cancer kindreds. Cancer Res. 2004;64:2634–8.

    Article  CAS  PubMed  Google Scholar 

  15. Lynch SM, Vrieling A, Lubin JH, Kraft P, Mendelsohn JB, Hartge P. Cigarette smoking and pancreatic cancer: a pooled analysis from the pancreatic cancer cohort consortium. Am J Epidemiol. 2009;170:403–13.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Raimondi S, Lowenfels AB, Morselli-Labate AM, Maisonneuve P, Pezzilli R. Pancreatic cancer in chronic pancreatitis; aetiology, incidence, and early detection. Best Pract Res Clin Gastroenterol. 2010;24:349–58.

    Article  PubMed  Google Scholar 

  17. Pannala R, Basu A, Petersen GM, Chari ST. New-onset diabetes: a potential clue to the early diagnosis of pancreatic cancer. Lancet Oncol. 2009;10:88–95.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Risch HA, Lu L, Wang J, Zhang W, Ni Q, Gao YT, et al. ABO blood group and risk of pancreatic cancer: a study in Shanghai and meta-analysis. Am J Epidemiol. 2013;177:1326–37.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Chari ST, Kelly K, Hollingsworth MA, Thayer SP, Ahlquist DA, Andersen DK. Early detection of sporadic pancreatic cancer: summative review. Pancreas. 2015;44:693–712.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Takhar AS, Palaniappan P, Dhingsa R, Lobo DN. Recent developments in diagnosis of pancreatic cancer. BMJ. 2004;18(329):668–73.

    Article  Google Scholar 

  21. Saruc M, Pour PM. Diabetes and its relationship to pancreatic carcinoma. Pancreas. 2003;26:381–7.

    Article  PubMed  Google Scholar 

  22. Ozkan H, Kaya M, Cengiz A, et al. Comparison of tumour marker CA 242 with CA 19-9 and carcinoembryonic antigen (CEA) in pancreatic cancer. Hepatogastroenterology. 2003;50:1669–74.

    PubMed  Google Scholar 

  23. Willett CG, Daly WJ, Warshaw AL, et al. CA 19-9 is an index of response to neoadjunctive chemoradiation therapy in pancreatic cancer. Am J Surg. 1996;172:350–2.

    Article  CAS  PubMed  Google Scholar 

  24. Yeo TP, Hruban RH, Leach SD, Wilentz RE, Sohn TA, Kern SE. Pancreatic cancer. Curr Probl Cancer. 2002;26:176–275.

    Article  PubMed  Google Scholar 

  25. Karmazanovsky G, Fedorov V, Kubyshkin V, Kotchatkov A, et al. Pancreatic head cancer: accuracy of CT in determination of resectability. Abdom Imaging. 2005;30:488–500.

    Article  CAS  PubMed  Google Scholar 

  26. Miura F, Takada T, Amano H, Yoshida M, Furui S, Takeshita K. Diagnosis of pancreatic cancer. HPB (Oxford). 2006;8:337–42.

    Article  Google Scholar 

  27. Brennan DD, Zamboni GA, Raptopoulos VD, Kruskal JB, et al. Comprehensive preoperative assessment of pancreatic adenocarcinoma with 64-section volumetric CT. Radiographics. 2007;27:1653–66.

    Article  PubMed  Google Scholar 

  28. Morana G, Cancian L, Pozzi Mucelli R, Cugini C. Staging cancer of the pancreas. Cancer Imaging. 2010;10(Spec no A):S137–41.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Appel BL, Tolat P, Evans DB, Tsai S. Current staging systems for pancreatic cancer. Cancer J. 2012;18:539–49.

    Article  PubMed  Google Scholar 

  30. Fusaroli P, Kypraios D, Caletti G, Eloubeidi MA. Pancreatico-biliary endoscopic ultrasound: a systematic review of the levels of evidence, performance and outcomes. World J Gastroenterol. 2012;18:4243–56.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Sahani DV, Bonaffini PA, Catalano OA, Guimaraes AR, Blake MA. State-of-the-art PET/CT of the pancreas: current role and emerging indications. Radiographics. 2012;32:1133–58; discussion 1158–60.

    Article  PubMed  Google Scholar 

  32. Conrad C, Fernández-Del Castillo C. Preoperative evaluation and management of the pancreatic head mass. J Surg Oncol. 2013;107:23–32.

    Article  PubMed  Google Scholar 

  33. Shrikhande SV, Barreto SG, Goel M, Arya S. Multimodality imaging of pancreatic ductal adenocarcinoma: a review of the literature. HPB (Oxford). 2012;14:658–68.

    Article  Google Scholar 

  34. Raman SP, Horton KM, Fishman EK. Multimodality imaging of pancreatic cancer-computed tomography, magnetic resonance imaging, and positron emission tomography. Cancer J. 2012;18:511–22.

    Article  PubMed  Google Scholar 

  35. Dibble EH, Karantanis D, Mercier G, Peller PJ, Kachnic LA, Subramaniam RM. PET/CT of cancer patients: part 1, pancreatic neoplasms. AJR Am J Roentgenol. 2012;199:952–67.

    Article  PubMed  Google Scholar 

  36. Kinney T. Evidence-based imaging of pancreatic malignancies. Surg Clin North Am. 2010;90:235–49.

    Article  PubMed  Google Scholar 

  37. Klimstra DS, Pitman MB, Hruban RH. An algorithmic approach to the diagnosis of pancreatic neoplasms. Arch Pathol Lab Med. 2009;133:454–64.

    PubMed  Google Scholar 

  38. Lawrence B, Gustafsson BI, Chan A, Svejda B, Kidd M, Modlin IM. The epidemiology of gastroenteropancreatic neuroendocrine tumors. Endocrinol Metab Clin N Am. 2011;40:1–18.

    Article  Google Scholar 

  39. Yao JC, Hassan M, Phan A, Dagohoy C, Leary C, Mares JE. One hundred years after “carcinoid”: epidemiology of and prognostic factors for neuroendocrine tumors in 35,825 cases in the United States. J Clin Oncol. 2008;26:3063–72.

    Article  PubMed  Google Scholar 

  40. Zhou J, Enewold L, Stojadinovic A, Clifton GT, Potter JF, Peoples GE. Incidence rates of exocrine and endocrine pancreatic cancers in the United States. Cancer Causes Control. 2010;21:853–61.

    Article  PubMed  Google Scholar 

  41. Falconi M, Plockinger U, Kwekkeboom DJ, Manfredi R, Korner M, Kvols L. Well-differentiated pancreatic non-functioning tumors/carcinoma. Neuroendocrinology. 2006;84:196–211.

    Article  CAS  PubMed  Google Scholar 

  42. O’Toole D, Salazar R, Falconi M, Kaltsas G, Couvelard A, de Herder WW. Rare functioning pancreatic endocrine tumors. Neuroendocrinology. 2006;84:189–95.

    Article  PubMed  CAS  Google Scholar 

  43. Modlin IM, Moss SF, Gustafsson BI, Lawrence B, Schimmack S, Kidd M. The archaic distinction between functioning and non-functioning neuroendocrine neoplasms is no longer clinically relevant. Langenbecks Arch Surg. 2011;396:1145–56.

    Article  PubMed  Google Scholar 

  44. Halfdanarson TR, Rabe KG, Rubin J, Petersen GM. Pancreatic neuroendocrine tumors (PNETs): incidence, prognosis and recent trend toward improved survival. Ann Oncol. 2008;19:1727–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Jensen RT, Cadiot G, Brandi ML, de Herder WW, Kaltsas G, Komminoth P, et al. ENETS Consensus Guidelines for the management of patients with digestive neuroendocrine neoplasms: functional pancreatic endocrine tumor syndromes. Neuroendocrinology. 2012;95:98–119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pavel M, Baudin E, Couvelard A, Krenning E, Öberg K, Steinmüller T, et al. ENETS Consensus Guidelines for the management of patients with liver and other distant metastases from neuroendocrine neoplasms of foregut, midgut, hindgut, and unknown primary. Neuroendocrinology. 2012;95:157–76.

    Article  CAS  PubMed  Google Scholar 

  47. Heitz PU, Kommith P, Perren A, Klimstra DS, Dayal Y, Bordi C, et al. Pathology and genetics of tumours of endocrine organs. In: DeLellis DA, Lloyd RV, Heitz PU, editors. WHO classification of tumours. Pancreatic endocrine tumours: introduction. Lyon: IARC Press; 2004. p. 177–82.

    Google Scholar 

  48. Schindl M, Kaczirek K, Kaserer K, Niederle B. Is the new classification of neuroendocrine pancreatic tumours of clinical help? World J Surg. 2000;24:1312–8.

    Article  CAS  PubMed  Google Scholar 

  49. Edge SB, Byrd DR, Compton CC, Fritz AG, Greene FL, Trotti A. AJCC cancer staging manual (7th ed.). New York: Springer; 2010.

    Google Scholar 

  50. Yeo CJ, Cameron JL, Lillemoe KD, Sitzmann JV, Hruban RH, Goodman SN. Pancreaticoduodenectomy for cancer of the head of the pancreas. 201 patients. Ann Surg. 1995;221:721–31; discussion 731–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Conlon KC, Klimstra DS, Brennan MF. Long-term survival after curative resection for pancreatic ductal adenocarcinoma. Clinicopathologic analysis of 5-year survivors. Ann Surg. 1996;223:273–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yeo CJ, Abrams RA, Grochow LB, Sohn TA, Ord SE, Hruban RH, et al. Pancreaticoduodenectomy for pancreatic adenocarcinoma: postoperative adjuvant chemoradiation improves survival. A prospective, single-institution experience. Ann Surg. 1997;225:621–33; discussion 633–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bilimoria KY, Bentrem DJ, Ko CY, Ritchey J, Stewart AK, Winchester DP. Validation of the 6th edition AJCC pancreatic cancer staging system: report from the national cancer database. Cancer. 2007;110:738–44.

    Article  PubMed  Google Scholar 

  54. Wasif N, Ko CY, Farrell J, Wainberg Z, Hines OJ, Reber H. Impact of tumor grade on prognosis in pancreatic cancer: should we include grade in AJCC staging? Ann Surg Oncol. 2010;17:2312–20.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Rochefort MM, Ankeny JS, Kadera BE, Donald GW, Isacoff W, Wainberg ZA, et al. Impact of tumor grade on pancreatic cancer prognosis: validation of a novel TNMG staging system. Ann Surg Oncol. 2013;20:4322–9.

    Article  PubMed  Google Scholar 

  56. Winter JM, Cameron JL, Campbell KA, Arnold MA, Chang DC, Coleman J. 1423 pancreaticoduodenectomies for pancreatic cancer: a single-institution experience. J Gastrointest Surg. 2006;10:1199–210.

    Article  PubMed  Google Scholar 

  57. Erkan M, Michalski CW, Rieder S, Reiser-Erkan C, Abiatari I, Kolb A, et al. The activated stroma index is a novel and independent prognostic marker in pancreatic ductal adenocarcinoma. Clin Gastroenterol Hepatol. 2008;6:1155–61.

    Article  PubMed  Google Scholar 

  58. National Comprehensive Cancer Network (NCCN) practice guidelines in oncology. Pancreatic adenocarcinoma (version 1.2014). Available at: http://www.nccn.org/professionals/physician_gls/pdf/pancreatic.pdf.

  59. Varadhachary GR, Tamm EP, Abbruzzese JL, Xiong HQ, Crane CH, Wang H, et al. Borderline resectable pancreatic cancer: definitions, management, and role of preoperative therapy. Ann Surg Oncol. 2006;13:1035–46.

    Article  PubMed  Google Scholar 

  60. Evans DB, Erickson BA, Ritch P. Borderline resectable pancreatic cancer: definitions and the importance of multimodality therapy. Ann Surg Oncol. 2010;17:2803–5.

    Article  PubMed  Google Scholar 

  61. Katz MH, Merchant NB, Brower S, Branda M, Posner MC, William Traverso L, et al. Standardization of surgical and pathologic variables is needed in multicenter trials of adjuvant therapy for pancreatic cancer: results from the ACOSOG Z5031 trial. Ann Surg Oncol. 2011;18:337–44.

    Article  PubMed  Google Scholar 

  62. Dalton RR, Sarr MG, van Heerden JA, Colby TV. Carcinoma of the body and tail of the pancreas: is curative resection justified? Surgery. 1992;111:489–94.

    CAS  PubMed  Google Scholar 

  63. Brennan MF, Moccia RD, Klimstra D. Management of adenocarcinoma of the body and tail of the pancreas. Ann Surg. 1996;223:506–11; discussion 511–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Andersson R, Aho U, Nilsson BI, Peters GJ, Pastor-Anglada M, Rasch W, et al. Gemcitabine chemoresistance in pancreatic cancer: molecular mechanisms and potential solutions. Scand J Gastroenterol. 2009;44:782–6.

    Article  CAS  PubMed  Google Scholar 

  65. Damaraju VL, Damaraju S, Young JD, Baldwin SA, Mackey J, Sawyer MB. Nucleoside anticancer drugs: the role of nucleoside transporters in resistance to cancer chemotherapy. Oncogene. 2003;22:7524–36.

    Article  CAS  PubMed  Google Scholar 

  66. Di Marco M, Di Cicilia R, Macchini M, Nobili E, Vecchiarelli S, Brandi G. Metastatic pancreatic cancer: is gemcitabine still the best standard treatment? Oncol Rep. 2010;23:1183–92.

    Article  PubMed  CAS  Google Scholar 

  67. Sun C, Ansari D, Andersson R, Wu DQ. Does gemcitabine-based combination therapy improve the prognosis of unresectable pancreatic cancer? World J Gastroenterol. 2012;18:4944–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Rothenberg ML, Moore MJ, Cripps MC, Andersen JS, Portenoy RK, Burris 3rd HA. A phase II trial of gemcitabine in patients with 5-FU-refractory pancreas cancer. Ann Oncol. 1996;7:347–53.

    Article  CAS  PubMed  Google Scholar 

  69. Burris 3rd HA, Moore MJ, Andersen J, Green MR, Rothenberg ML, Modiano MR, et al. Improvements in survival and clinical benefit with gemcitabine as firstline therapy for patients with advanced pancreas cancer: a randomized trial. J Clin Oncol. 1997;15:2403–13.

    CAS  PubMed  Google Scholar 

  70. Storniolo AM, Enas NH, Brown CA, Voi M, Rothenberg ML, Schilsky R. An investigational new drug treatment program for patients with gemcitabine: results for over 3000 patients with pancreatic carcinoma. Cancer. 1999;85:1261–8.

    Article  CAS  PubMed  Google Scholar 

  71. Kulke MH, Blaszkowsky LS, Ryan DP, Clark JW, Meyerhardt JA, Zhu AX, et al. Capecitabine plus erlotinib in gemcitabine-refractory advanced pancreatic cancer. J Clin Oncol. 2007;25:4787–92.

    Article  CAS  PubMed  Google Scholar 

  72. Fong ZV, Tan WP, Lavu H, Kennedy EP, Mitchell DG, Koniaris LG, et al. Preoperative imaging for resectable periampullary cancer: clinicopathologic implications of reported radiographic findings. J Gastrointest Surg. 2013;17:1098–106.

    Article  PubMed  Google Scholar 

  73. Winter JM, Brennan MF, Tang LH, D’Angelica MI, Dematteo RP, Fong Y, et al. Survival after resection of pancreatic adenocarcinoma: results from a single institution over three decades. Ann Surg Oncol. 2012;19:169–75.

    Article  PubMed  Google Scholar 

  74. Bosman FT, Carneiro F, Hruban RH, Theise ND. WHO classification of tumours of the digestive system. 4th ed. Lyon: IARC; 2010.

    Google Scholar 

  75. Rindi G, Falconi M, Klersy C, Albarello L, Boninsegna L, Buchler MW, et al. TNM staging of neoplasms of the endocrine pancreas: results from a large international cohort study. J Natl Cancer Inst. 2012;104:764–77.

    Article  CAS  PubMed  Google Scholar 

  76. Caplin ME, Pavel M, Ruszniewski P. Lanreotide in metastatic enteropancreatic neuroendocrine tumors. N Engl J Med. 2014;371:224–33.

    Article  PubMed  CAS  Google Scholar 

  77. Lee ES, Lee JM. Imaging diagnosis of pancreatic cancer. World J Gastroenterol. 2014;20:7864–77.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Torigian DA, Zaidi H, Kwee TC, Saboury B, Udupa JK, Cho ZH, et al. PET/MR imaging: technical aspects and potential clinical applications. Radiology. 2013;267:26–44.

    Article  PubMed  Google Scholar 

  79. De Gaetano AM, Rufini V, Castaldi P, Gatto AM, Filograna L, Giordano A, et al. Clinical applications of 18F-FDG PET in the management of hepatobiliary and pancreatic tumors. Abdom Imaging. 2012;37:983–1003.

    Article  PubMed  Google Scholar 

  80. Izuishi K, Yamamoto Y, Sano T, Takebayashi R, Masaki T, Suzuki Y. Impact of 18-fluorodeoxyglucose positron emission tomography on the management of pancreatic cancer. J Gastrointest Surg. 2010;14:1151–8.

    Article  PubMed  Google Scholar 

  81. Lemke AJ, Niehues SM, Hosten N, Amthauer H, Boehmig M, Stroszczynski C, et al. Retrospective digital image fusion of multidetector CT and 18F-FDG PET: clinical value in pancreatic lesions-a prospective study with 104 patients. J Nucl Med. 2004;45:1279–86.

    PubMed  Google Scholar 

  82. Bang S, Chung HW, Park SW, Chung JB, Yun M, Lee JD, et al. The clinical usefulness of 18-fluorodeoxyglucose positron emission tomography in the differential diagnosis, staging, and response evaluation after concurrent chemoradiotherapy for pancreatic cancer. J Clin Gastroenterol. 2006;40:923–9.

    Article  PubMed  Google Scholar 

  83. Kauhanen SP, Komar G, Seppänen MP, Dean KI, Minn HR, Kajander SA, et al. A prospective diagnostic accuracy study of 18F-fluorodeoxyglucose positron emission tomography/computed tomography, multidetector row computed tomography, and magnetic resonance imaging in primary diagnosis and staging of pancreatic cancer. Ann Surg. 2009;250:957–63.

    Article  PubMed  Google Scholar 

  84. Raman SP, Fishman EK, Lennon AM. Endoscopic ultrasound and pancreatic applications: what the radiologist needs to know. Abdom Imaging. 2013;38:1360–72.

    Article  PubMed  Google Scholar 

  85. van Kouwen MC, Jansen JB, van Goor H, de Castro S, Oyen WJ, Drenth JP. FDG-PET is able to detect pancreatic carcinomain chronic pancreatitis. Eur J Nucl Med Mol Imaging. 2005;32:399–404.

    Article  PubMed  Google Scholar 

  86. Lee TY, Kim MH, Park DH, Seo DW, Lee SK, Kim JS, et al. Utility of 18F-FDG PET/CT for differentiation of autoimmune pancreatitis with atypical pancreatic imaging findings from pancreatic cancer. AJR Am J Roentgenol. 2009;193:343–8.

    Article  PubMed  Google Scholar 

  87. Pakzad F, Groves AM, Ell PJ. The role of positron emission tomography in the management of pancreatic cancer. Semin Nucl Med. 2006;36:248–56.

    Article  PubMed  Google Scholar 

  88. Pery C, Meurette G, Ansquer C, Frampas E, Regenet N. Role and limitations of 18F-FDG positron emission tomography (PET) in the management of patients with pancreatic lesions. Gastroenterol Clin Biol. 2010;34:465–74.

    Article  CAS  PubMed  Google Scholar 

  89. Hong HS, Yun M, Cho A, Choi JY, Kim MJ, Kim KW, et al. The utility of F18 FDG PET/CT in the evaluation of pancreatic intraductal papillary mucinous neoplasm. Clin Nucl Med. 2010;35:776–9.

    Article  PubMed  Google Scholar 

  90. Sperti C, Pasquali C, Decet G, Chierichetti F, Liessi G, Pedrazzoli S. F-18-fluorodeoxyglucose positron emission tomography in differentiating malignant from benign pancreatic cysts: a prospective study. J Gastrointest Surg. 2005;9:22–8.

    Article  PubMed  Google Scholar 

  91. Fassan M, Pizzi S, Sperti C, Pasquali C, Pedrazzoli S, Chierichetti F, et al. 18F-FDG PET findings and GLUT-1 expression in IPMNs of the pancreas. J Nucl Med. 2008;49:2070.

    Article  PubMed  Google Scholar 

  92. Sperti C, Bissoli S, Pasquali C, Frison L, Liessi G, Chierichetti F, et al. 18-Fluorodeoxyglucose positron emission tomography enhances computed tomography diagnosis of malignant intraductal papillary mucinous neoplasms of the pancreas. Ann Surg. 2007;246:932–9.

    Article  PubMed  Google Scholar 

  93. Tomimaru Y, Takeda Y, Tatsumi M, Kim T, Kobayashi S, Marubashi S, et al. Utility of 2-[18F]-fluoro-2-deoxy-D-glucose positron emission tomography in differential diagnosis of benign and malignant intraductal papillary mucinous neoplasm of the pancreas. Oncol Rep. 2010;24:613–20.

    PubMed  Google Scholar 

  94. Javery O, Shyn P, Mortele K. FDG PET or PET/CT in patients with pancreatic cancer: when does it add to diagnostic CT or MRI? Clin Imaging. 2013;37:295–301.

    Article  PubMed  Google Scholar 

  95. Nishiyama Y, Yamamoto Y, Yokoe K, Monden T, Sasakawa Y, Tsutsui K, et al. Contribution of whole body FDG-PET to the detection of distant metastasis in pancreatic cancer. Ann Nucl Med. 2005;19:491–7.

    Article  PubMed  Google Scholar 

  96. Bares R, Klever P, Hauptmann S, Hellwig D, Fass J, Cremerius U, et al. F18-fluorodeoxyglucose PET in vivo evaluation of pancreatic glucose metabolism for detection of pancreatic cancer. Radiology. 1994;192:79–86.

    Article  CAS  PubMed  Google Scholar 

  97. Zimny M, Bares R, Fass J, Adam G, Cremerius U, Dohmen B, et al. Fluorine-18 fluorodeoxyglucose positron emission tomography in the differential diagnosis of pancreatic carcinoma: a report of 106 cases. Eur J Nucl Med. 1997;24:678–82.

    CAS  PubMed  Google Scholar 

  98. Lytras D, Connor S, Bosonnet L, Jayan R, Evans J, Hughes M, et al. Positron emission tomography does not add to computed tomography for the diagnosis and staging of pancreatic cancer. Dig Surg. 2005;22:55–62.

    Article  CAS  PubMed  Google Scholar 

  99. Strobel K, Heinrich S, Bhure U, Soyka J, Veit-Haibach P, Pestalozzi BC, et al. Contrast-enhanced 18F-FDG PET/CT: 1-stop-shop imaging for assessing the resectability of pancreatic cancer. J Nucl Med. 2008;49:1408–13.

    Article  PubMed  Google Scholar 

  100. Gambhir SS, Czernin J, Schwimmer J, Silverman DH, Coleman RE, Phelps ME. A tabulated summary of the FDG PET literature. J Nucl Med. 2001;42:1S–93.

    CAS  PubMed  Google Scholar 

  101. Zafra M, Ayala F, Gonzalez-Billalabeitia E, Vicente E, Gonzalez-Cabezas P, García T, et al. Impact of whole-body 18F-FDG PET on diagnostic and therapeutic management of medical oncology patients. Eur J Cancer. 2008;44:1678–83.

    Article  PubMed  Google Scholar 

  102. Topkan E, Parlak C, Yapar AF. FDG-PET/CT-based restaging may alter initial management decisions and clinical outcomes in patients with locally advanced pancreatic carcinoma planned to undergo chemoradiotherapy. Cancer Imaging. 2013;13:423–8.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Imai H, Doi R, Kanazawa H, Kamo N, Koizumi M, Masui T, et al. Preoperative assessment of para-aortic lymph node metastasis in patients with pancreatic cancer. Int J Clin Oncol. 2010;15:294–300.

    Article  PubMed  Google Scholar 

  104. Kuwatani M, Kawakami H, Eto K, Haba S, Shiga T, Tamaki N, et al. Modalities for evaluating chemotherapeutic efficacy and survival time in patients with advanced pancreatic cancer: comparison between FDG-PET, CT, and serum tumor markers. Intern Med. 2009;48:867–75.

    Article  PubMed  Google Scholar 

  105. Maisey NR, Webb A, Flux GD, Padhani A, Cunningham DC, Ott RJ, et al. FDG-PET in the prediction of survival of patients with cancer of the pancreas: a pilot study. World J Cancer. 2000;1166:287–93.

    Article  Google Scholar 

  106. Higashi T, Sakahara H, Torizuka T, Nakamoto Y, Kanamori S, Hiraoka M, et al. Evaluation of intraoperative radiation therapy for unresectable pancreatic cancer with FDG PET. J Nucl Med. 1999;40:1424–33.

    CAS  PubMed  Google Scholar 

  107. Springett GM, Hoffe SE. Borderline resectable pancreatic cancer: on the edge of survival. Cancer Control. 2008;15:295–307.

    PubMed  Google Scholar 

  108. Higashi T, Fisher SJ, Brown RS, Nakada K, Walter GL, Wahl RL. Evaluation of the early effect of local irradiation on normal rodent bone marrow metabolism using fluorine-18-FDG; preclinical studies for PET. J Nucl Med. 2000;41:2026–35.

    CAS  PubMed  Google Scholar 

  109. Ruf J, Lopez Hänninen E, Oettle H, Plotkin M, Pelzer U, Stroszczynski C, et al. Detection of recurrent pancreatic cancer: comparison of FDG-PET with CT/RM. Pancreatology. 2005;5:266–72.

    Article  PubMed  Google Scholar 

  110. Urban D, Catane R. Serum tumor markers in oncology. Isr Med Assoc J. 2009;11:103–4.

    PubMed  Google Scholar 

  111. Higashi T, Saga T, Nakamoto Y, Ishimori T, Fujimoto K, Doi R, et al. Diagnosis of pancreatic cancer using fluorine-18 fluorodeoxyglucose positron emission tomography (FDG PET) – usefulness and limitations in “clinical reality”. Ann Nucl Med. 2003;17:261–79.

    Article  PubMed  Google Scholar 

  112. [No authors listed]. Radiation therapy combined with Adriamycin or 5-fluorouracil for the treatment of locally unresectable pancreatic carcinoma. Gastrointestinal Tumor Study Group. Cancer. 1985;56:2563–68.

    Google Scholar 

  113. Klaassen DJ, MacIntyre JM, Catton GE, Engstrom PF, Moertel CG, et al. Treatment of locally unresectable cancer of the stomach and pancreas: a randomized comparison of 5-fluorouracil alone with radiation plus concurrent and maintenance 5-fluorouracil – an Eastern Cooperative Oncology Group study. J Clin Oncol. 1985;3:373–8.

    CAS  PubMed  Google Scholar 

  114. Topkan E, Yavuz AA, Aydin M, Onal C, Yapar F, Yavuz MN. Comparison of CT and PET-CT based planning of radiation therapy in locally advanced pancreatic carcinoma. J Exp Clin Cancer Res. 2008;23:27–41.

    Google Scholar 

  115. Huguet F, Girard N, Guerche CS, Hennequin C, Mornex F, Azria D. Chemoradiotherapy in the management of locally advanced pancreatic carcinoma: a qualitative systematic review. J Clin Oncol. 2009;27:2269–77.

    Article  CAS  PubMed  Google Scholar 

  116. Parlak C, Topkan E, Onal C, Reyhan M, Selek U. Prognostic value of gross tumor volume delineated by FDG-PET-CT based radiotherapy treatment planning in patients with locally advanced pancreatic cancer treated with chemoradiotherapy. Radiat Oncol. 2012;7:37.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Kobayashi K, Bhargava P, Raja S, Nasseri F, Al-Balas HA, Smith DD, et al. Image-guided biopsy: what the interventional radiologist needs to know about PET/CT. Radiographics. 2012;32:1483–501.

    Article  PubMed  Google Scholar 

  118. Klaeser B, Mueller MD, Schmid RA, Guevara C, Krause T, Wiskirchen J. PET-CT-guided interventions in the management of FDG-positive lesions in patients suffering from solid malignancies: initial experiences. Eur Radiol. 2009;19:1780–5.

    Article  PubMed  Google Scholar 

  119. O’Sullivan PJ, Rohren EM, Madewell JE. Positron emission tomography-CT imaging in guiding musculoskeletal biopsy. Radiol Clin N Am. 2008;46:475–86.

    Article  PubMed  Google Scholar 

  120. Cerci JJ, Pereira Neto CC, Krauzer C, Sakamoto DG, Vitola JV, et al. The impact of coaxial core biopsy guided by FDG PET/CT in oncological patients. Eur J Nucl Med Mol Imaging. 2013;40:98–103.

    Article  PubMed  Google Scholar 

  121. Purandare NC, Kulkarni AV, Kulkarni SS, Roy D, Agrawal A, Shah S, et al. 18F-FDG PET/CT-directed biopsy: does it offer incremental benefit? Nucl Med Commun. 2013;34:203–10.

    Article  CAS  PubMed  Google Scholar 

  122. Tomozawa Y, Inaba Y, Yamaura H, Sato Y, Kato M, Kanamoto T, et al. Clinical value of CT-guided needle biopsy for retroperitoneal lesions. Korean J Radiol. 2011;12:351–7.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Binderup T, Knigge U, Loft A, Mortensen J, Pfeifer A, Federspiel B, et al. Functional imaging of neuroendocrine tumors: a head-to-head comparison of somatostatin receptors scintigraphy, 123I-MIBG scintigraphy, and 18F-FDG PET. J Nucl Med. 2010;51:704–12.

    Article  PubMed  Google Scholar 

  124. Ezziddin S, Logvinski T, Yong-Hing C, Ahmadzadehfar H, Fischer HP, Palmedo H, et al. Factors predicting tracer uptake in somatostatin receptor and MIBG scintigraphy of metastatic gastroenteropancreatic neuroendocrine tumors. J Nucl Med. 2006;47:223–33.

    CAS  PubMed  Google Scholar 

  125. Kayani I, Bomanji JB, Groves A, Conway G, Gacinovic S, Win T, Dickson J, et al. Functional imaging of neuroendocrine tumors with combined PET/CT using 68Ga-DOTATATE (DOTA-D-Phe1, Tyr3-octreo-tate) and 18F-FDG. Cancer. 2008;112:2447–55.

    Article  PubMed  Google Scholar 

  126. Kauhanen S, Seppänen M, Minn H, Nuutila P. Clinical PET imaging of insulinoma and beta-cell hyperplasia. Curr Pharm Des. 2010;16:1550–60.

    Article  CAS  PubMed  Google Scholar 

  127. Sundin A, Vullierme MP, Kaltsas G, Plöckinger U, Mallorca Consensus Conference Participants, European Neuroendocrine Tumor Society. ENETS consensus guidelines for the standards of care in neuroendocrine tumors: radiological examinations. Neuroendocrinology. 2009;90:167–83.

    Article  CAS  PubMed  Google Scholar 

  128. Low MJ. Clinical endocrinology and metabolism: the somatostatin neuroendocrine system – physiology and clinical relevance in gastrointestinal and pancreatic disorders. Best Pract Res Clin Endocrinol Metab. 2004;18:607–22.

    Article  CAS  PubMed  Google Scholar 

  129. de Herder WW, Hofland LJ, van der Lely AJ, Lamberts SW, et al. Somatostatin receptors in gastroentero-pancreatic neuroendocrine tumours. Endocr Relat Cancer. 2003;10:451–8.

    Article  PubMed  Google Scholar 

  130. Veenstra MJ, de Herder WW, Feelders RA, Hofland LJ. Targeting the somatostatin receptor in pituitary and neuroendocrine tumors. Expert Opin Ther Targets. 2013;17:1329–43.

    Article  CAS  PubMed  Google Scholar 

  131. de Herder WW, Lamberts SW. Somatostatin analog therapy in treatment of gastrointestinal disorders and tumors. Endocrine. 2003;20:285–90.

    Article  PubMed  Google Scholar 

  132. Sundin A. Radiological and nuclear medicine imaging of gastroenteropancreatic neuroendocrine tumours. Best Pract Res Clin Gastroenterol. 2012;26:803–18.

    Article  PubMed  Google Scholar 

  133. Kwekkeboom DJ, Kam BL, van Essen M, Teunissen JJ, van Eijck CH, Valkema R, et al. Somatostatin-receptor-based imaging and therapy of gastroenteropancreatic neuroendocrine tumors. Endocr Relat Cancer. 2010;17:R53–73.

    Article  CAS  PubMed  Google Scholar 

  134. de Herder WW, Kwekkeboom DJ, Feelders RA, van Aken MO, Lamberts SW, van der Lely AJ, et al. Somatostatin receptor imaging for neuroendocrine tumors. Pituitary. 2006;9:243–8.

    Article  PubMed  CAS  Google Scholar 

  135. Oberg K, Kvols L, Caplin M, Delle Fave G, de Herder W, Rindi G, et al. Consensus report on the use of somatostatin analogs for the management of neuroendocrine tumors of the gastroenteropancreatic system. Ann Oncol. 2004;15:966–73.

    Article  CAS  PubMed  Google Scholar 

  136. Lamberts SW, van der Lely AJ, de Herder WW, Hofland LJ. Octreotide. N Engl J Med. 1996;334:246–54.

    Article  CAS  PubMed  Google Scholar 

  137. Bodei L, Mueller-Brand J, Baum RP, Pavel ME, Hörsch D, O’Dorisio MS, et al. The joint IAEA, EANM, and SNMMI practical guidance on peptide receptor radionuclide therapy (PRRNT) in neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2013;40:800–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Kwekkeboom DJ, Krenning EP, Lebtahi R, Komminoth P, Kos-Kudła B, de Herder WW, et al. ENETS consensus guidelines for the standards of care in neuroendocrine tumors: peptide receptor radionuclide therapy with radiolabeled somatostatin analogs. Neuroendocrinology. 2009;90:220–6.

    Article  CAS  PubMed  Google Scholar 

  139. Balon HR, Goldsmith SJ, Siegel BA, Silberstein EB, Krenning EP, Lang O, et al. Procedure guideline for somatostatin receptor scintigraphy with 111In-pentetreotide. J Nucl Med. 2001;42:1134–8.

    CAS  PubMed  Google Scholar 

  140. de Herder WW, Niederle B, Scoazec JY, Pauwels S, Kloppel G, Falconi M, et al. Well-differentiated pancreatic tumor/carcinoma: insulinoma. Neuroendocrinology. 2006;84:183–8.

    Article  PubMed  CAS  Google Scholar 

  141. Shah T, Kulakiene I, Quigley AM, Warbey VS, Srirajaskanthan R, Toumpanakis C, et al. The role of 99mTc-depreotide in the management of neuroendocrine tumours. Nucl Med Commun. 2008;29:436–40.

    Article  CAS  PubMed  Google Scholar 

  142. Heppeler A, Froidevaux S, Eberle AN, Maecke HR, et al. Receptor targeting for tumor localisation and therapy with radiopeptides. Curr Med Chem. 2000;7:971–94.

    Article  CAS  PubMed  Google Scholar 

  143. Smith-Jones PM, Bischof C, Leimer M, Gludovacz D, Angelberger P, Pangerl T, et al. DOTA-lanreotide: a novel somatostatin analog for tumor diagnosis and therapy. Endocrinology. 1999;140:5136–48.

    CAS  PubMed  Google Scholar 

  144. Cwikla JB, Mikolajczak R, Pawlak D, Buscombe JR, Nasierowska-Guttmejer A, Bator A, et al. Initial direct comparison of 99mTc-TOC and 99mTc-TATE in identifying sites of disease in patients with proven GEP NETs. J Nucl Med. 2008;49:1060–5.

    Article  PubMed  Google Scholar 

  145. Gabriel M, Muehllechner P, Decristoforo C, von Guggenberg E, Kendler D, Prommegger R, et al. 99mTc-EDDA/HYNIC-Tyr3-octreotide for staging and follow-up of patients with neuroendocrine gastro-entero-pancreatic tumors. Q J Nucl Med Mol Imaging. 2005;49:237–44.

    CAS  PubMed  Google Scholar 

  146. Bombardieri E, Aktolun C, Baum RP, Bishof-Delaloye A, Buscombe J, Chatal JF, et al. 131I/123I-metaiodobenzylguanidine (MIBG), scintigraphy: procedure guidelines for tumour imaging. Eur J Nucl Med Mol Imaging. 2003;30:BP132–9.

    PubMed  Google Scholar 

  147. Kaltsas G, Korbonits M, Heintz E, Mukherjee JJ, Jenkins PJ, Chew SL, et al. Comparison of somatostatin analog and meta-iodobenzylguanidine radionuclides in the diagnosis and localization of advanced neuroendocrine tumors. J Clin Endocrinol Metab. 2001;86:895–902.

    Article  CAS  PubMed  Google Scholar 

  148. Kaltsas G, Rockall A, Papadogias D, Reznek R, Grossman AB, et al. Recent advances in radiological and radionuclide imaging and therapy of neuroendocrine tumours. Eur J Endocrinol. 2004;151:15–27.

    Article  CAS  PubMed  Google Scholar 

  149. Buscombe JR, Cwikla JB, Caplin ME, Hilson AJ, et al. Long-term efficacy of low activity meta-131Iiodobenzylguanidine therapy in patients with disseminated neuroendocrine tumours depends on initial response. Nucl Med Commun. 2005;26:969–76.

    Article  CAS  PubMed  Google Scholar 

  150. Taal BG, Zuetenhorst H, Valdés Olmos RA, Hoefnagel CA. 131I-MIBG radionuclide therapy in carcinoid syndrome. Eur J Surg Oncol. 2002;28:243.

    Article  PubMed  Google Scholar 

  151. Jacobson AF, Deng H, Lombard J, Lessig HJ, Black RR, et al. 123I-meta-iodobenzylguanidine scintigraphy for the detection of neuroblastoma and pheochromocytoma: results of a meta-analysis. J Clin Endocrinol Metab. 2010;95:2596–606.

    Article  CAS  PubMed  Google Scholar 

  152. Froberg AC, de Jong M, Nock BA, Breeman WA, Erion JL, Maina T, et al. Comparison of three radiolabelled peptide analogues for CCK-2 receptor scintigraphy in medullary thyroid carcinoma. Eur J Nucl Med Mol Imaging. 2009;36:1265–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Gotthardt M, Béhé MP, Beuter D, Battmann A, Bauhofer A, Schurrat T, et al. Improved tumour detection by gastrin receptor scintigraphy in patients with metastasised medullary thyroid carcinoma. Eur J Nucl Med Mol Imaging. 2006;33:1273–9.

    Article  PubMed  Google Scholar 

  154. Nock BA, Maina T, Béhé M, Nikolopoulou A, Gotthardt M, Schmitt JS, et al. CCK-2/gastrin receptor-targeted tumor imaging with 99mTc-labeled minigastrinanalogs. J Nucl Med. 2005;46:1727–36.

    CAS  PubMed  Google Scholar 

  155. Wild D, Christ E, Caplin ME, Kurzawinski TR, Forrer F, Brändle M, et al. Glucagon-like peptide-1 versus somatostatin receptor targeting reveals 2 distinct forms of malignant insulinomas. J Nucl Med. 2011;52:1073–8.

    Article  PubMed  Google Scholar 

  156. Wild D, Mäcke H, Christ E, Gloor B, Reubi JC. Glucagon-like peptide 1-receptor scans to localize occult insulinomas. N Engl J Med. 2008;359:766–8.

    Article  CAS  PubMed  Google Scholar 

  157. Christ E, Wild D, Forrer F, Brändle M, Sahli R, Clerici T, et al. Glucagon-like peptide-1 receptor imaging for localization of insulinomas. J Clin Endocrinol Metab. 2009;94:4398–405.

    Article  CAS  PubMed  Google Scholar 

  158. Christ E, Wild D, Ederer S, Béhé M, Nicolas G, Caplin ME, et al. Glucagon-like peptide-1 receptor imaging for the localisation of insulinomas: a prospective multicentre imaging study. Lancet Diabetes Endocrinol. 2013;1:115–22.

    Article  CAS  PubMed  Google Scholar 

  159. Doherty GM, Doppman JL, Shawker TH, Miller DL, Eastman RC, Gorden P, et al. Results of a prospective strategy to diagnose, localize, and resect insulinomas. Surgery. 1991;110:989–96.

    CAS  PubMed  Google Scholar 

  160. Pach D, Sowa-Staszczak A, Jabrocka-Hybel A, Stefańska A, Tomaszuk M, Mikołajczak R, et al. Glucagon-like peptide-1 receptor imaging with (Lys40(Ahx-HYNIC-99mTc/EDDA)NH2)–exendin-4 for the diagnosis of recurrence or dissemination of medullary thyroid cancer: a preliminary report. Int J Endocrinol. 2013;2013:384508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Sowa-Staszczak A, Pach D, Mikołajczak R, Mäcke H, Jabrocka-Hybel A, Stefańska A, et al. Glucagon-like peptide-1 receptor imaging with (Lys40(Ahx-HYNIC-99mTc/EDDA)NH2)–exendin-4 for the detection of insulinoma. Eur J Nucl Med Mol Imaging. 2013;40:524–31.

    Article  CAS  PubMed  Google Scholar 

  162. Brom M, Oyen WJ, Joosten L, Gotthardt M, Boerman OC. 68Ga-labelled exendin-3, a new agent for the detection of insulinomas with PET. Eur J Nucl Med Mol Imaging. 2010;37:1345–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Hessenius C, Bäder M, Meinhold H, Böhmig M, Faiss S, Reubi JC, et al. Vasoactive intestinal peptide receptor scintigraphy in patients with pancreatic adenocarcinomas or neuroendocrine tumours. Eur J Nucl Med. 2000;27:1684–93.

    Article  CAS  PubMed  Google Scholar 

  164. Virgolini I, Kurtaran A, Leimer M, Kaserer K, Peck-Radosavljevic M, Angelberger P, et al. Location of a VIPoma by iodine-123-vasoactive intestinal peptide scintigraphy. J Nucl Med. 1998;39:1575–9.

    CAS  PubMed  Google Scholar 

  165. Virgolini I, Raderer M, Kurtaran A, Angelberger P, Banyai S, Yang Q, et al. Vasoactive intestinal peptide-receptor imaging for the localization of intestinal adenocarcinomas and endocrine tumors. N Engl J Med. 1994;331:1116–21.

    Article  CAS  PubMed  Google Scholar 

  166. Wild D, Bomanji JB, Benkert P, Maecke H, Ell PJ, et al. Comparison of 68Ga-DOTANOC and 68Ga-DOTATATE PET/CT within patients with gastroenteropancreatic neuroendocrine tumors. J Nucl Med. 2013;54:364–72.

    Article  CAS  PubMed  Google Scholar 

  167. Haug AR, Cindea-Drimus R, Auernhammer CJ, Reincke M, Wängler B, et al. The role of 68Ga-DOTATATE PET/CT in suspected neuroendocrine tumors. J Nucl Med. 2012;53:1686–92.

    Article  CAS  PubMed  Google Scholar 

  168. Schraml C, Schwenzer NF, Sperling O, Aschoff P, Lichy MP, et al. Staging of neuroendocrine tumours: comparison of 68Ga-DOTATOC multiphase PET/CT and whole-body MRI. Cancer Imaging. 2013;13:63–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Ambrosini V, Campana D, Nanni C, Cambioli S, Tomassetti P, et al. Is 68Ga-DOTA-NOC PET/CT indicated in patients with clinical, biochemical or radiological suspicion of neuroendocrine tumour? Eur J Nucl Med Mol Imaging. 2012;39:1278–83.

    Article  CAS  PubMed  Google Scholar 

  170. Binderup T, Knigge U, Loft A, Federspiel B, Kjaer A. 18F-fluorodeoxy-glucose positron emission tomography predicts survival of patients with neuroendocrine tumors. Clin Cancer Res. 2010;16:978–85.

    Article  CAS  PubMed  Google Scholar 

  171. Abgral R, Leboulleux S, Déandreis D, Aupérin A, Lumbroso J, et al. Performance of 18fluorodeoxyglucose-positron emission tomography and somatostatin receptor scintigraphy for high Ki67 (R10%) well-differentiated endocrine carcinoma staging. J Clin Endocrinol Metab. 2011;96:665–71.

    Article  CAS  PubMed  Google Scholar 

  172. Severi S, Nanni O, Bodei L, Sansovini M, Ianniello A, et al. Role of 18FDG PET/CT in patients treated with 177Lu-DOTATATE for advanced differentiated neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2013;40:881–8.

    Article  CAS  PubMed  Google Scholar 

  173. van Essen M, Sundin A, Krenning EP, Kwekkeboom DJ, et al. Neuroendocrine tumours: the role of imaging for diagnosis and therapy. Nat Rev Endocrinol. 2014;10:102–14.

    Article  PubMed  CAS  Google Scholar 

  174. Rufini V, Baum RP, Castaldi P, Treglia G, De Gaetano AM, et al. Role of PET/CT in the functional imaging of endocrine pancreatic tumors. Abdom Imaging. 2012;37:1004–20.

    Article  PubMed  Google Scholar 

  175. Orlefors H, Sundin A, Ahlström H, Bjurling P, Bergström M, Lilja A, et al. Positron emission tomography with 5-hydroxytryptophan in neuroendocrine tumors. J Clin Oncol. 1998;16:2534–41.

    CAS  PubMed  Google Scholar 

  176. Orlefors H, Sundin A, Garske U, Juhlin C, Oberg K, Skogseid B, et al. Whole-body 11C-5-hydroxytryptophan positron emission tomography as a universal imaging technique for neuroendocrine tumors – comparison with somatostatin receptor scintigraphy and computed tomography. J Clin Endocrinol Metab. 2005;90:3392–400.

    Article  CAS  PubMed  Google Scholar 

  177. Buck AC, Schirrmeister HH, Guhlmann CA, Diederichs CG, Shen C, Buchmann I, et al. Ki-67 immunostaining in pancreatic cancer and chronic active pancreatitis: does in vivo FDG uptake correlate with proliferative activity? J Nucl Med. 2001;42:721–5.

    CAS  PubMed  Google Scholar 

  178. Shields AF, Grierson JR, Dohmen BM, Machulla HJ, Stayanoff JC, Lawhorn-Crews JM, et al. Imaging proliferation in vivo with [F-18]FLT and positron emission tomography. Nat Med. 1998;4:1334–6.

    Article  CAS  PubMed  Google Scholar 

  179. von Forstner C, Egberts JH, Ammerpohl O, Niedzielska D, Buchert R, Mikecz P, et al. Gene expression patterns and tumor uptake of 18F-FDG, 18FFLT, and 18F-FEC in PET/MRI of an orthotopic mouse xenotransplantation model of pancreatic cancer. J Nucl Med. 2008;49:1362–70.

    Article  CAS  Google Scholar 

  180. Wang X, Fani M, Schulz S, Rivier J, Reubi JC, Maecke HR. Comprehensive evaluation of a somatostatin-based radiolabelled antagonist for diagnostic imaging and radionuclide therapy. Eur J Nucl Med Mol Imaging. 2012;39:1876–85.

    Article  CAS  PubMed  Google Scholar 

  181. Marsouvanidis PJ, Maina T, Sallegger W, Krenning EP, de Jong M, Nock BA. 99mTc radiotracers based on human GRP(18–27): synthesis and comparative evaluation. J Nucl Med. 2013;54:1797–803.

    Article  CAS  PubMed  Google Scholar 

  182. Richter S, Wuest M, Krieger SS, Rogers BE, Friebe M, Bergmann R, et al. Synthesis and radiopharmacological evaluation of a high-affinity and metabolically stabilized 18F-labeled bombesin analogue for molecular imaging of gastrin-releasing peptide receptor-expressing prostate cancer. Nucl Med Biol. 2013;40:1025–34.

    Article  CAS  PubMed  Google Scholar 

  183. Varasteh Z, Aberg O, Velikyan I, Lindeberg G, Sörensen J, Larhed M, et al. In vitro and in vivo evaluation of a18F-labeled high affinity NOTA conjugated bombesin antagonist as a PET ligand for GRPR-targeted tumor imaging. PLoS ONE. 2013;8, e81932.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Tabacchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Tabacchi, E., Nanni, C., Bossert, I., Maffione, A.M., Fanti, S. (2016). Diagnostic Applications of Nuclear Medicine: Pancreatic Cancer. In: Strauss, H., Mariani, G., Volterrani, D., Larson, S. (eds) Nuclear Oncology. Springer, Cham. https://doi.org/10.1007/978-3-319-26067-9_17-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26067-9_17-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-26067-9

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Diagnostic Applications of Nuclear Medicine: Pancreatic Cancer
    Published:
    22 April 2022

    DOI: https://doi.org/10.1007/978-3-319-26067-9_17-4

  2. Diagnostic Applications of Nuclear Medicine: Pancreatic Cancer
    Published:
    02 June 2017

    DOI: https://doi.org/10.1007/978-3-319-26067-9_17-3

  3. Diagnostic Applications of Nuclear Medicine: Pancreatic Cancer
    Published:
    28 March 2017

    DOI: https://doi.org/10.1007/978-3-319-26067-9_17-2

  4. Original

    Diagnostic Applications of Nuclear Medicine: Pancreatic Cancer
    Published:
    04 October 2016

    DOI: https://doi.org/10.1007/978-3-319-26067-9_17-1