Skip to main content
Log in

Habitat differentiation, hybridization and gene flow patterns in mixed populations of diploid and autotetraploid Dactylorhiza maculata s.l. (Orchidaceae)

  • Original Paper
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

An Erratum to this article was published on 09 January 2008

Abstract

Detailed ecological, morphological and molecular analyses were performed in mixed populations of diploid and autotetraploid Dactylorhiza maculata s.l. in Scandinavia. Comparisons were made with pure populations of either diploid ssp. fuchsii or tetraploid ssp. maculata. It was shown that mixed populations are the result of secondary contact between ssp. fuchsii and ssp. maculata. No patterns of recent and local autopolyploidization were found. Morphology and nuclear DNA markers (internal transcribed spacers of nuclear ribosomal DNA) showed that diploids and tetraploids from mixed populations have similar levels of differentiation to diploids and tetraploids from pure populations. Vegetation analyses, as well as analyses of environmental variables, revealed that diploid and tetraploid individuals in mixed populations are ecologically well differentiated on a microhabitat level. Diploids and tetraploids in pure populations have wider ecological amplitudes than they do in mixed populations. Triploid hybrids grew in intermediate microhabitats between diploids and tetraploids in the mixed populations. Plastid DNA markers indicated that both diploids and tetraploids may act as the maternal parent. Based on morphology and nuclear markers triploids are more similar to tetraploids than to diploids. There were indications of introgressive gene flow between ploidy levels. Plastid markers indicated that gene flow from diploid to tetraploid level is most common, but nuclear markers suggested that gene flow in opposite direction also may occur. Similar patterns of differentiation and gene flow appeared in localities that represented contrasting biogeographic regions. Disturbance and topography may explain why hybridization was slightly more common and the differentiation patterns somewhat less clear in the Scandinavian mountains than in the coastal lowland.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aagaard SMD, SÃ¥stad SM, Greilhuber J, Moen A.(2005) A secondary hybrid zone between diploid Dactylorhiza incarnata ssp. cruenta and allotetraploid D. lapponica (Orchidaceae). Heredity 94:488–496

    Article  PubMed  CAS  Google Scholar 

  • Anderson E (1948) Hybridization of the habitat. Evolution 2:1–9

    Article  Google Scholar 

  • Anonymous (2004) Natural color system. Scandinavian Colour Institute AB, Stockholm

    Google Scholar 

  • Arnold ML (1997) Natural hybridization and evolution. Oxford University Press, Oxford

    Google Scholar 

  • Arumuganathan K, Earle ED (1991) Estimation of nuclear DNA content of plants by flow cytometry. Plant Mol Biol Rep 9:229–233

    Article  CAS  Google Scholar 

  • Averyanov LV (1990) A review of the genus Dactylorhiza. In: Arditti J (ed) Orchid biology. Reviews and perspectives. V. Timber Press, Portland, pp 159–206

    Google Scholar 

  • Barthram GT (1986) Experimental techniques: the HFRO sward stick. Biennal report 1984–1985. Hill Farming Research Organisation, Penicuik, pp 29–30

  • Bateman RM, Denholm I (1985) A reappraisal of the British and Irish dactylorchids, 2. The diploid marsh-orchids. Watsonia 15:321–355

    Google Scholar 

  • Batygina TB, Bragina EA, Vasilyeva VE (2003) The reproductive system and germination in orchids. Acta Biol Crac Ser Bot 45:21–34

    Google Scholar 

  • Buggs RJA, Pannell JR (2007) Ecological differentiation and diploid superiority across a moving ploidy contact zone. Evolution 61:125–140

    Article  PubMed  Google Scholar 

  • Cafasso D, Widmer A, Cozzolino S (2005) Chloroplast DNA inheritance in the orchid Anacamptis palustris using single-seed polymerase chain reaction. J Hered 96:66–70

    Article  PubMed  CAS  Google Scholar 

  • Cavalli-Sforza LL, Edwards AWF (1967) Phylogenetic analysis: models and estimation procedures. Evolution 32:550–570

    Article  Google Scholar 

  • Chase MW, Hills HG (1991) Silica gel: an ideal material for field preservation of leaf samples for DNA studies. Taxon 40:215–220

    Article  Google Scholar 

  • Corriveau JL, Coleman AW (1988) Rapid screening method to detect potential biparental inheritance of plastid DNA and results for over 200 angiosperm species. Am J Bot 75:1443–1458

    Article  Google Scholar 

  • Cozzolino S, Cafasso D, Pellegrino G, Musacchio A, Widmer A (2003) Molecular evolution of a plastid tandem repeat locus in an orchid lineage. J Mol Evol 57:41–49

    Article  CAS  Google Scholar 

  • Delforge P (1995) Orchids of Britain and Europe. Harper Collins Publishers, London

    Google Scholar 

  • Devos N, Tyteca D, Raspé O, Wesselingh RA, Jacquemart A-L (2003) Patterns of chloroplast diversity among western European Dactylorhiza species (Orchidaceae). Plant Syst Evol 243:85–97

    Article  CAS  Google Scholar 

  • Devos N, Oh S-H, Raspé O, Jacquemart A-L, Manos PS (2005) Nuclear ribosomal DNA sequence variation and evolution of spotted marsh-orchids (Dactylorhiza maculata group). Mol Phylogenet Evol 36:568–580

    Article  PubMed  CAS  Google Scholar 

  • Devos N, Raspé O, Oh S-H, Tyteca D, Jacquemart A-L (2006) The evolution of Dactylorhiza (Orchidaceae) allotetraploid complex: insights from nrDNA sequences and cpDNA PCR-RFLP data. Mol Phylogenet Evol 38:767–778

    Article  PubMed  CAS  Google Scholar 

  • Doyle JJ, Doyle JH (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Du Rietz GE (1921) Zur methodologischen Grundlage der modernen Pflanzensoziologie. Holzhausen, Wien

    Google Scholar 

  • Ekstam U, Forshed N (1996) Äldre fodermarker. NaturvÃ¥rdsverket, Stockholm

    Google Scholar 

  • Ellenberg H, Weber HE, Dull R, Wirth V, Werner W, Paulissen D (1991) Zeigerwerte von Pflanzen in Mitteleuropa. Scripta Geobot 18:1–248

    Google Scholar 

  • Felber-Girard M, Felber F, Buttler A (1996) Habitat differentiation in a narrow hybrid zone between diploid and tetraploid Anthoxanthum alpinum. New Phytol 133:531–540

    Article  Google Scholar 

  • Grant V (1981) Plant speciation. Columbia University Press, New York

    Google Scholar 

  • Groll M (1965) Fruchtansatz, Bestäubung und Merkmalsanalyse bei diploiden und polyploiden Sippen von Dactylorchis (Orchis) maculata und Gymnadenia conopsea. Österr Bot Z 112:657–700

    Article  Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) Palaeontological statistics software package for education and data analysis. Palaentologia Electronica, 4(1):9

    Google Scholar 

  • Hardy OJ, Vanderhoeven S, De Loose M, Meerts P (2000) Ecological, morphological and allozymic differentiation between diploid and tetraploid knapweeds (Centaurea jacea s. l.) from a contact zone in the Belgian Ardennes. New Phytol 146:281–290

    Article  CAS  Google Scholar 

  • Hedrén M (1996) Genetic differentiation, polyploidization and hybridization in Northern European Dactylorhiza (Orchidaceae): evidence from allozyme markers. Plant Syst Evol 201:31–55

    Article  Google Scholar 

  • Hedrén M (2003) Plastid DNA variation in the Dactylorhiza incarnata/maculata polyploid complex and the origin of allotetraploid D. sphagnicola (Orchidaceae). Mol Ecol 12:2669–2680

    Article  PubMed  CAS  Google Scholar 

  • Hedrén M, Klein E, Teppner H (2000) Evolution of polyploids in the European orchid genus Nigritella: evidence from allozyme data. Phyton 40:239–275

    Google Scholar 

  • Hedrén M, Fay MF, Chase MW (2001) Amplified fragment length polymorphisms (AFLP) reveal details of polyploid evolution in Dactylorhiza (Orchidaceae). Am J Bot 88:1868–1880

    Article  Google Scholar 

  • He slop-Harrison J (1948) Field studies in Orchis L., I. The structure of dactylorchid populations on certain islands in the Inner and Outer Hebrides. Trans Proc Bot Soc Edinb 35:26–66

    Google Scholar 

  • Heslop-Harrison J (1951) A comparison of some Swedish and British forms of Orchis maculata L. sens. lat. Svensk Bot Tidskr 45:608–635

    Google Scholar 

  • Hewitt GM (1988) Hybrid zones—natural laboratories for evolutionary studies. Trends Ecol Evol 3:158–167

    Article  Google Scholar 

  • Husband BC, Schemske DW (1998) Cytotype distribution at a diploid–tetraploid contact zone in Chamerion (Epilobium) angustifolium (Onagraceae). Am J Bot 85:1688–1694

    Article  Google Scholar 

  • Hylander N (1966) Nordisk kärlväxtflora II. Almquist & Wiksell, Stockholm

    Google Scholar 

  • Johnson MTJ, Husband BC, Burton TL (2003) Habitat differentiation between diploid and tetraploid Galax urceolata (Diapensiaceae). Int J Plant Sci 164:703–710

    Article  Google Scholar 

  • Krok Th OBN, Almquist S (1994) Svensk flora: Fanerogamer och ormbunksväxter. Liber, Stockholm

    Google Scholar 

  • Levin DA (1975) Minority cytotype exclusion in local plant populations. Taxon 24:35–43

    Article  Google Scholar 

  • Lid J, Lid DT (2005) Norsk flora. Det Norske Samlaget, Oslo

    Google Scholar 

  • Lumaret R, Guillerm JL, Delay J, Ait Lhaj Loufti A, Izco J, Jay M (1987) Polyploidy and habitat differentiation in Dactylis gilomerata L. from Galicia (Spain). Oecologia 73:436–446

    Article  Google Scholar 

  • Lynch M, Conery JS (2000) The evolutionary fate of duplicated genes. Science 290:1151–1154

    Article  PubMed  CAS  Google Scholar 

  • Mossberg B, Stenberg L (2003) Den nya nordiska floran. Wahlström & Widstrand, Stockholm

    Google Scholar 

  • Müntzing A (1936) The evolutionary significance of autopolyploidy. Hereditas 21:263–378

    Google Scholar 

  • Ohta T, Kimura M (1973) The model of mutation appropriate to estimate the number of electrophoretically detectable alleles in a genetic population. Genet Res 22:201–204

    Article  Google Scholar 

  • Otto SP, Whitton J (2000) Polyploid incidence and evolution. Annu Rev Genet 34:401–437

    Article  PubMed  CAS  Google Scholar 

  • Pillon Y, Fay MF, Hedrén M, Devey D, Shipunov A, van der Bank M, Bateman RM, Chase MW (2007) Insights into the evolution and biogeography of Western European species complexes in Dactylorhiza (Orchidaceae). Taxon 54(6) (in press)

  • Pinceel J, Jordaens K, Pfenninger M, Backeljau T (2005) Rangewide phylogeography of a terrestrial slug in Europe: evidence for Alpine refugia and rapid colonization after the Pleistocene glaciations. Mol Ecol 14:1133–1150

    Article  PubMed  CAS  Google Scholar 

  • Prentice HC, Cramer W (1990) The plant community as a niche bioassay: environmental correlates of local variation in Gypsophila fastigiata. J Ecol 78:313–325

    Article  Google Scholar 

  • Ramsey J, Schemske DW (1998) Pathways, mechanisms, and rates of polyploid formation in flowering plants. Annu Rev Ecol Syst 29:467–501

    Article  Google Scholar 

  • Reinhard HR (1985) Skandinavische und alpine Dactylorhiza-arten (Orchidaceae). Ergebnisse populationsstatistischer Untersuchungen. Mitt Bl Arbeitskr Heim Orch Baden-Württemberg 17:321–416

    Google Scholar 

  • Rothera SL, Davy AJ (1986) Polyploidy and habitat differentiation in Deschampsia cespitosa. New Phytol 102:449–467

    Article  Google Scholar 

  • Schönswetter P, Paun O, Tribsch A, Niklfeld H (2003) Out of the Alps: colonization of northern Europe by East Alpine populations of the glacier buttercup Ranunculus glacialis L (Ranunculaceae). Mol Ecol 12:3373–3381

    Article  PubMed  CAS  Google Scholar 

  • Schönswetter P, Stehlik I, Holderegger R, Tribsch A (2005) Molecular evidence for glacial refugia of mountain plants in the European Alps. Mol Ecol 14:3547–3555

    Article  PubMed  CAS  Google Scholar 

  • Segraves KA, Thompson JN (1999) Plant polyploidy and pollination. Floral traits and insect visits to diploid and tetraploid Heuchera grossulariifolia. Evolution 53:1114–1127

    Article  Google Scholar 

  • Shannon CE, Weaver W (1949) The mathematical theory of communication. University of Illinois Press, Urbana

    Google Scholar 

  • Shaw JA (1998) Morphometric analyses of mixed Dactylorhiza colonies (Orchidaceae) on industrial waste sites in England. Bot J Linn Soc 128:385–401

    Google Scholar 

  • Shipunov AB, Fay MF, Pillon Y, Bateman RM, Chase MW (2004) Dactylorhiza (Orchidaceae) in European Russia: combined molecular and morphological analysis. Am J Bot 91:1419–1426

    Article  CAS  Google Scholar 

  • Soliva M, Widmer A (1999) Genetic and floral divergence among sympatric populations of Gymnadenia conopsea s.l. (Orchidaceae) with different flowering phenology. Int J Plant Sci 160:897–905

    Article  PubMed  Google Scholar 

  • Soltis DE, Soltis PS (1993) Molecular data and the dynamic nature of polyploidy. Crit Rev Plant Sci 12:243–273

    Article  CAS  Google Scholar 

  • Soltis DE, Soltis PS (1999) Polyploidy: recurrent formation and genome evolution. Trends Ecol Evol 14:348–352

    Article  PubMed  Google Scholar 

  • Soltis DE, Soltis PS, Tate JA (2003) Advances in the study of polyploidy since Plant speciation. New Phytol 161:173–191

    Article  CAS  Google Scholar 

  • Soó R (1960) Synopsis generis Dactylorhiza (Dactylorchis). Ann Univ Sci Budap Rolando Eotvos Nom Sect Biol 3:335–357

    Google Scholar 

  • Stebbins GL (1950) Variation and evolution in plants. Columbia University Press, New York

    Google Scholar 

  • Stebbins GL (1984) Polyploidy and the distribution of the arctic-alpine flora: new evidence and a new approach. Bot Helv 94:1–13

    Google Scholar 

  • Stewart JR, Lister AM (2001) Cryptic northern refugia and the origins of the modern biota. Trends Ecol Evol 16:608–613

    Article  Google Scholar 

  • Tribsch A, Schönswetter P (2003) Patterns of endemism and comparative phylogeography confirm palaeoenvironmental evidence for Pleistocene refugia in the Eastern Alps. Taxon 52:477–497

    Article  Google Scholar 

  • Ursenbacher S, Carlsson M, Helfer V, Tegelström H, Fumagalli L (2006) Phylogeography and Pleistocene refugia of the adder (Vipera berus) as inferred from mitochondrial DNA sequence data. Mol Ecol 15:3425–3437

    Article  PubMed  CAS  Google Scholar 

  • Vöth W, Greilhuber J (1980) Zur Karyosystematik von Dactylorhiza maculata s.l. und ihrer Verbreitung, insbesondere in Niederösterreich. Linzer Biol Beitr 12:415–468

    Google Scholar 

Download references

Acknowledgements

I thank Mikael Hedrén for constructive discussions and technical support, Ingela Ståhlberg for assistance in the field and Louise Hathaway for correcting and improving the language. I also thank two anonymous reviewers for helpful comments. Financial support was given by Anna och Svante Murbecks minnesfond and Lunds botaniska förening.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Ståhlberg.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s10682-007-9241-1

Appendices

Appendices

Appendix 1 Mean cover of species associated to quadrates with diploid, triploid or tetraploid Dactylorhiza maculata s.l. A 0-5 graded Hult-Sernander-Du Rietz scale (Du Rietz 1921) was used
Appendix 2 Population means of morphological characters (see Table 1); standard deviations (where appropriate) in italics
Appendix 3 Characterization of plastid haplotypes identified in the present study by means of the primer pairs described in Table 2

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ståhlberg, D. Habitat differentiation, hybridization and gene flow patterns in mixed populations of diploid and autotetraploid Dactylorhiza maculata s.l. (Orchidaceae). Evol Ecol 23, 295–328 (2009). https://doi.org/10.1007/s10682-007-9228-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-007-9228-y

Keywords

Navigation