Skip to main content
Log in

Diagnosis of pancreatic cancer using fluorine-18 fluorodeoxyglucose positron emission tomography (FDG PET) —Usefulness and limitations in “clinical reality”—

  • Review
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

The present review will provide an overview of the literature concerning the FDG PET diagnosis of pancreatic cancer and a summary from our experience of 231 cases of pancreatic lesions. FDG PET can effectively differentiate pancreatic cancer from benign lesion with high accuracy. Newlydeveloped PET scanners can detect small pancreatic cancers, up to 7 mm in diameter, by their high resolution, which could make a great contribution to the early detection of resectable and potentially curable pancreatic cancers. FDG PET is useful and cost-beneficial in the pre-operative staging of pancreatic cancer because an unexpected distant metastasis can be detected by whole-body PET in about 40% of the cases, which results in avoidance of unnecessary surgical procedures. FDG PET is also useful in evaluation of the treatment effect, monitoring after the operation and detection of recurrent pancreatic cancers. However, there are some drawbacks in PET diagnosis. A relatively wide overlap has been reported between semiquantitative uptake values obtained in cancers and those in inflammatory lesions. As for false-positive cases, active and chronic pancreatitis and autoimmune pancreatitis sometimes show high FDG accumulation and mimic pancreatic cancer with a shape of focal uptake. There were 8 false negative cases in the detection of pancreatic cancer by FDG PET, up to 33 mm in diameter, mainly because of their poor cellularity in cancer tissues. In addition, there are 19% of cancer cases with a decline in FDG uptake from 1 hr to 2 hr scan. FDG PET was recently applied to and was shown to be feasible in the differential diagnosis of cystic pancreatic lesions, such as intraductal papillary mucinous tumor of the pancreas. Further investigations are required to clarify the clinical value of FDG PET in predicting prognosis of the pancreatic patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Statistical Information Bureau, Ministry of Health, Welfare, and Labor. Statistics of Japanese Population: 1997. Tokyo, Japan, 1997.

  2. American Cancer Society. Cancer facts and figures 1991. Atlanta, 1991.

  3. Bottger T, Hassdenteufel A, Boddin J, Kuchle R, Junginger T, Prellwitz W. Value of the CA 19–9 tumor markers in differential diagnosis of space occupying lesions of the head of the pancreas.Chirurg 1996; 67: 1007–1011.

    Article  PubMed  CAS  Google Scholar 

  4. Lynch HT, Fusaro L, Lynch JF. Familial pancreatic cancer: a family study.Pancreas 1992; 7: 511–515.

    Article  PubMed  CAS  Google Scholar 

  5. Zimny M, Bares R, Fab J, Adam G, Cremerius U, Dohmen B, et al. Fluorine-18 fluorodeoxyglucose positron tomography in the differential diagnosis of pancreatic carcinoma: a report of 106 cases.Eur J Nucl Med 1997; 24: 678–682.

    PubMed  CAS  Google Scholar 

  6. Matsuno M. Annual report of national surveillance of pancreatic cancers in Japan.Jpn Panc Soc 2001; 16: 115–147. (Japanese)

    Google Scholar 

  7. Kubota K, Matsuzawa T, Fujiwara T, Ito M, Hatazawa J, Ishiwata K, et al. Differential diagnosis of lung tumor with positron emission tomography: a prospective study.J Nucl Med 1990; 31: 1927–1932.

    PubMed  CAS  Google Scholar 

  8. Wahl RL, Cody RL, Hutchins GD. Primary and metastatic breast carcinoma: initial clinical evaluation with PET with the radiolabeled glucose analog 2-[18F]-fluoro-2-deoxy-d-glucose.Radiology 1991; 179: 765–770.

    PubMed  CAS  Google Scholar 

  9. Strauss LG, Clorius JH, Schlag P, Lehner B, Kimmig B, Engenhart R, et al. Recurrence of colorectal tumors: PET evaluation.Radiology 1989; 170: 329–332.

    PubMed  CAS  Google Scholar 

  10. Yonekura Y, Benua RS, Brill AB, Som P, Yeh SD, Kemeny NE, et al. Increased accumulation of 2-deoxy-2-[18F]Fluoro-d-glucose in liver metastases from colon carcinoma.J Nucl Med 1982; 23: 1133–1137.

    PubMed  CAS  Google Scholar 

  11. Zanzi I, Robeson W, Vinciguerra V. Positron emission tomography (PET) imaging in patients with carcinoma of the pancreas [abstract]. Proc. A.S.C.O. 9: A434, 1990.

    Google Scholar 

  12. Klever P, Bares R, Fass J, Bull U, Schumpelick V. PET with fluorine-18 deoxyglucose for pancreatic disease.Lancet 1992; 340: 1158.

    Article  PubMed  CAS  Google Scholar 

  13. Bares R, Klever P, Hauptmann S, et al. F-18 fluorodeoxyglucose PETin vivo evaluation of pancreatic glucose metabolism for detection of pancreatic cancer.Radiology 1994; 192: 79–86.

    PubMed  CAS  Google Scholar 

  14. Inokuma T, Tamaki N, Torizuka T, Magata Y, Fujii M, Yonekura Y, et al. Evaluation of pancreatic tumors with positron emission tomography and F-18 fluorodeoxyglucose: comparison with CT and US.Radiology 1995; 195: 345–352.

    PubMed  CAS  Google Scholar 

  15. Shreve PD. Focal fluorine-18 fluorodeoxyglucose accumulation in inflammatory pancreatic disease.Eur J Nucl Med 1998; 25: 259–264.

    Article  PubMed  CAS  Google Scholar 

  16. Kasperk RK, Riesener KP, Wilms K, Schumpelick V. Limited value of positron emission tomography in treatment of pancreatic cancer: surgeon's view.World J Surg 2001; 25: 1134–1139.

    PubMed  CAS  Google Scholar 

  17. Sendler A, Avril N, Helmberger H, Stollfus J, Weber W, Bengel F, et al. Preoperative evaluation of pancreatic masses with positron emission tomography using18F-fluorodeoxyglucose: Diagnostic limitations.World J Surg 2000; 24: 1121–1129.

    Article  PubMed  CAS  Google Scholar 

  18. Inokuma T, Tamaki N, Torizuka T, Fujita T, Magata Y, Yonekura Y, et al. Value of fluorine-18-fluorodeoxyglucose and thallium-201 in the detection of pancreatic cancer.J Nucl Med 1995; 36: 229–235.

    PubMed  CAS  Google Scholar 

  19. Higashi T, Tamaki N, Honda T, Torizuka T., Kimura T, Inokuma T, et al. Expression of glucose transporters in human pancreatic tumors compared with increased FDG accumulation in PET study.J Nucl Med 1997; 38: 1337–1344.

    PubMed  CAS  Google Scholar 

  20. Higashi T, Tamaki N, Torizuka T, Nakamoto Y, Sakahara H, Kimura T, et al. FDG uptake, GLUT-1 glucose transporter and cellularity in human pancreatic tumors.J Nucl Med 1998; 39: 1727–1735.

    PubMed  CAS  Google Scholar 

  21. Higashi T, Sakahara H, Torizuka T, Nakamoto Y, Kanamori S, Hiraoka M, et al. Evaluation of intraoperative radiation therapy for unresectable pancreatic cancer with FDG PET.J Nucl Med 1999; 40: 1424–1433.

    PubMed  CAS  Google Scholar 

  22. Nakamoto Y, Higashi T, Sakahara H, Tamaki N, Kogire M, Imamura M, et al. Contribution of PET in the detection of liver metastases from pancreatic tumours.Clinical Radiology 1999; 54: 248–252.

    Article  PubMed  CAS  Google Scholar 

  23. Nakamoto Y, Sakahara H, Higashi T, Saga T, Sato N, Okazaki K, et al. Autoimmune pancreatitis with F-18 fluoro-2-deoxy-d-glucose PET findings.Clin Nucl Med 1999; 24: 778–780.

    Article  PubMed  Google Scholar 

  24. Nakamoto Y, Higashi T, Sakahara H, Tamaki N, Itoh K, Imamura M, et al. Evaluation of pancreatic islet cell tumors by fluorine-18 fluurdeoxyglucose positron emission tomography: comparison with other modalities.Clin Nucl Med 2000; 25: 115–119.

    Article  PubMed  CAS  Google Scholar 

  25. Nakamoto Y, Higashi T, Sakahara H, Tamaki N, Kogire M, Doi R, et al. Delayed FDG-PET Scan for Differentiation Between Malignant and Benign Lesions in the Pancreas.Cancer 2000; 89: 2547–2554.

    Article  PubMed  CAS  Google Scholar 

  26. Nakamoto Y, Saga T, Ishimori T, Higashi T, Mamede M, Okazaki K, et al. FDG-PET of autoimmune-related pancreatitis: preliminary results.Eur J Nucl Med 2000; 27: 1835–1838.

    Article  PubMed  CAS  Google Scholar 

  27. Kubota K. From tumor biology to clinicals PET: A review of positron emission tomography (PET) in oncology.Ann Nucl Med 2001; 15: 471–486.

    PubMed  CAS  Google Scholar 

  28. Pessin JE, Bell GI. Mammalian facilitative glucose transporter family: structure and molecular regulation.Annu Rev Physiol 1992; 54: 911–930.

    Article  PubMed  CAS  Google Scholar 

  29. Higashi T, Saga T, Nakamoto Y, Ishimori T, Mamede MH, Wada M, et al. Relationship between retention index in dual-phase18F-FDG-PET, hexokinase-II and glucose transporter-1 expression in pancreatic cancers.J Nucl Med 2002; 43: 173–180.

    PubMed  CAS  Google Scholar 

  30. Reske S, Grillenberger K, Glatting G Port M, Hildebrandt M, Gansauge F, et al. Overexpression of glucose transporter 1 and increased FDG uptake in pancreatic carcinoma.J Nucl Med 1997; 38: 1344–1348.

    PubMed  CAS  Google Scholar 

  31. Nishioka T, Oda Y, Seino Y, Yamamoto T, Inagaki N, Yano H, et al. Distribution of glucose transporters in human brain tumors.Cancer Res 1992; 52: 3972–3979.

    PubMed  CAS  Google Scholar 

  32. Yamamoto T, Seino Y, Fukumoto H, Koh G, Yano H, Inagaki N, et al. Over-expression of facilitative glucose transporter genes in human cancer.Biochem Biophys Res Commun 1990; 170: 223–230.

    Article  PubMed  CAS  Google Scholar 

  33. Smith TA. Facilitative glucose transporter expression in human cancer tissue.Br J Biomed Sci 1999; 56: 285–292.

    PubMed  CAS  Google Scholar 

  34. Ito T, Noguchi Y, Satoh S, Hayashi H, Inayama Y, Kitamura H. Expression of facilitative glucose transporter isoforms in lung carcinomas: its relation to histologic type, differetiation grade, and tumor grade.Mod Pathol 1998; 11: 437–443.

    PubMed  CAS  Google Scholar 

  35. Kawamura T, Kusakabe T, Sugino T, Watanabe K, Fukuda T, Nashimoto A, et al. Expression of glucose transporter-1 in human gastric carcinoma: association with tumor aggressiveness, metastasis, and patient survival.Cancer 2001; 92: 634–641.

    Article  PubMed  CAS  Google Scholar 

  36. Younes M, Brown RW, Mody DR, Fernandez L, Laucirica R. GLUT1 expression in human breast carcinoma: Correlation with known prognostic markers.Anticancer Res 1995; 15: 2895–2898.

    PubMed  CAS  Google Scholar 

  37. Wilson JE. Hexokinase.Rev Physiol Biochem Pharmacol 1995; 126: 65–198.

    Article  PubMed  CAS  Google Scholar 

  38. Golshani-Hebroni SG, Bessmann SP. Hexokinase binding to mitochondria: a basis for proliferative energy metabolism.J Bioenergetics Biomembranes 1997; 29: 331–338.

    Article  CAS  Google Scholar 

  39. Board M, Humm S, Newsholme EA. Maximum activities of key enzymes of glycolysis, glutaminolysis, pentose phosphate pathway and tricarboxylic acid acyte in normal, neoplastic and suppressed cells.Biochem J 1990; 265: 503–509.

    PubMed  CAS  Google Scholar 

  40. Knox WE, Jamdar SC, Davis PA. Hexokinase, differentiation and growth rates of transplanted rat tumors.Cancer Res 1970; 30: 2240–2244.

    PubMed  CAS  Google Scholar 

  41. Smith TA. FDG uptake, tumour characteristics and response to therapy: a review.Nucl Med Commun 1998; 19: 97–105.

    Article  PubMed  CAS  Google Scholar 

  42. Nelson CA, Wang JQ, Leav I, Crane PD. The interaction among glucose transporter, hexokinase, and glucose-6-phosphate with respect to3H-2-deoxyglucose retention in murine tumor models.Nucl Med Biol 1996; 23: 533–541.

    Article  PubMed  CAS  Google Scholar 

  43. Torizuka T, Tamaki N, Inokuma T, Magata Y, Sasayama S, Yonekura Y, et al.In vivo assessments of glucose metabolism in hepatocellular carcinoma with FDG PET.J Nucl Med 1995; 36: 1811–1817.

    PubMed  CAS  Google Scholar 

  44. Sokoloff L, Reivich M, Kennedy C, Des Rosiers MH, Patlak CS, Pettigrew KD, et al. The [14C] deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat.J Neurochemistry 1977; 28: 897–916.

    Article  CAS  Google Scholar 

  45. Lodge MA, Lucas JD, Marsden PK, Cronin BF, O'Doherty MJ, Smith MA. A PET study of18FDG uptake in soft tissue masses.Eur J Nucl Med 1999; 26: 22–30.

    Article  PubMed  CAS  Google Scholar 

  46. Boerner AR, Weckesser M, Herzog H, Schmitz T, Audretsch W, Nitz U, et al. Optimal scan time for fluorine-18 fluorode-oxyglucose positron emission tomography in breast cancer.Eur J Nucl Med 1999; 26: 226–230.

    Article  PubMed  CAS  Google Scholar 

  47. Kubota K, Itoh M, Ozaki K, Ono S, Tashiro M, Yamaguchi K, et al. Advantage of delayed imaging of whole-body FDG-PET for tumor detection.Eur J Nucl Med 2001; 28: 696–703.

    Article  PubMed  CAS  Google Scholar 

  48. Hustinx R, Smith RJ, Benard F, Rosenthal DI, Machtay M, Farber LA, et al. Dual time point fluorine-18 fluorodeoxyglucose positron emission tomography: a potential method to differentiate malignancy from inflammation and normal tissue in the head and neck.Eur J Nucl Med 1999; 26: 1345–1348.

    Article  PubMed  CAS  Google Scholar 

  49. Matthies A, Hickeson M, Cuchiara A, Alavi A. Dual time point18F-FDG PET for the evaluation of pulmonary nodules.J Nucl Med 2002; 43: 871–875.

    PubMed  Google Scholar 

  50. Koyama K, Okamura T, Kawabe J, Ozawa N, Higashiyama S, Ochi H, et al. The usefulness of18F-FDG PET images obtained 2 hours after intravenous injection in liver tumor.Ann Nucl Med 2002; 16: 169–176.

    PubMed  Google Scholar 

  51. Fischman AJ, Alpert NM. FDG-PET in oncology: There's more to it than looking at pictures.J Nucl Med 1993; 34: 6–11.

    PubMed  CAS  Google Scholar 

  52. Hamberg LM, Hunter GJ, Alpert NM, Choi NC, Babich JW, Fischman AJ. The dose uptake ratio as an index of glucose metabolism: useful parameter or oversimplification.J Nucl Med 1994; 35: 1308–1312.

    PubMed  CAS  Google Scholar 

  53. Keyes JW. Standard uptake or silly useless value?J Nucl Med 1995; 36: 1836–1839.

    PubMed  Google Scholar 

  54. Oda K, Toyama H, Umehara, K, Ikoma Y, Kimura Y, Senda M. Comparison of parametric FBP and OS-EM reconstruction algorithm images for PET dynamic study.Ann Nucl Med 2001; 15: 417–423.

    Article  PubMed  CAS  Google Scholar 

  55. Nitzche EU, Hoegerle S, Mix M, Brink I, Otte A, Moser E, Imdahl A. Non-invasive differentiation of pancreatic lesions: is analysis of FDG kinetics superior to semiquantitative uptake value analysis?Eur J Nucl Med Mol Imaging 2002; 29: 237–242.

    Article  Google Scholar 

  56. Strauss LG. Fluorine-18 deoxyglucose and false-positive results: a major problem in the diagnostics of oncological patients.Eur J Nucl Med 1996; 23: 1409–1415.

    Article  PubMed  CAS  Google Scholar 

  57. Kato T, Fukatsu H, Ito K, Tadokoro M, Ota T, Ikeda M, et al. Fluorodeoxyglucose positron emission tomography in pancreatic cancer: unsolved problem.Eur J Nucl Med 1995; 22: 32–39.

    Article  PubMed  CAS  Google Scholar 

  58. Stumpe KD, Dazzi H, Schaffner A, von Schulthess GK. Infection imaging using whole-body FDG-PET.Eur J Nucl Med 2000; 27: 822–832.

    Article  PubMed  CAS  Google Scholar 

  59. Kubota R, Kubota K, Yamada S. FDG accumulation in tumor tissue (Editorial).J Nucl Med 1993; 34: 419–421.

    PubMed  CAS  Google Scholar 

  60. Kubota R, Yamada S, Kubota K, Ishiwata K, Tamahashi N, Ido T. Intratumoral distribution of fluorine-18-fluorodeoxyglucosein vivo: high accumulation in macrophages and granuation tissues studied by microautoradiography.J Nucl Med 1992; 33: 1972–1980.

    PubMed  CAS  Google Scholar 

  61. Kubota R, Kubota K, Yamada S, Tada M, Ido T, Tamahashi N. Microautoradiographic study for the differentiation of intratumoral macrophages, granuation tissues and cancer cells by the dynamics of fluorine-18-fluoro-deoxyglucose uptake.J Nucl Med 1994; 35: 104–112.

    PubMed  CAS  Google Scholar 

  62. Higashi K, Clavo AC, Wahl RL. Does FDG uptake measure proliferative activity of human cancer cells?In vitro comparison with DNA flow cytometry and tritiated thymidine uptake.J Nucl Med 1993; 34: 414–419.

    PubMed  CAS  Google Scholar 

  63. Berger KL, Nicholson SA, Dehdashtl F, Siegel BA. FDG PET evaluation of mucinous neoplasms: correlation of FDG uptake with histopathologic features.AJR Am J Roentgenol 2000; 174: 1005–1008.

    PubMed  CAS  Google Scholar 

  64. Lippitz B, Cremerlus U, Mayfrank L, Bertalanffy H, Raoofl R, Wels J, et al. PET-study of intracranial meningiomas: correlation with histopathology, cellularity and proliferation rate.Acta Neurochir Suppl (Wien) 1996; 65: 108–111.

    CAS  Google Scholar 

  65. Folpe AL, Lyles RH, Sprouse JT, Conrad EU, Eary JF. (F-18) fluorodeoxyglucose positron emission tomography as a predictor of pathologic grade and other prognosis variables in bone and soft tissue sarcoma.Clin Cancer Res 2000; 6: 1279–1287.

    PubMed  CAS  Google Scholar 

  66. Kitagawa Y, Sano K, Nishizawa S, Nakamura M, Ogasawara T, Sadato N, et al. FDG-PET for prediction of tumour aggressiveness and response to intra-arterial chemotherapy and radiotherapy in head and neck cancer.Eur J Nucl Med Mol Imaging 2003; 30; 63–71.

    Article  PubMed  CAS  Google Scholar 

  67. Diederichs CG, Staib L, Glatting G Beger HG, Reske SN. FDG-PET: elevated plasma glucose reduces both uptake and detection rate of pancreatic malignancies.J Nucl Med 1998; 39: 1030–1033.

    PubMed  CAS  Google Scholar 

  68. Friess H, Langhans J, Ebert M, Beger HG, Stollfuss J, Reske SN, et al. Diagnosis of pancreatic cancer by 2[18F]-fluoro-2-deoxy-d-glucose positron emission tomography.Gut 1995; 36: 771–777.

    Article  PubMed  CAS  Google Scholar 

  69. Torizuka T, Clavo AC, Wahl RL. Effect of hyperglycemia onin vitro tumor uptake of tritiated FDG, thymidine,l-methionine andl-leucine.J Nucl Med 1997; 38: 382–386.

    PubMed  CAS  Google Scholar 

  70. Hahn T, Hahn D, Blaschitz A, Korgun ET, Desoye G, Dohr G. Hyperglycaemia-induced subcellular redistribution of GLUT1 glucose transporters in cultured human term placental trophoblast cells.Diabetologia 2000; 43: 173–180.

    Article  PubMed  CAS  Google Scholar 

  71. Egert S, Nguyen N, Schwaiger M. Myocardial glucose transporter GLUT1: translocation induced by insulin and ischemia.J Mol Cell Cardiol 1999; 31: 1337–1344.

    Article  PubMed  CAS  Google Scholar 

  72. Klip A, Tsakiridis T, Marette A, Ortiz PA. Regulation of expression of glucose transporters by glucose: a review of studiesin vivo and in cell cultures.FASEB J 1994; 8: 43–53.

    PubMed  CAS  Google Scholar 

  73. Hahn T, Barth S, Hofmann W, Reich O, Lang I, Desoye G. Hyperglycemia regulates the glucose-transport system of clonal choriocarcinoma cellsin vitro. A potential molecular mechanism contributing to the adjunct effect of glucose in tumor therapy.Int J Cancer 1998; 78: 353–360.

    Article  PubMed  CAS  Google Scholar 

  74. Delbeke D, Rose DM, Chapman WC, et al. Optimal interpretation of FDG-PET in the diagnosis, staging and management of pancreatic carcinoma.J Nucl Med 1999; 40: 1784–1791.

    PubMed  CAS  Google Scholar 

  75. Koyama K, Okamura T, Kawabe J, Nakata B, Chung KH, Ochi H, et al. Diagnostic usefulness of FDG PET for pancreatic mass lesions.Ann Nucl Med 2001; 15: 217–224.

    Article  PubMed  CAS  Google Scholar 

  76. Torizuka T, Fisher SJ, Brown RS, Wahl RL. Effect of insulin on uptake of FDG by experimental mammary carcinoma in diabetic rats.Radiology 1998; 208: 499–504.

    PubMed  CAS  Google Scholar 

  77. Imdahl A, Nitzche E, Krautmann F, Hogerle S, Boos S, Einert A, et al. Evaluation of positom emission tomography with 2-[18F]fluoro-2-deoxy-d-glucose for the differentiation of chronic pancreatitis and pancreatic cancer.Br J Surg 1999; 86: 194–199.

    Article  PubMed  CAS  Google Scholar 

  78. Stollfuss JC, Glatting G, Fries H, Kocher F, Berger HG, Reske SN. 2-(fluorine-18)-fluoro-2-deoxy-d-glucose PET in detection of pancreatic cancer: value of quantitative image interpretation.Radiology 1995; 195: 339–344.

    PubMed  CAS  Google Scholar 

  79. Nitzche EU, Hoegerle S, Mix M, Brink I, Otte A, Moser E, et al. Non-invasive differentiation of pancreatic lesions: is analysis of FDG kinetics superior to semiquantitative uptake value analysis?Eur J Nucl Med Mol Imaging 2002; 29: 237–242.

    Article  Google Scholar 

  80. Yoshida K, Toki F, Takeuchi T, Watanabe S, Shiratori K, Hayashi N. Chronic pancreatitis caised by an autoimmune abnormality: proposal of the concept of autoimmune pancreatitis.Dig Dis Sci 1995; 40: 1561–1568.

    Article  PubMed  CAS  Google Scholar 

  81. Horiuchi A, Kawa S, Akamatsu T, Aoki Y, Mukawa K, Furuya N, et al. Characteristic pancreatic duct appearance in autoimmune chronic pancreatitis: A case report and review of the Japanese literature.Am J Gastroenterol 1998; 93: 260–263.

    Article  PubMed  CAS  Google Scholar 

  82. Ohana M, Okazaki K, Hajiro K, Kobashi Y. Multiple pancreatic masses associated with autoimmunity.Am J Gastroenterol 1998; 93: 99–102.

    Article  PubMed  CAS  Google Scholar 

  83. Horiuchi A, Kaneko T, Yamamura N, Nagata A, Nakamura T, Akamatsu T, et al. Autoimmune chronic pancreatitis stimulating pancreatic lymphoma.Am J Gastroenterol 1996; 91: 2607–2609.

    PubMed  CAS  Google Scholar 

  84. Irie H, Honda H, Baba S, Kuroiwa T, Yoshimitsu K, Tajima T, et al. Autoimmune pancreatitis: CT and MR characteristics.AJR Am J Roentgenol 1998; 170: 1323–1327.

    PubMed  CAS  Google Scholar 

  85. Furukawa N, Muranaka T, Yasumori K, Matsubayashi R, Hayashida K, Arita Y. Autoimmune pancreatitis: Radiologic findings in three histologically proven case.J Comput Assist Tomogr 1998; 22: 880–883.

    Article  PubMed  CAS  Google Scholar 

  86. Zimny M, Buell U, Diederichs CG, Reske SN. Falsepositive FDG PET in patients with pancreatic masses: an issue of proper patient selection?.Eur J Nucl Med 1998; 25: 1352.

    PubMed  CAS  Google Scholar 

  87. Warshaw AL, Fernandez-Del Castillo C. Pancraatic carcinoma.New Engl J Med 1992; 221: 133–148.

    Google Scholar 

  88. Riker A, Libutti SK, Bartlett DL. Advances in the early detection, diagnosis, and staging of pancreatic cancer.Surg Oncol 1997; 6: 157–169.

    Article  PubMed  CAS  Google Scholar 

  89. Franke C, Klapdor R, Meyerhoff K, Schauman M. 18-FDG positron emission tomography of the pancreas: diagnostic benefit in the follow-up of pancreatic carcinoma.Anticancer Res 1999; 19: 2437–2442.

    PubMed  CAS  Google Scholar 

  90. Frohlich A, Diederichs CG, Staib L, Vogel J, Beger HG, Reske SN. Detection of liver metastases from pancreatic cancer using FDG PET.J Nucl Med 1999; 40: 250–255.

    PubMed  CAS  Google Scholar 

  91. Jadvar H, Fischman A. 2. Diagnostic Utility of FDG-PET in the Clinical Management of Patients with Suspected Recurrent Pancreatic Carcinoma after Whipple Procedure.Clin Positron Imaging 2000; 3: 156.

    Article  PubMed  Google Scholar 

  92. Benassai G, Mastrorilli M, Mosella F, Mosella G. Significance of lymph node metastases in the surgical management of pancreatic head carcinoma.J Exp Clin Cancer Res 1999; 18: 23–28.

    PubMed  CAS  Google Scholar 

  93. Allison DC, Piantadosi S, Hruban RH, Dooley WC, Fishman EK, Yeo CJ, et al. DNA content and other factors associated with ten-year survival after resection of pancreatic carcinoma.J Surg Oncol 1998; 67: 151–159.

    Article  PubMed  CAS  Google Scholar 

  94. Gebhardt C, Meyer W, Reichel M, Wunsch PH. Prognostic factor in the operative treatment of ductal pancreatic carcinoma.Langenbecks Arch Surg 2000; 385: 14–20.

    Article  PubMed  CAS  Google Scholar 

  95. Nitecki SS, Sarr MG, Colby TV, van Heerden JA. Longterm survival after resection for ductal adenocarcinoma of the pancreas. Is it really improving.Ann Surg 1995; 221: 59–66.

    Article  PubMed  CAS  Google Scholar 

  96. Speti C, Bonadimani B, Pasquali C, Piccoli A, Cappellazzo F, Rugge M, et al. Ductal adenocarcinoma of the pancreas: clinicopathologic features and survival.Tumori 1993; 79: 325–330.

    Google Scholar 

  97. Bares R, Dohmen B, Cremerius U, Fass J, Teusch M, Buell U, et al. Results of positron emission tomography with fluorine-18-labeled fluorodeoxyglucose in differential diagnosis and staging of pancreatic carcinoma.Radiologe 1996; 36: 435–440.

    Article  PubMed  CAS  Google Scholar 

  98. Fortner JG, Klimstra DS, Senie RT, Maclean BJ. Tumor size is the primary prognosticator for pancreatic cancer after regional pancreatectomy.Ann Surg 1996; 223: 147–153.

    Article  PubMed  CAS  Google Scholar 

  99. Hermanek P, Sobin LH.TNM classification of malignant tumors. 4th revised edition. New York, NY: Springer-Verlag, 1987.

    Google Scholar 

  100. Japan Pancreas Society.Classification on pancreatic carcinoma. (The 4th edition/First English edition) June 1996. Kanehara & Co., LTD., Tokyo, Japan

    Google Scholar 

  101. Bakkevold KE, Arnesjo B, Kambestad B. Carcinoma of the pancreas and papilla of Vater—assessment of resectability and factors influencing resectability in stage I carcinomas. A prospective multicentre trial in 472 patients.Eur J Surg Oncol 1992; 18: 494–507.

    PubMed  CAS  Google Scholar 

  102. Hustinx R, Dolin RJ, Benard F, Bhatnagar A, Chakraborty D, Smith RJ, et al. Impact of attenuation correction on the accuracy of FDG-PET in patients with abdominal tumors: a free-response ROC analysis.Eur J Nucl Med 2000; 27: (9): 1365–1371.

    Article  PubMed  CAS  Google Scholar 

  103. Yasuda S, Ide M, Fujii H, Nakahara T, Mochizuki Y, Takahashi W, et al. Application of positron emission tomography imaging to cancer screening.Br J Cancer 2000; 83: 1607–1611.

    Article  PubMed  CAS  Google Scholar 

  104. Higashi T, Fisher SJ, Brown RS, Nakada K, Walter GL, Wahl RL. Evaluation of the Early Effect of Local Irradiation on Normal Rodent Bone Marrow Metabolism using Fluorine-18-FDG; Preclinical Studies for PET.J Nucl Med 2000; 41: 2026–2035.

    PubMed  CAS  Google Scholar 

  105. Maisey NR, Webb A, Flux GD, Padhani A, Cunningham DC, Ott RJ, et al. FDG-PET in the prediction of survival of patients with cancer of the pancreas: a pilot study.Br J Cancer 2000; 83: 287–293.

    Article  PubMed  CAS  Google Scholar 

  106. Higashi K, Ueda Y, Arisaka Y, Sakuma T, Nambu Y, Oguchi M, et al.18F-FDG uptake as a biologic prognostic factor for recurrence in patiens with surgically resected non-small cell lung cancer.J Nucl Med 2002; 43: 39–45.

    PubMed  Google Scholar 

  107. Jeong HJ, Min JJ, Park JM, Chung JK, Kim BT, Jeong JM, et al. Determination of the prognostic value of [(18)F]fluorodeoxyglucose uptake by using positron emission tomography in patients with non-small cell lung cancer.Nucl Med Commun 2002; 23: 865–870.

    Article  PubMed  CAS  Google Scholar 

  108. Halfpenny W, Hain SF, Biassoni L, Maisey MN, Sherman JA, McGurk M. FDG-PET. A possible prognostic factor in head and neck cancer.Br J Cancer 2002; 86: 512–516.

    Article  PubMed  CAS  Google Scholar 

  109. Oku S, Nakagawa K, Momose T, Kumakura Y, Abe A, Watanabe T, et al. FDG-PET after radiotherapy is a good prognostic indicator of rectal cancer.Ann Nucl Med 2002; 16: 409–416.

    Article  PubMed  Google Scholar 

  110. Brun E, Kjellen E, Tenvall J, Ohlsson T, Sandell A, Perfekt R, et al. FDG PET studies during treatment: prediction of therapy outcome in head and neck squamous cell carcinoma.Head Neck 2002; 24: 127–135.

    Article  PubMed  Google Scholar 

  111. Kato H, Kuwano H, Nakajima M, Miyazaki T, Yoshikawa M, Masuda N, et al. Usefulness of positron emission tomography for assessing the response of neoadjuvant chemoradiotherapy in patients with esophageal cancer.Am J Surg 2002; 184: 279–283.

    Article  PubMed  Google Scholar 

  112. Naumann R, Vaic A, Beuthien-Baumann B, Bredow J, Kropp J, Kittner T, et al. Prognostic value of positron emission tomography in the evaluation of post-treatment residual mass in patients with Hodgkin's disease and non-Hodgkin's lymphoma.Br J Haematol 2001; 115: 793–800.

    Article  PubMed  CAS  Google Scholar 

  113. Dunagan D, Chin R Jr, McCain T, Case L, Harkness B, Oaks T, et al. Staging by positron emission tomography predicts survival in patients with non-small cell lung cancer.Chest 2001; 119: 333–339.

    Article  PubMed  CAS  Google Scholar 

  114. Nakata B, Nishimura S, Ishikawa T, Ohira M, Nishino H, Kawabe J, et al. Prognostic predictive value of18F-fluorodeoxyglucose positron emission tomography for patients with pancreatic cancer.Int J Oncol 2001; 19: 53–58.

    PubMed  CAS  Google Scholar 

  115. Nakata B, Chung YS, Nishimura S, Nishihara T, Sakurai Y, Sawada T, et al.18F-fluorodeoxyglucose positron emission tomography and the prognosis of patients with pancreatic adenocarcinoma.Cancer 1997; 79: 695–699.

    Article  PubMed  CAS  Google Scholar 

  116. Zimny M, Fass J, Bares R, Cremerius U, Sabri O, Buechin P, et al. Fluorodeoxyglucose positron emission tomography and the prognosis of pancreatic carcinoma.Scand J Gastroenterol 2000; 35: 883–888.

    Article  PubMed  CAS  Google Scholar 

  117. Sugiura H, Kondo S, Islam HK, Ito K, Ono K, Morikawa T, et al. Clinicopathologic features and outcomes of intraductal papillary-mucinous tumors of the pancreas.Hepatogastroenterology 2002; 49: 263–267.

    PubMed  Google Scholar 

  118. Yamao K, Ohashi K, Nakamura T, Suzuki T, Watanabe Y, Shimizu Y, et al. Evaluation of various imaging methods in the differential diagnosis of intraductal papillary-mucinous tumor (IPMT) of the pancreas.Hepatogastroenterology 2001: 48: 962–966.

    PubMed  CAS  Google Scholar 

  119. Sperti C, Pasquali C, Chierichetti F, Liessi G, Ferlin G, Pedrazzoli S. Value of 18-fluorodeoxyglucose positron emission tomography in the management of patients with cystic tumors of the pancreas.Ann Surg 2001; 234: 675–680.

    Article  PubMed  CAS  Google Scholar 

  120. Higashi T, Saga T, Ishimori T, Mamede MH, Maetani Y, Ito K, et al. Diagnostic Value of18F Fluorodeoxyglucose Positron Emission Tomography in Patients With Cystic Pancreatic Tumors, including Intraducal Papillary Mucinous Tumor (IPMT).J Nucl Med 2002; 43: 298P. (Proceedings of the SNM 49th Annual Meeting)

  121. Diederichs CG, Staib L, Vogel J, Glasbrenner B, Glatting G, Brambs HJ, et al. Values and limitations of18F-fluorodeoxyglucose-positron-emission tomography with preoperative evaluation of patients with pancreatic masses.Pancreas 2000; 20: 109–116.

    Article  PubMed  CAS  Google Scholar 

  122. Papos M, Takacs T, Tron L, Farkas G, Ambrus E, Szakall S Jr, et al. The possible role of F-18 FDG positron emission tomography in the differential diagnosis of focal pancreatic lesions.Clin Nucl Med 2002; 27: 197–201.

    Article  PubMed  Google Scholar 

  123. Jadvar H, Fischman AJ. Evaluation of pancreatic carcinoma with FDG PET.Abdom Imaging 2001; 26: 254–259.

    Article  PubMed  CAS  Google Scholar 

  124. Shields AF, Ahmed S, Zalupski MM, et al. FDG PET evaluation of pancreatic cancer treatment [abstract].J Nucl Med 1999; 40: 243P. (Proceedings of the SNM 46th Annual Meeting)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatsuya Higashi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Higashi, T., Saga, T., Nakamoto, Y. et al. Diagnosis of pancreatic cancer using fluorine-18 fluorodeoxyglucose positron emission tomography (FDG PET) —Usefulness and limitations in “clinical reality”—. Ann Nucl Med 17, 261–279 (2003). https://doi.org/10.1007/BF02988521

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02988521

Key words

Navigation