Skip to main content

The Role of Ecological Factors in Distribution and Abundance of Terrestrial Orchids

  • Living reference work entry
  • First Online:
Orchids Phytochemistry, Biology and Horticulture

Part of the book series: Reference Series in Phytochemistry ((RSP))

  • 956 Accesses

Abstract

Distributed throughout the continents, terrestrial orchids are known for their great species richness and specificity in relation to pollinators and mycorrhizal symbionts. Moreover, a large number of them are rare and sensitive to environmental changes. This chapter is mainly focused on the terrestrial orchids of Europe and reviews the major environmental factors affecting the patterns of their distribution, abundance, and richness (elevation, latitude, longitude, area size, climatic factors, geological substrates, soil characteristics, vegetation types, effects of disturbance), as well as the significance of mycorrhizal fungi and pollination systems. Some new data, especially regarding the responses of orchids to climate change and their occurrence on specific geological and soil substrates and vegetation types, are presented. Although the distribution and abundance of terrestrial orchids are associated with the joint effects of most of the examined factors, some factors have emerged as crucial, especially on the northern and southern borders of their distribution. Furthermore, the role of environmental factors depends largely on the belowground strategies of orchids. The chapter highlights the importance of exploring the level of specialization of orchids with respect to habitat conditions as an important basis for their conservation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Chase M, Christenhusz M, Mirenda T (2017) The book of orchids: a life-size guide to six hundred species from around the world. Ivy Press, London

    Book  Google Scholar 

  2. Dressler RL (1981) The orchids: natural history and classification. Harvard University Press, Cambridge, MA

    Google Scholar 

  3. Swarts ND, Dixon KW (2009) Terrestrial orchid conservation in the age of extinction. Ann Bot 104:543–556

    Article  PubMed  PubMed Central  Google Scholar 

  4. Chase MW, Cameron KM, Freudenstein JV, Pridgeon AM, Salazar G, van den Berg C, Schuiteman A (2015) An updated classification of Orchidaceae. Bot J Linn Soc 177:151–174

    Article  Google Scholar 

  5. Hágsater E, Dumont V (eds) (1996) Orchids: status, survey and conservation action plan. IUCN, Gland/Cambridge, UK

    Google Scholar 

  6. Whigham DF, Willems JH (2003) Demographic studies and life-history strategies of temperate terrestrial orchids as a basis for conservation. In: Dixon KW, Kell SP, Barrett RL, Cribb PJ (eds) Orchid conservation. Natural History Publications, Kota Kinabalu

    Google Scholar 

  7. Waterman RJ, Bidartondo MI (2008) Deception above, deception below: linking pollination and mycorrhizal biology of orchids. J Exp Bot 59:1085–1096

    Article  CAS  PubMed  Google Scholar 

  8. Averyanov LV (1990) A review of the genus Dactylorhiza. In: Arditti J (ed) Orchid biology: reviews and perspectives, vol V. Timber Press, Oregon

    Google Scholar 

  9. Delforge P (2006) Orchids of Europe, North Africa and the Middle East. A & C Black, London

    Google Scholar 

  10. Tatarenko I (2007) Growth habits of temperate terrestrial orchids. In: Cameron KM, Arditti J, Kull T (eds) Orchid biology – reviews and perspectives, vol IX. The New York Botanical Garden Press, Bronx/New York

    Google Scholar 

  11. Tsiftsis S, Štípková Z, Kindlmann P (2019) Role of way of life, latitude, elevation and climate on the richness and distribution of orchid species. Biodivers Conserv 28:75–96

    Article  Google Scholar 

  12. Buttler PK (1991) Field guide to orchids of Britain and Europe. The Crowood Press, Swindon

    Google Scholar 

  13. Tsiftsis S, Antonopoulos Z (2017) Atlas of the Greek orchids, vol I. Mediterraneo Editions, Rethymno

    Google Scholar 

  14. Antonopoulos Z, Tsiftsis S (2017) Atlas of the Greek orchids, vol II. Mediterraneo Editions, Rethymno

    Google Scholar 

  15. Nikolić T (2019) Flora Croatica Vol. 4: vascular flora of the Republic of Croatia. Excursion flora, Alfa d.d., Zagreb

    Google Scholar 

  16. GIROS (2009) Orchidee d’Italia – Guida alle orchidee spontanee. Il Castello, Cornaredo (Milano)

    Google Scholar 

  17. Kreutz CAJ, Çolak AH (2009) Türkiye Orkideleri. Rota Yayınlari, Istanbul

    Google Scholar 

  18. Vogt-Schilb H, Pradel R, Geniez P, Hugot L, Delage A, Richard F, Schatz B (2016) Responses of orchids to habitat change in Corsica over 27 years. Ann Bot 118:115–123

    Article  PubMed  PubMed Central  Google Scholar 

  19. Bernardos S, García-Barriuso M, Sánchez-Anta MA, Amich F (2007) Composition, geographical affinities and endemism of the Iberian Peninsula orchid flora. Nord J Bot 25:227–237

    Article  Google Scholar 

  20. Baumann H, Künkele S, Lorenz R (2006) Die Orchideen Europas. Mit angrenzenden Gebieten. Eugen Ulmer KG, Stuttgart

    Google Scholar 

  21. WCSP (2019) World checklist of selected plant families. Royal Botanic Gardens, Kew. http://apps.kew.org/wcsp/

    Google Scholar 

  22. Tranchida-Lombardo V, Cafasso D, Cristaudo A, Cozzolino S (2011) Phylogeographic patterns, genetic affinities and morphological differentiation between Epipactis helleborine and related lineages in a Mediterranean glacial refugium. Ann Bot 107:427–436

    Article  PubMed  Google Scholar 

  23. Kull T, Hutchings MJ (2006) A comparative analysis in decline in the distribution ranges of orchid species in Estonia and the United Kingdom. Biol Conserv 129:31–39

    Article  Google Scholar 

  24. Djordjević V, Tsiftsis S, Lakušić D, Stevanović V (2016) Niche analysis of orchids of serpentine and non-serpentine areas: implications for conservation. Plant Biosyst 150:710–719

    Article  Google Scholar 

  25. Tsiftsis S, Tsiripidis I, Karagiannakidou V, Alifragis D (2008) Niche analysis and conservation of the orchids of east Macedonia (NE Greece). Acta Oecol 33:27–35

    Article  Google Scholar 

  26. Djordjević V, Tsiftsis S, Lakušić D, Jovanović S, Stevanović V (2016) Factors affecting the distribution and abundance of orchids in grasslands and herbaceous wetlands. Syst Biodivers 14:355–370

    Article  Google Scholar 

  27. Acharya KP, Vetaas OR, Birks HJB (2011) Orchid species richness along Himalayan elevational gradients. J Biogeogr 38:1821–1833

    Article  Google Scholar 

  28. Zhang SB, Chen WY, Huang JL, Bi YF, Yang XF (2015) Orchid species richness along elevational and environmental gradients in Yunnan, China. PLoS One 10:e0142621

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Zhang Z, Yan Y, Tianb Y, Lib J, Hea JS, Tanga Z (2015) Distribution and conservation of orchid species richness in China. Biol Conserv 181:64–72

    Article  Google Scholar 

  30. Jacquemyn H, Micheneau C, Roberts DL, Pailler T (2005) Elevational gradients of species diversity, breeding system and floral traits of orchid species on Réunion Island. J Biogeogr 32:1751–1761

    Article  Google Scholar 

  31. Ackerman JD, Trejo-Torres JC, Crespo-Chuy Y (2007) Orchids of the West Indies: predictability of diversity and endemism. J Biogeogr 34:779–786

    Article  Google Scholar 

  32. Štípková Z, Traxmandlová I, Kindlmann P (2016) Determinants of orchid species diversity in Latin America. Lankesteriana 16:293–297

    Article  Google Scholar 

  33. Barbaro L, Dutoit T, Grossi JL (2003) Influence des facteurs agro-écologiques sur les assemblages d’orchidées dans les pelouses calcicoles du Vercors (Préalpes, France). Bot Helv 113:63–79

    Google Scholar 

  34. Djordjević V (2018) Spatial distribution and ecology of orchids (Orchidaceae) of western Serbia. Dissertation, University of Belgrade (in Serbian with English abstract)

    Google Scholar 

  35. Pellissier L, Vittoz P, Internicola AI, Gigord LDB (2010) Generalized food-deceptive orchid species flower earlier and occur at lower altitudes than rewarding ones. J Plant Ecol 3:243–250

    Article  Google Scholar 

  36. Körner C (2007) The use of ‘altitude’ in ecological research. Trends Ecol Evol 22:569–574

    Article  PubMed  Google Scholar 

  37. Chen YK, Yang XB, Yang Q, Li DH, Long WX, Luo WQ (2014) Factors affecting the distribution pattern of wild plants with extremely small populations in Hainan Island, China. PLoS One 9:e97751

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Colwell RK, Lees DC (2000) The mid-domain effect: geometric constraints on the geography of species diversity. Trends Ecol Evol 15:70–76

    Article  CAS  PubMed  Google Scholar 

  39. Traxmandlová I, Ackerman JD, Tremblay RL, Roberts DL, Štípková Z, Kindlmann P (2018) Determinants of orchid species diversity in world islands. New Phytol 217:12–15

    Article  PubMed  Google Scholar 

  40. Schödelbauerová I, Roberts DL, Kindlmann P (2009) Size of protected areas is the main determinant of species diversity in orchids. Biol Conserv 142:2329–2334

    Article  Google Scholar 

  41. Blinova IV (2012) Intra-and interspecific morphological variation of some European terrestrial orchids along a latitudinal gradient. Russ J Ecol 43:111–116

    Article  Google Scholar 

  42. Wotavová K, Balounová Z, Kindlmann P (2004) Factors affecting persistence of terrestrial orchids in wet meadows and implications for their conservation in a changing agricultural landscape. Biol Conserv 118:271–279

    Article  Google Scholar 

  43. Janečková P, Wotavová K, Schödelbauerová I, Jersáková J, Kindlmann P (2006) Relative effects of management and environmental conditions on performance and survival of populations of a terrestrial orchid, Dactylorhiza majalis. Biol Conserv 129:40–49

    Article  Google Scholar 

  44. Blinova IV (2008) Populations of orchids at the northern limit of their distribution (Murmansk Oblast): effect of climate. Russ J Ecol 39:26–33

    Article  Google Scholar 

  45. Tsiftsis S, Djordjević V, Tsiripidis I (2019) Neottia cordata (Orchidaceae) at its southernmost distribution border in Europe: threat status and effectiveness of Natura 2000 network for its conservation. J Nat Conserv 48:27–35

    Article  Google Scholar 

  46. Pfeifer M, Passalacqua NG, Bartram S, Schatz B, Croce A, Carey PD, Kraudelt H, Jeltsch F (2010) Conservation priorities differ at opposing species borders of a European orchid. Biol Conserv 143:2207–2220

    Article  Google Scholar 

  47. Pillon Y, Fay MF, Shipunov AB, Chase MW (2006) Species diversity versus phylogenetic diversity: a practical study in the taxonomically difficult genus Dactylorhiza (Orchidaceae). Biol Conserv 129:4–13

    Article  Google Scholar 

  48. Kotilínek M, Tatarenko I, Jersáková J (2018) Biological Flora of the British Isles: Neottia cordata. J Ecol 106:444–460

    Article  Google Scholar 

  49. Vakhrameeva MG, Denissova LV, Nikitina SV, Samsonov SK (1991) Orchids of our country. Nauka, Moscow (in Russian)

    Google Scholar 

  50. Jermakowicz E, Brzosko E, Kotowicz J, Wróblewska A (2017) Genetic diversity of orchid Malaxis monophyllos over European range as an effect of population properties and postglacial colonization. Pol J Ecol 65:69–86

    Article  Google Scholar 

  51. Tamm CO (1991) Behaviour of some orchid populations in a changing environment. Observations on permanent plots, 1943–1990. In: Wells TCE, Willems JH (eds) Population ecology of terrestrial orchids. SPB Academic Publishers, The Hague

    Google Scholar 

  52. Blinova I, Chmielewski FM (2008) Subarctic warming and its influence on the growth of orchid populations in the extreme North-East of Europe Murmansk region. J Eur Orch 40:663–680. https://www.pabgi.ru/people/ilona_blinova/paper/t_orchids_08.pdf. Accessed 12 August 2019

    Google Scholar 

  53. Light MHS, MacConaill M (1998) Factors affecting germinable seed yield in Cypripedium calceolus var. pubescens (Willd.) Correll and Epipactis helleborine (L.) Crantz (Orchidaceae). Bot J Linn Soc 126:3–26

    Google Scholar 

  54. Øien DI, Moen A (2002) Flowering and survival of Dactylorhiza lapponica and Gymnadenia conopsea in the Solendet nature reserve, Central Norway. In: Kindlmann P, Willems JH, Whigham DF (eds) Trends and fluctuations and underlying mechanisms in terrestrial orchid populations. Backhuys Publishers, Leiden

    Google Scholar 

  55. Inghe O, Tamm CO (1988) Survival and flowering of perennial herbs. V. Patterns of flowering. Oikos 51:203–219

    Article  Google Scholar 

  56. Rasmussen HN, Dixon KW, Jersáková J, Těšitelová T (2015) Germination and seedling establishment in orchids: a complex of requirements. Ann Bot 116:391–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhang S, Yang Y, Li J, Qin J, Zhang W, Huang W, Hu H (2018) Physiological diversity of orchids. Plant Diversity 40:196–208

    Article  PubMed  PubMed Central  Google Scholar 

  58. Carey PD, Farrell L (2002) Himantoglossum hircinum (L.) Sprengel (Biological flora of the British Isles, 641.1). J Ecol 90:206–218

    Article  Google Scholar 

  59. Wells TCE, Cox R (1989) Predicting the probability of the bee orchid (Ophrys apifera) flowering or remaining vegetative from the size and number of leaves. In: Pritchard H (ed) Modern methods in orchid conservation. Cambridge University Press, Cambridge

    Google Scholar 

  60. Štípková Z, Romportl D, Černocká V, Kindlmann P (2017) Factors associated with the distributions of orchids in the Jeseníky Mountains, Czech Republic. Eur J Environ Sci 7:135–145. http://www.ejes.cz/index.php/ejes/article/view/318. Accessed 13 August 2019

    Google Scholar 

  61. Meekers T, Hutchings MJ, Honnay O, Jacquemyn H (2012) Biological Flora of the British Isles: Gymnadenia conopsea s.l. J Ecol 100:1269–1288

    Article  Google Scholar 

  62. Rasmussen HN (1995) Terrestrial orchids from seed to mycotrophic plant. Cambridge University Press, Cambridge

    Book  Google Scholar 

  63. Wells TCE, Cox R (1991) Demographic and biological studies on Ophrys apifera: some results from a 10 year study. In: Wells TCE, Willems JH (eds) Population ecology of terrestrial orchids. SPB Academic Publishing, The Hague

    Google Scholar 

  64. Bódis J, Biró É, Nagy T, Takács A, Sramkó G, Bateman RM, Gilián L, Illyés Z, Tökölyi J, Lukács BA, Csábi M, Molnár AV (2019) Biological flora of Central Europe Himantoglossum adriaticum H. Baumann. Perspect Plant Ecol Evol Syst 125461. https://doi.org/10.1016/j.ppees.2019.125461

    Article  Google Scholar 

  65. Willems JH, Bik L (1991) Population biology of Orchis simia in the Netherlands. In: Wells TCE, Willems JH (eds) Population ecology of terrestrial orchids. SPB Academic Publishing, The Hague, pp 1972–1990

    Google Scholar 

  66. Brzosko E (2002) The dynamics of Listera ovata populations on mineral islands in the Biebrza National Park. Acta Soc Bot Pol 71:243–251

    Article  Google Scholar 

  67. Wells TCE (1981) Population ecology of terrestrial orchids. In: Synge H (ed) The biological aspects of rare plant conservation. Wiley, Chichester

    Google Scholar 

  68. Jacquemyn H, Brys R, Hutchings MJ (2014) Biological flora of the British Isles: Epipactis palustris. J Ecol 102:1341–1355

    Article  Google Scholar 

  69. Tsiftsis S (2016) Morphological variability of Himantoglossum s.s. (Orchidaceae). Phytotaxa 245:17–30

    Article  Google Scholar 

  70. Bailes C, Clements M, Cribb PJ, Muir H (1986) The cultivation of European orchids. Curtis’s Bot Mag 3:8–13. JSTOR. http://www.jstor.org/stable/45066409 Accessed 12 August 2019

    Article  Google Scholar 

  71. Abernethy A (2002) Light regimes as a control of terrestrial orchid distribution in New Zealand. Dissertation, University of Canterbury

    Google Scholar 

  72. Diez JM, Pulliam HR (2007) Hierarchical analysis of species distribution and abundance across environmental gradients. Ecology 88:3144–3152

    Article  PubMed  Google Scholar 

  73. Lõhmus A, Kull T (2011) Orchid abundance in hemiboreal forests: stand-scale effects of clear-cutting, green-tree retention, and artificial drainage. Can J For Res 41:1352–1358

    Article  Google Scholar 

  74. Shefferson RP, Kull T, Tali K (2005) Adult whole-plant dormancy induced by stress in long-lived orchids. Ecology 86:3099–3104

    Article  Google Scholar 

  75. Zhang SB, Hu H, Xu K, Li ZR, Yang YP (2007) Flexible and reversible responses to different irradiance levels during photosynthetic acclimation of Cypripedium guttatum. J Plant Physiol 164:611–620

    Article  CAS  PubMed  Google Scholar 

  76. Jacquemyn H, Brys R, Jongejans E (2010) Size-dependent flowering and costs of reproduction affect population dynamics in a tuberous perennial woodland orchid. J Ecol 98:1204–1215

    Article  Google Scholar 

  77. Tsiftsis S, Djordjević V (2018) Habitat effects and differences in the reproductive success of Orchis punctulata and Orchis purpurea (Orchidaceae). Turk J Bot 42:400–411

    Article  Google Scholar 

  78. Jacquemyn H, Brys R, Honnay O, Hermy M (2008) Effects of coppicing on demographic structure, fruit and seed set in Orchis mascula. Basic Appl Ecol 9:392–400

    Article  Google Scholar 

  79. Jacquemyn H, Brys R, Honnay O, Hutchings MJ (2009) Biological flora of the British Isles: Orchis mascula (L.) L. J Ecol 97:360–377

    Article  Google Scholar 

  80. Jacquemyn H, Brys R (2010) Temporal and spatial variation in flower and fruit production in a food-deceptive orchid: a five year study. Plant Biol 12:145–153

    Article  CAS  PubMed  Google Scholar 

  81. Selosse MA, Weiss M, Jany JL, Tillier A (2002) Communities and populations of sebacinoid basidiomycetes associated with the achlorophyllous orchid Neottia nidus-avis (L.) L.C.M. Rich. and neighbouring tree ectomycorrhizae. Mol Ecol 11:1831–1844

    Article  CAS  PubMed  Google Scholar 

  82. Taylor L, Roberts DL (2011) Biological flora of the British Isles: Epipogium aphyllum Sw. J Ecol 99:878–890

    Article  Google Scholar 

  83. Preiss K, Adam IKU, Gebauer G (2010) Irradiance governs exploitation of fungi: fine-tuning of carbon gain by two partially myco-heterotrophic orchids. Proc R Soc B 277:1333–1336

    Article  PubMed  PubMed Central  Google Scholar 

  84. Hornemann G, Michalski SG, Durka W (2012) Short-term fitness and long-term population trends in the orchid Anacamptis morio. Plant Ecol 213:1583–1595

    Article  Google Scholar 

  85. Jersáková J, Malinová T, Jeřábková K, Dötteri S (2011) Biological Flora of the British Isles: Pseudorchis albida (L.) Á. & D. Löve. J Ecol 99:1282–1298

    Article  Google Scholar 

  86. Tsiftsis S, Antonopoulos Z (2011) Pseudorchis albida: an enigmatic orchid for the Greek flora. J Eur Orch 43:795–806

    Google Scholar 

  87. Jacquemyn H, Brys R, Adriaens D, Honnay O, Roldán-Ruiz I (2009) Effects of population size and forest management ongenetic diversity and structure of the tuberous orchid Orchis mascula. Conserv Genet 10:161–168

    Article  Google Scholar 

  88. Cruz-Fernández QT, Alquicira-Arteaga ML, Flores-Palacios A (2011) Is orchid species richness and abundance related to the conservation status of oak forest? Plant Ecol 212:1091–1099

    Article  Google Scholar 

  89. Hurskainen S, Jäkäläniemi A, Ramula S, Tuomi J (2017) Tree removal as a management strategy for the lady’s slipper orchid, a flagship species for herb-rich forest conservation. Forest Ecol Manag 406:12–18

    Article  Google Scholar 

  90. Shefferson RP, Kull T, Tali K (2006) Demographic response to shading and defoliation in two woodland orchids. Folia Geobot 41:95–106

    Article  Google Scholar 

  91. van der Meer S, Jacquemyn H, Carey PD, Jongejans E (2016) Recent range expansion of a terrestrial orchid corresponds with climate-driven variation in its population dynamics. Oecologia 181:435–448

    Article  PubMed  Google Scholar 

  92. Shefferson RP, Mizuta R, Hutchings MJ (2017) Predicting evolution in response to climate change: the example of sprouting probability in three dormancy prone orchid species. R Soc Open Sci 4:160647

    Article  PubMed  PubMed Central  Google Scholar 

  93. Liu H, Feng CL, Luo YB, Chen BS, Wang ZS, Gu HY (2010) Potential challenges of climate change to orchid conservation in a wild orchid hotspot in southwestern China. Bot Rev 76:174–192

    Article  Google Scholar 

  94. Reina-Rodríguez GA, Rubiano Mejía JE, Castro Llanos FA, Soriano I (2017) Orchid distribution and bioclimatic niches as a strategy to climate change in areas of tropical dry forest in Colombia. Lankesteriana 17:17–47

    Article  Google Scholar 

  95. Ongaro S, Martellos S, Bacaro G, De Agostini A, Cogoni A, Cortis P (2018) Distributional pattern of Sardinian orchids under a climate change scenario. Community Ecol 19:223–232

    Article  Google Scholar 

  96. Gaskett AC, Gallagher RV (2018) Orchid diversity: spatial and climatic patterns from herbarium records. Ecol Evol 8:11235–11245. https://doi.org/10.1002/ece3.4598

    Article  PubMed  PubMed Central  Google Scholar 

  97. Molnár VA, Tökölyi J, Végvári Z, Sramkó G, Sulyok J, Barta Z (2012) Pollination mode predicts phenological response to climate change in terrestrial orchids: a case study from Central Europe. J Ecol 100:1141–1152

    Article  Google Scholar 

  98. Hutchings MJ, Robbirt KM, Roberts DL, Davy AJ (2018) Vulnerability of a specialized pollination mechanism to climate change revealed by a 356-year analysis. Bot J Linn Soc 186:498–509

    Article  Google Scholar 

  99. Tsiftsis S, Tsiripidis I, Trigas P (2011) Identifying important areas for orchid conservation in Crete. Eur J Environ Sci 1:28–37

    Google Scholar 

  100. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  101. Fick SE, Hijmans RJ (2017) WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatol 37:4302–4315

    Article  Google Scholar 

  102. Bowles M, Zettler L, Bell T, Kelsey P (2005) Relationship between soil characteristics, distribution and restoration potential of the federal threatened eastern prairie fringed orchid, Platanthera leucophaea (Nutt.) Lindl. Am Midl Nat 154:273–285

    Article  Google Scholar 

  103. Dijk E, Willems JH, van Andel J (1997) Nutrient responses as a key factor to the ecology of orchid species. Acta Bot Neerl 46:339–363

    Article  Google Scholar 

  104. Tsiftsis S, Tsiripidis I, Papaioannou A (2012) Ecology of orchid Goodyera repens in its southern distribution limits. Plant Biosyst 146:857–866

    Article  Google Scholar 

  105. Landi M, Frignani F, Lazzeri C, Angiolini C (2009) Abundance of orchids on calcareous grasslands in relation to community species, environmental, and vegetation conditions. Russ J Ecol 40:486–494

    Article  Google Scholar 

  106. Lang D (2004) Britain’s orchids, a guide to the identification and ecology of the wild orchids of Britain and Ireland. Wild Guides Ltd., Old Basing

    Google Scholar 

  107. Djordjević V, Tsiftsis S (2019) Patterns of orchid species richness and composition in relation to geological substrates. Wulfenia 26:1–21

    Google Scholar 

  108. Tyler G (2003) Some ecophysiological and historical approaches to species richness and calcicole/calcifuge behaviour – contribution to a debate. Folia Geobot 38:419–428

    Article  Google Scholar 

  109. Farrell L (1985) Biological Flora of the British Isles: Orchis militaris L. J Ecol 73:1041–1053

    Article  Google Scholar 

  110. Tali K, Foley MJY, Kull T (2004) Biological flora of the British Isles, 232. Orchis ustulata L. J Ecol 92:174–184

    Article  Google Scholar 

  111. Jersáková J, Traxmandlová I, Ipser Z, Matthias K, Pellegrino G, Schatz B, Djordjević V, Kindlmann P, Renner SS (2015) Biological flora of Central Europe: Dactylorhiza sambucina (L.) Soó. Perspect Plant Ecol Evol Syst 17:318–329

    Article  Google Scholar 

  112. Kotilínek M, Těšitelová T, Jersáková J (2015) Biological Flora of the British Isles: Neottia ovata. J Ecol 103:1354–1366

    Article  Google Scholar 

  113. Petrova AS, Venkova DY (2006) Epipactis pontica (Orchidaceae): a new species for the Bulgarian flora. Phytol Balcan 12:249–253. http://www.bio.bas.bg/~phytolbalcan/PDF/14_1/14_1_11_Petrova_&_Venkova.pdf. Accessed 12 August 2019

    Google Scholar 

  114. van der Ent A, Wood JJ (2013) Orchids of extreme serpentinite (ultramafic) habitats in Kinabalu Park. Malesian Orchid J 12:39–54

    Google Scholar 

  115. van der Ent A, van Vugt R, Wellinga S (2015) Ecology of Paphiopedilum rothschildianum at the type locality in Kinabalu Park (Sabah, Malaysia). Biodivers Conserv 24:1641–1656

    Article  Google Scholar 

  116. Filimonova E, Lukina N, Glazyrina M, Borisova G, Kumar A, Maleva M (2019) A comparative study of Epipactis atrorubens in two different forest communities of the Middle Urals, Russia. J For Res 1–10. https://doi.org/10.1007/s11676-019-01010-y

  117. Stuckey I (1967) Environmental factors and the growth of native orchids. Am J Bot 54:232–241

    Article  Google Scholar 

  118. Knudson MD, Vanlooy JA, Hill MJ (2015) A habitat suitability index (HSI) for the western prairie fringed orchid (Platanthera praeclara) on the Sheyenne National Grassland, North Dakota, USA. Ecol Indic 57:536–545

    Article  Google Scholar 

  119. Wolken PM, Sieg CH, Williams SE (2001) Quantifying suitable habitat of the threatened western prairie fringed orchid. J Range Manag 54:611–616

    Article  Google Scholar 

  120. Sieg CH, King RM (1995) Influence of environmental factors and preliminary demographic analysis of a threatened orchid, Platanthera praeclara. Am Midl Nat 134:307–323

    Article  Google Scholar 

  121. Jacquemyn H, Waud M, Merckx VS, Lievens B, Brys R (2015) Mycorrhizal diversity, seed germination and long-term changes in population size across nine populations of the terrestrial orchid Neottia ovata. Mol Ecol 24:3269–3280

    Article  PubMed  Google Scholar 

  122. Illyés Z, Halász K, Rudnóy S, Ouanphanivanh N, Garay T, Bratek Z (2009) Changes in the diversity of the mycorrhizal fungi of orchids as a function of the water supply of the habitat. J Appl Bot Food Qual 83:28–36

    Google Scholar 

  123. Foley M, Clarke S (2005) Orchids of the British Isles. Griffin Press Publishing Limited, Cheltenham

    Google Scholar 

  124. Danihelka J, Chrtek J Jr, Kaplan Z (2012) Checklist of vascular plants of the Czech Republic. Preslia 84:647–811

    Google Scholar 

  125. Ståhlberg D (2009) Habitat differentiation, hybridization and gene flow patterns in mixed populations of diploid and autotetraploid Dactylorhiza maculata s.l. (Orchidaceae). Evol Ecol 23:295–328

    Article  Google Scholar 

  126. Molnár A (ed) (2011) Magyarország orchideáinak atlasza. Kossuth kiadó, Budapest

    Google Scholar 

  127. Hrivnák R, Hrivnák M, Slezák M, Vlčko J, Baltiarová J, Svitok M (2014) Distribution and eco-coenotic patterns of the forest orchid Epipactis pontica in Slovakia. Ann For Res 57:55–69

    Google Scholar 

  128. Djordjević V, Jakovljević K, Stevanović V (2016) Three taxa of Epipactis (Orchidaceae-Epidendroideae) new for the flora of Serbia. Phyton-Ann Rei Bot 56:77–89

    Google Scholar 

  129. Zilioli DM, Bini C, Wahsha M, Ciotoli G (2011) The pedological heritage of the Dolomites (Northern Italy): features, distribution and evolution of the soils, with some implications for land management. Geomorphology 135:232–247

    Article  Google Scholar 

  130. Tsiftsis S (2009) The orchids (Orchidaceae) of E. Macedonia: distribution, ecology and high conservation value areas. Dissertation, Aristotle University of Thessaloniki (in Greek with English summary)

    Google Scholar 

  131. Sundermann H (1980) Europäische und mediterrane Orchideen. Brücke-Verlag Kurt Schmersow, Hildesheim

    Google Scholar 

  132. Breiner R (1979) pH-Messungen an Orchideen-Standorten auf Kreta und Zypern. Mitt Bl Arb Heim Orchid Baden-Wurttemberg 11:54–58. http://biolis.ub.uni-frankfurt.de/search/detail/22028. Accessed 12 August 2019

    Google Scholar 

  133. Vakhrameeva MG, Tatarenko IV, Varlygina TI, Torosyan GK, Zagulski MN (2008) Orchids of Russia and adjacent countries (within the borders of the former USSR). ARG Gantner Verlag, Ruggell

    Google Scholar 

  134. Syska M (1995) Die Orchideenflora des westlichen Nestos-Deltas und des angrenzenden Berglandes (Nordost-Griechenland): Verbreitung – Ökologie – Gefahrdung. J Eur Orch 27:339–552

    Google Scholar 

  135. Wallenwein F, Saad A (2000) Messungen des pH-Wertes an den Wuchsorten mediterraner Orchideen. J Eur Orch 32:375–386

    Google Scholar 

  136. Möller O (1985) Die Mineralsalze der Standortböden der europäischer Orchideen. Die Orchidee 36:118–121. https://orchidee.de/gesellschaft/die-orchidee/. Accessed 12 August 2019

    Google Scholar 

  137. Tsiripidis I (2001) Plant communities of beech forests in Rodopi mountain range and their environmental assessment for reforestation. Dissertation, Aristotle University of Thessaloniki (in Greek)

    Google Scholar 

  138. Kull T (1999) Biological Flora of the British Isles: Cypripedium calceolus L. J Ecol 87:913–924

    Article  Google Scholar 

  139. Mróz L (1994) Ekologia Dactylorhiza sambucina (L.) Soó w Sudetach. Acta Univ Wratisl Prace Botaniczne LXXVI:103–157

    Google Scholar 

  140. Molnár AV, Sramkó G (2012) Epipactis albensis (Orchidaceae): a new species in the flora of Romania. Biologia 67:883–888

    Google Scholar 

  141. Parzych A, Sobisz Z (2013) Preliminary ecology research on Epipactis atrorubens (Hoffm.) Besser on the Słowińskie coast (Northern Poland). Ecol Quest 18:21–32

    Google Scholar 

  142. Urban D (2013) Characteristics of the locality of Hammarbya paludosa (L.) O. Kuntze on the Łęczna-Włodawa plain (West Polesie). Teka Komisji Ochrony i Kształtowania Środowiska Przyrodniczego. OL PAN 10:448–454

    Google Scholar 

  143. Procházka F, Velísek V (1983) Orchideje naší přírody. Čekoslovenské Akademie Věd, Praha

    Google Scholar 

  144. Brütsch JP (2000) Die Gattung Nigritella. Bauhinia 14:21–32. https://botges.ch/bauhinia/bauhinia14(2000)21-32.pdf. Accessed 12 August 2019

    Google Scholar 

  145. Molnár AV, Máté A, Sramkó G (2011) An unexpected new record of the Mediterranean orchid, Ophrys bertolonii (Orchidaceae) in Central Europe. Biologia 66:778–782

    Article  Google Scholar 

  146. Reinhammar L, Olsson EG, Sormeland E (2002) Conservation biology of an endangered grassland plant species, Pseudorchis albida, with some references to the closely related alpine P. straminea (Orchidaceae). Bot J Linn Soc 139:47–66

    Article  Google Scholar 

  147. Jeřábková K (2006) Ecological demands and optimal management of Pseudorchis albida. Master thesis in Czech, Czech University of Life Sciences, Prague

    Google Scholar 

  148. Beyrle H, Penningsfeld F, Hock B (1991) The role of nitrogen concentration in determining the outcome of the interaction between Dactylorhiza incarnata (L.) Soó and Rhizoctonia sp. New Phytol 117:665–672

    Article  CAS  Google Scholar 

  149. Cameron DD, Leake JR, Read DJ (2006) Mutualistic mycorrhiza in orchids: evidence from plant–fungus carbon and nitrogen transfers in the green-leaved terrestrial orchid Goodyera repens. New Phytol 171:405–416

    Article  CAS  PubMed  Google Scholar 

  150. McKendrick SL, Leake JR, Read DJ (2000) Symbiotic germination and development of myco-heterotrophic plants in nature: transfer of carbon from ectomycorrhizal Salix repens and Betula pendula to the orchid Corallorhiza trifida through shared hyphal connections. New Phytol 145:539–548

    Article  PubMed  Google Scholar 

  151. Hejcman M, Schellberg J, Pavlů V (2010) Dactylorhiza maculata, Platanthera bifolia and Listera ovata survive N application under P limitation. Acta Oecol 36:684–688

    Article  Google Scholar 

  152. Dijk E, Olff H (1994) Effects of nitrogen, phosphorus and potassium fertilization on field performance of Dactylorhiza majalis. Acta Bot Neerl 43:383–392

    Article  CAS  Google Scholar 

  153. Silvertown J, Wells DA, Gillman M, Dodd ME, Robertson H, Lakhani KH (1994) Short-term effects and long-term after effects of fertilizer application on the flowering population of green-winged orchid Orchis morio. Biol Conserv 69:191–197

    Article  Google Scholar 

  154. Dijk E, Grootjans AP (1998) Performance of four Dactylorhiza species over a complex trophic gradient. Acta Bot Neerl 47:351–368

    CAS  Google Scholar 

  155. Stevanović MB, Janković MM (2001) Ecology of plants with the basics of physiological ecology of plants. NNK, Beograd (in Serbian)

    Google Scholar 

  156. Moreira ASFP, Isaias RMDS (2008) Comparative anatomy of the absorption roots of terrestrial and epiphytic orchids. Braz Arch Biol Technol 51:83–93

    Article  Google Scholar 

  157. Abadie JC, Püttsepp Ü, Gebauer G, Faccio A, Bonfante P, Selosse MA (2006) Cephalanthera longifolia (Neottieae, Orchidaceae) is mixotrophic: a comparative study between green and nonphotosynthetic individuals. Can J Bot 84:1462–1477

    Article  CAS  Google Scholar 

  158. Batty AL, Dixon KW, Brundrett M, Sivasithamparam K (2001) Constraints to symbiotic germination of terrestrial orchid seed in a mediterranean bushland. New Phytol 152:511–520

    Article  PubMed  Google Scholar 

  159. Jurkiewicz A, Turnau K, Mesjasz-Przybylowicz J, Przybylowicz W, Godzik B (2001) Heavy metal localisation in mycorrhizas of Epipactis atrorubens (Hoffm.) Besser (Orchidaceae) from zinc mine tailings. Protoplasma 218:117–124

    Article  CAS  PubMed  Google Scholar 

  160. Shefferson RP, Kull T, Tali K (2008) Mycorrhizal interactions of orchids colonizing Estonian mine tailings hills. Am J Bot 95:156–164

    Article  PubMed  Google Scholar 

  161. Esfeld K, Hensen I, Wesche K, Jakob SS, Tischew S, Blattner FR (2008) Molecular data indicate multiple colonizations of former lignite mining areas in Eastern Germany by Epipactis palustris (Orchidaceae). Biodivers Conserv 17:2441–2453

    Article  Google Scholar 

  162. Rewicz A, Bomanowska A, Shevera MV, Kurowski JK, Krasoń K, Zielińska KM (2017) Cities and disturbed areas as man-made shelters for orchid communities. Not Bot Horti Agrobot Cluj-Na 45:126–139

    Article  Google Scholar 

  163. Gajić G, Djurdjević L, Kostić O, Jarić S, Mitrović M, Pavlović P (2018) Ecological potential of plants for phytoremediation and ecorestoration of fly ash deposits and mine wastes. Front Environ Sci 6:124. https://doi.org/10.3389/fenvs.2018.00124

    Article  Google Scholar 

  164. Adamowski W (2006) Expansion in native orchids in anthropogenous habitats. Pol Bot Stud 22:35–44

    Google Scholar 

  165. Rewicz A, Jaskuła R, Rewicz T, Tończyk G (2017) Pollinator diversity and reproductive success of Epipactis helleborine (L.) Crantz (Orchidaceae) in anthropogenic and natural habitats. PeerJ 5:e3159

    Article  PubMed  PubMed Central  Google Scholar 

  166. Fekete R, Nagy T, Bódis J, Biró É, Löki V, Süveges K, Takács A, Tökölyi J, Molnár VA (2017) Roadside verges as habitats for endangered lizard-orchids (Himantoglossum spp.): ecological traps or refuges? Sci Total Environ 607–608:1001–1008

    Article  PubMed  CAS  Google Scholar 

  167. Fekete R, Löki V, Urgyán R, Süveges K, Lovas Kiss Á, Vincze O, Molnár VA (2019) Roadside verges and cemeteries: comparative analysis of anthropogenic orchid habitats in the eastern Mediterranean. Ecol Evol. https://doi.org/10.1002/ece3.5245

  168. Grant CD, Koch JM (2003) Orchid species succession in rehabilitated bauxite mines in Western Australia. Aust J Bot 51:453–457

    Article  Google Scholar 

  169. Norman MA, Koch JM, Grant CD, Morald TK, Ward SC (2006) Vegetation succession after bauxite mining in Western Australia. Restor Ecol 14:278–288

    Article  Google Scholar 

  170. Girlanda M, Selosse MA, Cafasso D, Brilli F, Delfine S, Fabian R, Ghignone S, Pinelli P, Segreto R, Loreto F, Cozzolino S, Perotto S (2006) Inefficient photosynthesis in the Mediterranean orchid Limodorum abortivum is mirrored by specific association to ectomycorrhizal Russulaceae. Mol Ecol 15:491–504

    Article  CAS  PubMed  Google Scholar 

  171. Mucina L, Bültmann H, Dierßen K, Theurillat JP, Raus T, Čarni A, Šumberová K, Willner W, Dengler J, Gavilán García R, Chytrý M, Hájek M, Di Pietro R, Iakushenko D, Pallas J, Daniëls FJA, Bergmeier E, Santos Guerra A, Ermakov N, Valachovič M, Schaminée JHJ, Lysenko T, Didukh YP, Pignatti S, Rodwell JS, Capelo J, Weber HE, Solomeshch A, Dimopoulos P, Aguiar C, Freitag H, Hennekens SM, Tichý L (2016) Vegetation of Europe: hierarchical floristic classification system of plant, lichen, and algal communities. Appl Veg Sci 19:3–264

    Article  Google Scholar 

  172. Djordjević V, Tomović G, Lakušić D (2010) Epipactis purpurata Sm. (Orchidaceae) – a new species in the flora of Serbia. Arch Biol Sci 62:1175–1180

    Article  Google Scholar 

  173. Kovalchuk A (2016) On the occurrence of Orchis pallens L. in the Ukrainian Carpathians. J Eur Orch 48:29–36

    Google Scholar 

  174. Tsiftsis S, Karagiannakidou V, Tsiripidis I (2007) The orchid flora of East Macedonia (NE Greece). J Eur Orch 39:489–526

    Google Scholar 

  175. Djordjević V (2016) Epipactis muelleri (Orchidaceae-Neottieae), a species new to the flora of Serbia. Phyton-Ann Rei Bot 56:303–312

    Google Scholar 

  176. Djordjević V, Tsiftsis S, Lakušić D, Jovanović S, Stevanović V (2017) Distribution and conservation status of some rare and threatened orchid taxa in the Central Balkans and the southern part of the Pannonian plain. Wulfenia 24:143–162

    Google Scholar 

  177. Djordjević V, Jovanović S, Stevanović V (2014) Dactylorhiza fuchsii (Orchidaceae), a new species in the flora of Serbia. Arch Biol Sci 66:1227–1232

    Article  Google Scholar 

  178. Pierce S, Vagge I, Brusa G, Cerabolini BEL (2014) The intimacy between sexual traits and Grime’s CSR strategies for orchids coexisting in semi-natural calcareous grassland at the Olive Lawn. Plant Ecol 215:495–505

    Article  Google Scholar 

  179. Slaviero A, Del Vecchio S, Pierce S, Fantinato E, Buffa G (2016) Plant community attributes affect dry grassland orchid establishment. Plant Ecol 217:1533–1543

    Article  Google Scholar 

  180. Oberdorfer E (1994) Pflanzensoziologische Exkursionsflora. Ulmer, Stuttgart

    Google Scholar 

  181. Krauss J, Klein AM, Steffan-Dewenter I, Tscharntke T (2004) Effects of habitat area, isolation, and landscape diversity on plant species richness of calcareous grasslands. Biodivers Conserv 13:1427–1439

    Article  Google Scholar 

  182. Leuschner C, Ellenberg H (2017) Ecology of central European non-Forest vegetation: coastal to alpine, natural to man-made habitats: vegetation ecology of Central Europe. Springer International Publishing, Cham

    Book  Google Scholar 

  183. Haraštová-Sobotková M, Jarsáková J, Kindlmann P, Čurn L (2005) Morphometric and genetic divergence among populations of Neotinea ustulata (Orchidaceae) with different flowering phenologies. Folia Geobot 40:385–405

    Article  Google Scholar 

  184. Budzhak VV, Chorney II, Tokariuk AI, Kuzemko AA (2016) Numeric syntaxonomical analysis of the communities with participation of species from Molinia caerulea complex in the southwest of Ukraine. Hacquetia 15:63–78

    Article  Google Scholar 

  185. Schrautzer J, Fichtner A, Huckauf A, Rasran L, Jensen K (2011) Long-term population dynamics of Dactylorhiza incarnata (L.) Soó after abandonment and re-introduction of mowing. Flora 206:622–630

    Article  Google Scholar 

  186. Blinova IV (2016) Spatial population structure of rare orchid species in rich fens in the central part of Murmansk oblast. Russ J Ecol 47:234–240

    Article  Google Scholar 

  187. Hrivnák R, Gömöry D, Cvachová A (2006) Inter-annual variability of the abundance and morphology of Dactylorhiza majalis (Orchidaceae-Orchideae) in two permanent plots of a mire in Slovakia. Phyton-Ann Rei Bot 46:27–44

    Google Scholar 

  188. Löki V, Tökölyi J, Süveges K, Lovas-Kiss A, Hürkan K, Gábor S, Molnár AV (2015) The orchid flora of Turkish graveyards: a comprehensive field survey. Willdenowia 45:231–243

    Article  Google Scholar 

  189. Molnár VA, Takács A, Mizsei E, Löki V, Barina Z, Sramkó G, Tökölyi J (2017) Religious differences affect orchid diversity of Albanian graveyards. Pak J Bot 49:289–303

    Google Scholar 

  190. Rewicz A, Rewers M, Jędrzejczyk I, Rewicz T, Kołodziejek J, Jakubska-Busse A (2018) Morphology and genome size of Epipactis helleborine (L.) Crantz (Orchidaceae) growing in anthropogenic and natural habitats. PeerJ 6:e5992

    Article  PubMed  PubMed Central  Google Scholar 

  191. Rewicz A, Kolodziejek J, Jakubska-Busse A (2016) The role of anthropogenic habitats as substitutes for natural habitats: a case study on Epipactis helleborine (L.) Crantz (Orchidaceae, Neottieae). Variations in size and nutrient composition of seeds. Turk J Bot 40:258–268

    Article  CAS  Google Scholar 

  192. Scade A, Brundrett MC, Batty AL, Dixon KW, Sivasithamparam K (2006) Survival of transplanted terrestrial orchid seedlings in urban bushland habitats with high or low weed cover. Aust J Bot 54:383–389

    Article  Google Scholar 

  193. Lim WH (2015) Aspects of the physiological ecology of the Western-Australian ruderal orchid, Microtis media R. Br, with special reference to the functions of its mycorrhizal fungi. Dissertation, the University of Western Australia

    Google Scholar 

  194. Grime JP (1979) Plant strategies and vegetation processes. Wiley, Chichester

    Google Scholar 

  195. Coates F, Lunt ID, Tremblay RL (2006) Effects of disturbance on population dynamics of threatened orchid Prasophyllum correctum D. L. Jones and implications for grassland management in south-eastern Australia. Biol Conserv 129:59–69

    Article  Google Scholar 

  196. Willems JH, Melser C (1998) Population dynamics and life-history of Coeloglossum viride (L.) Hartm.: an endangered orchid species in The Netherlands. Bot J Linn Soc 126:83–93

    Google Scholar 

  197. Smith PH, Cross S (2016) Effect of mowing regime on abundance of green-winged orchid Anacamptis morio on coastal grassland in Merseyside, England. Conserv Evid 13:79–81. https://www.conservationevidence.com/individual-study/5910. Accessed 13 August 2019

    Google Scholar 

  198. Sletvold N, Øien DI, Moen A (2010) Long term influence of mowing on population dynamics in the rare orchid Dactylorhiza lapponica: the importance of recruitment and seed production. Biol Conserv 143:747–755

    Article  Google Scholar 

  199. Humphrey JW, Coombs EL (1997) Effects of forest management on understorey vegetation in a Pinus sylvestris L. plantation in NE Scotland. Bot J Scotl 49:479–488

    Article  Google Scholar 

  200. Duncan M (2012) Response of orchids to bushfire: black Saturday Victoria 2009 – natural values fire recovery program. Department of Sustainability and Environment. Victoria, Heidelberg

    Google Scholar 

  201. Fridley JD, Vandermast DB, Kuppinger DM, Manthey M, Peet RK (2007) Co-occurrence based assessment of habitat generalists and specialists: a new approach for the measurement of niche width. J Ecol 95:707–722

    Article  Google Scholar 

  202. Boulangeat I, Lavergne S, Van Es J, Garraud L, Thuiller W (2012) Niche breadth, rarity and ecological characteristics within a regional flora spanning large environmental gradients. J Biogeogr 39:204–214

    Article  Google Scholar 

  203. Schiebold JMI, Bidartondo MI, Lenhard F, Makiola A, Gebauer G (2018) Exploiting mycorrhizas in broad daylight: partial mycoheterotrophy is a common nutritional strategy in meadow orchids. J Ecol 106:168–178

    Article  CAS  Google Scholar 

  204. McCormick MK, Jacquemyn H (2014) What constrains the distribution of orchid populations? New Phytol 202:392–400

    Article  Google Scholar 

  205. McCormick MK, Whigham DF, Canchani-Viruet A (2018) Mycorrhizal fungi affect orchid distribution and population dynamics. New Phytol 219:1207–1215

    Article  PubMed  Google Scholar 

  206. McCormick MK, Lee Taylor D, Whigham DF, Burnett RK (2016) Germination patterns in three terrestrial orchids relate to abundance to mycorrhizal fungi. J Ecol 104:744–754

    Article  CAS  Google Scholar 

  207. Dearnaley JDW (2007) Further advances in orchid mycorrhizal research. Mycorrhiza 17:475–486

    Article  PubMed  Google Scholar 

  208. Rasmussen HN, Rasmussen FN (2014) Seedling mycorrhiza: a discussion of origin and evolution in Orchidaceae. Bot J Linn Soc 175:313–327

    Article  Google Scholar 

  209. Selosse MA, Faccio A, Scappaticci G, Bonfante P (2004) Chlorophyllous and achlorophyllous specimens of Epipactis microphylla (Neottieae, Orchidaceae) are associated with ectomycorrhizal septomycetes, including truffles. Microb Ecol 47:416–426

    Article  CAS  PubMed  Google Scholar 

  210. Rasmussen HN, Rasmussen FN (2009) Orchid mycorrhiza: implications of a mycophagous life circle. Oikos 118:334–345

    Article  Google Scholar 

  211. Bailarote BC, Lievens B, Jacquemyn H (2012) Does mycorrhizal specificity affect orchid decline and rarity? Am J Bot 99:1655–1665

    Article  PubMed  Google Scholar 

  212. Davis BJ, Phillips RD, Wright M, Linde CC, Dixon KW (2015) Continent-wide distribution in mycorrhizal fungi: implications for the biogeography of specialized orchids. Ann Bot 116:413–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Shefferson RP, Taylor DL, Weiß M, Garnica S, McCormick MK, Adams S, Gray HM, McFarland JW, Kull T, Tali K, Yukawa T, Kawahara T, Miyoshi K, Lee YI (2007) The evolutionary history of mycorrhizal specificity among lady’s slipper orchids. Evolution 61:1380–1390

    Article  PubMed  Google Scholar 

  214. Pellegrino G, Luca A, Bellusci F (2016) Relationships between orchid and fungal biodiversity: mycorrhizal preferences in Mediterranean orchids. Plant Biosyst 150:1–10

    Article  Google Scholar 

  215. McCormick MK, Lee Taylor D, Juhaszova K, Burnett RK, Whigham DF, O’Neill JP (2012) Limitations on orchid recruitment: not a simple picture. Mol Ecol 21:1511–1523

    Article  PubMed  Google Scholar 

  216. Tremblay RL, Ackerman JD, Zimmerman JK, Calvo RN (2005) Variation in sexual reproduction in orchids and its evolutionary consequences: a spasmodic journey to diversification. Biol J Linn Soc 84:1–54

    Article  Google Scholar 

  217. van der Pijl L, Dodson CH (1966) Orchid flowers: their pollination and evolution. University of Miami Press, Coral Gables

    Google Scholar 

  218. Jersáková J, Johnson SD, Kindlmann P (2006) Mechanisms and evolution of deceptive pollination in orchids. Biol Rev 81:219–235

    Article  PubMed  Google Scholar 

  219. Vereecken NJ, Dafni A, Cozzolino S (2010) Pollination syndromes in Mediterranean orchids – implications for speciation, taxonomy and conservation. Bot Rev 76:220–240

    Article  Google Scholar 

  220. Neiland MRM, Wilcock CC (1998) Fruit set, nectar reward, and rarity in the Orchidaceae. Am J Bot 85:1657–1671

    Article  CAS  PubMed  Google Scholar 

  221. Darwin C (1862) On the various contrivances by which British and foreign orchids are fertilised by insects. John Murray, London

    Google Scholar 

  222. Jacquemyn H, Brys R, Hermy M, Willems JH (2005) Does nectar reward affect rarity and extinction probabilities of orchid species? An assessment using historical records from Belgium and the Netherlands. Biol Conserv 121:257–263

    Article  Google Scholar 

  223. Catling P (1990) Auto-pollination in the Orchidaceae. In: Arditti JE (ed) Orchid biology: reviews and perspectives, vol V. Timber Press, Portland

    Google Scholar 

Download references

Acknowledgments

This study was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia under Grant [number 173030]. ST was partially supported by the Ministry of Education, Youth and Sports of the Czech Republic within the National Sustainability Program I (NPU I) [LO1415]. The authors would like to thank Mihai Bobocea for providing photos of specific orchids. We are grateful to Prof. Dr. Vladimir Stevanović, Prof. Dr. Slobodan Jovanović, and Prof. Dr. Dmitar Lakušić for useful suggestions and information. We are very grateful to Mr. Raymond Dooley, native English editor for the proofreading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladan Djordjević .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Djordjević, V., Tsiftsis, S. (2020). The Role of Ecological Factors in Distribution and Abundance of Terrestrial Orchids. In: Merillon, JM., Kodja, H. (eds) Orchids Phytochemistry, Biology and Horticulture. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-11257-8_4-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11257-8_4-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11257-8

  • Online ISBN: 978-3-030-11257-8

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics