Skip to main content

Advertisement

Log in

Molecular data indicate multiple independent colonizations of former lignite mining areas in Eastern Germany by Epipactis palustris (Orchidaceae)

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Former lignite mining areas in Eastern Germany are valuable secondary habitats for many plant and animal species endangered in the natural landscape. Here, we present a study on genetic structure and diversity of 16 populations of the threatened orchid Epipactis palustris (Orchidaceae) from five mining pits and 11 natural habitats, which we carried out in order to ascertain how many times this species immigrated into former lignite mining areas, and where the source populations are located. We used two different anonymous genetic marker methods, random amplified polymorphic DNA (RAPD) and microRNA-primed genomic fingerprinting (miRPF) to analyze patterns of genetic variation. Results of a multivariate analysis based on asymmetric Soerensen similarity, principal coordinate analysis and a neighbor-joining cluster analysis indicate high within population-variability and a moderate genetic differentiation among E. palustris populations. We found no differences between genetic diversity values of populations from former mining areas and those of natural habitats. Thus, we could not find evidences for genetic bottlenecks in the mining populations due to founder events. Source populations are predominantly close surrounding populations as geographic distance and genetic dissimilarity were correlated. However, exchanges may reach beyond 125 km and repeated independent colonization events are highly likely.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Antonovics J, Bradshaw AD (1970) Evolution in closely adjacent plant populations. VIII. Clinal patterns at a mine boundary. Heredity 25:349–362

    Article  Google Scholar 

  • Ash HJ, Gemmell RP, Bradshaw AD (1994) The introduction of native plant species on industrial waste heaps: a test of immigration and other factors affecting primary succession. J Appl Ecol 31:74–84. doi:10.2307/2404600

    Article  Google Scholar 

  • Bakker JP, Poschlod P, Stryskstra RJ, Bekker RM, Thompson K (1996) Seed banks and seed dispersal: Important topics in restoration ecology. Acta Bot Neerl 45:461–490

    Google Scholar 

  • Barrett S, Shore JS (1989) Isozyme variation in colonizing plants. In: Soltis DE, Soltis PS (eds) Isozymes in Plant Biology. Dioscorides Press, Portland, pp 106–126

    Google Scholar 

  • Baum H (1998) Echte Sumpfwurz (Epipactis palustris (L.) Crantz), Orchidee des Jahres 1998. Ber Arbeitskr heim Orchideen 14:36–46

    Google Scholar 

  • Baasch A, Seppelt M (2004) Orchideen (Orchidaceae). In: Tischew S (ed) Renaturierung nach dem Braunkohletagebau. Teubner Verlag, Stuttgart, Germany, pp 74–85

    Google Scholar 

  • Blattner FR, Esfeld K, Achigan-Dako EG, Jakob SS, Wahrmund U (submitted). Direct amplification of conserved microRNA loci and miRNA-primed fingerprinting (miRPF) in plants

  • Bonin A, Ehrich D, Manel S (2007) Statistical analysis of amplified fragment length polymorphism data: a toolbox for molecular ecologists and evolutionists. Mol Ecol 16:3737–3758. doi:10.1111/j.1365-294X.2007.03435.x

    Article  PubMed  CAS  Google Scholar 

  • Bonn S, Poschlod P (1998) Ausbreitungsbiologie der Pflanzen Mitteleuropas. Grundlagen und kulturhistorische Aspekte. Quelle and Meyer, Wiesbaden

    Google Scholar 

  • Bradshaw AD (1983) The reconstruction of ecosystems. J Appl Ecol 20:1–17. doi:10.2307/2403372

    Article  Google Scholar 

  • Bradshaw AD (1997) Restoration of mined lands–using natural processes. Ecol Eng 8:255–269. doi:10.1016/S0925-8574(97)00022-0

    Article  Google Scholar 

  • Bradshaw AD (2000) The use of natural processes in reclamation–advantages and difficulties. Landsc Urban Plann 51:89–100. doi:10.1016/S0169-2046(00)00099-2

    Article  Google Scholar 

  • Brandle M, Durka W, Altmoos M (2000) Diversity of surface dwelling beetle assemblages in open-cast lignite mines in Central Germany. Biodivers Conserv 9:1297–1311. doi:10.1023/A:1008904605567

    Article  Google Scholar 

  • Brock J, Aboling S, Stelzer R, Esch E, Papenbrock J (2007) Genetic variation among different populations of Aster tripolium grown on naturally and anthropogenic salt-contaminated habitats: implications for conservation strategies. J Plant Res 120:99–112. doi:10.1007/s10265-006-0030-7

    Article  PubMed  CAS  Google Scholar 

  • Brzosko E, Wróblewska A (2003) Genetic variation and clonal diversity in island Cephalanthera rubra populations from Biebrza. Bot J Linn Soc 143:99–108. doi:10.1046/j.1095-8339.2003.00201.x

    Article  Google Scholar 

  • Choi YD (2004) Theories for ecological restoration in changing environment: Toward ‘futuristic’ restoration. Ecol Res 19:75–81. doi:10.1111/j.1440-1703.2003.00594.x

    Article  Google Scholar 

  • Csecserits A, Szabo R, Halassy M, Redei T (2007) Testing the validity of successional predictions on an old-field chronosequence in Hungary. Community Ecol 8:195–207

    Article  Google Scholar 

  • Cozzolino S, Noce ME, Musacchio A, Widmer A (2003) Variation at a chloroplast minisatellite locus reveals the signature of habitat fragmentation and genetic bottlenecks in the rare orchid Anacamptis palustris (Orchidaceae). Am J Bot 90:1681–1687. doi:10.3732/ajb.90.12.1681

    Article  Google Scholar 

  • del Moral R (2007) Limits to convergence of vegetation during early primary succession. J Veg Sci 18:479–488. doi:10.1658/1100-9233(2007)18[479:LTCOVD]2.0.CO;2

    Article  Google Scholar 

  • Durka W, Bossdorf O, Prati D, Auge H (2005) Molecular evidence for multiple introductions of invasive garlic mustard (Alliaria petiolata, Brassicaceae) to North America. Mol Ecol 14:1697–1706. doi:10.1111/j.1365-294X.2005.02521.x

    Article  PubMed  Google Scholar 

  • Fort KP, Richards JH (1998) Does seed dispersal limit initiation of primary succession in desert playas? Am J Bot 85:1722–1731. doi:10.2307/2446506

    Article  Google Scholar 

  • Gustafsson S (2000) Patterns of genetic variation in Gymnadenia conopsea, the fragrant orchid. Mol Ecol 9:1863–1872. doi:10.1046/j.1365-294x.2000.01086.x

    Article  PubMed  CAS  Google Scholar 

  • Haas M (2000) Epipactis palustris in Hessen südlich des Mains. Ber Arbeitskr heim Orchideen 17:15–30

    Google Scholar 

  • Hardtke HJ, Ihl A (2000) Atlas der Farn-und Samenpflanzen Sachsens. Sächsisches Landesamt für Umwelt und Geologie, Dresden

    Google Scholar 

  • He T, Krauss SL, Lamont BB, Miller BP, Enright NJ (2004) Long-distance seed dispersal in a metapopulation of Banksia hookeriana inferred from a metapopulation allocation analysis of amplified fragment length polymorphism data. Mol Ecol 13:1–11. doi:10.1111/j.1365-294X.2004.02120.x

    Article  CAS  Google Scholar 

  • Heyde K, Krug H (2000) Orchideen in der Mitteldeutschen Braunkohlen-Bergbaufolgelandschaft. LMBV, Espenhain

    Google Scholar 

  • Hollingsworth PM, Dickson JH (1997) Genetic variation in ruderal and urban populations of Epipactis helleborine (L.) Crantz (Orchidaceae) in Britain. Bot J Linn Soc 123:321–331. doi:10.1006/bojl.1996.0092

    Google Scholar 

  • Hurlbert SH (1971) The nonconcept of species diversity: a critique and alternative parameters. Ecology 52:577–586. doi:10.2307/1934145

    Article  Google Scholar 

  • Jakob SS, Ihlow A, Blattner FR (2007) Combined ecological niche modeling and molecular phylogeography revealed the evolutionary history of Hordeum marinum (Poaceae) - niche differentiation, loss of genetic diversity, and speciation in Mediterranean Quaternary refugia. Mol Ecol 16:1713–1724. doi:10.1111/j.1365-294X.2007.03228.x

    Article  PubMed  CAS  Google Scholar 

  • Kirmer A, Tischew S, Ozinga WA, von Lampe M, van Groenendael JM (accepted): Importance of regional species pools and functional traits in colonisation processes predicting re-colonisation after large-scale destruction of ecosystems. J Appl Ecol

  • Klotz S, Durka W, Schmidt T (2000) Vegetationsstruktur und -dynamik auf ehemaligen Bergbaustandorten in Mitteldeutschland und ihre Bedeutung für die Renaturierung. Rundgespr Kommiss Ökol 20:43–51

    Google Scholar 

  • Krüger AM, Hellwig FH, Oberprieler C (2002) Genetic diversity in natural and anthropogenic inland populations of salt-tolerant plants: random amplified polymorphic DNA analyses of Aster tripolium L. (Compositae) and Salicornia ramosissima Woods (Chenopodiaceae). Mol Ecol 11:1647–1655. doi:10.1046/j.1365-294X.2002.01562.x

    Article  PubMed  Google Scholar 

  • Kühn I, Klotz S (2002) Systematik, Taxonomie und Nomenklatur. Schr Reihe Vegetationskde 38:41–46

    Google Scholar 

  • Lian C, Oishi R, Miyashita N, Nara K, Nakaya H, Wu B, Zhou Z, Hogetsu T (2003) Genetic structure and reproduction dynamics of Salix renii during primary succession on Mount Fuji, as revealed by nuclear and chloroplast microsatellite analysis. Mol Ecol 12:609–618. doi:10.1046/j.1365-294X.2003.01756.x

    Article  PubMed  CAS  Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

    PubMed  CAS  Google Scholar 

  • Martinez-Ruiz C, Marrs RH (2007) Some factors affecting successional change on uranium mine wastes: Insights for ecological restoration. Appl Veg Sci 10:333–342

    Article  Google Scholar 

  • McCauley DE, Raveill J, Antonovics J (1995) Local founding events as determinants of genetic structure in a plant metapopulation. Heredity 75:630–636

    Article  Google Scholar 

  • McCune B, Mefford MJ (1997) PC-ORD: Multivariate analysis of ecological data. Version 2, MJM Software Design, Gleneden Beach

  • Mengoni A, Gonelli C, Galardi F, Gabrielli R, Bazzicalupo M (2000) Genetic diversity and heavy metal tolerance in populations of Silene paradoxa L. (Caryophyllaceae): a random amplified polymorphic DNA analysis. Mol Ecol 9:1319–1324. doi:10.1046/j.1365-294x.2000.01011.x

    Article  PubMed  CAS  Google Scholar 

  • Mengoni A, Barabesi C, Gonnelli C, Galardi F, Gabbrielli R, Bazzicalupo M (2001) Genetic diversity of heavy metal-tolerant populations in Silene paradoxa L. (Caryophyllaceae): a chloroplast microsatellite analysis. Mol Ecol 10:1909–1916. doi:10.1046/j.0962-1083.2001.01336.x

    Article  PubMed  CAS  Google Scholar 

  • Morris RKA, Alonso I, Jefferson RG, Kirby KJ (2006) The creation of compensatory habitat–Can it secure sustainable development? J Nat Conservat 14:106–116. doi:10.1016/j.jnc.2006.01.003

    Article  Google Scholar 

  • Mrzljak J, Wiegleb G (2000) Spider colonization of former brown coal mining areas–time or structure dependent? Landsc Urban Plann 51:131–146. doi:10.1016/S0169-2046(00)00104-3

    Article  Google Scholar 

  • Nei NM, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. PNAS 76:5269–5273. doi:10.1073/pnas.76.10.5269

    Article  PubMed  CAS  Google Scholar 

  • Nilsson LA (1978) Pollination ecology of Epipactis palustris (Orchidaceae). Botan Notiser 131:355–368

    Google Scholar 

  • Nybom H, Bartish IV (2000) Effects of life history traits and sampling strategies on genetic diversity estimates obtained with RAPD markers in plants. Persp Plant Ecol Evol Syst 3:93–114. doi:10.1078/1433-8319-00006

    Article  Google Scholar 

  • Oberdorfer E (1994) Pflanzensoziologische Exkursionsflora. Ulmer, Stuttgart

    Google Scholar 

  • Pleines T, Blattner FR (2008) Phylogeographic implications of an AFLP phylogeny of the American diploid Hordeum species. Taxon, in press

  • Prach K (1987) Succession of on dumps from strip coal mining, NW Bohemia, Chechoslovakia. Folia Geobotanica & Phytotaxonomica 22:339–354

    Google Scholar 

  • Prach K (2003) Spontaneous succession in Central-European man-made habitats: What information can be used in restoration practice? Appl Veg Sci 6:125–129. doi:10.1658/1402-2001(2003)006[0125:SSICMH]2.0.CO;2

    Article  Google Scholar 

  • Prach K, Pyšek P (1999) How do species dominating in succession differ from others? J Veg Sci 10:383–392. doi:10.2307/3237067

    Article  Google Scholar 

  • Prach K, Pyšek P (2001) Using spontaneous succession for restoration of human-disturbed habitats: Experience from Central Europe. Ecol Eng 17:55–62. doi:10.1016/S0925-8574(00)00132-4

    Article  Google Scholar 

  • Rehounková K, Prach K (2006) Spontaneous vegetation succession in disused gravel-sand pits: Role of local site and landscape factors. J Veg Sci 17:583–590. doi:10.1658/1100-9233(2006)17[583:SVSIDG]2.0.CO;2

    Article  Google Scholar 

  • Reisch C (2007) Genetic structure of Saxifraga tridactylites (Saxifragaceae) from natural and man-made habitats. Conservat Genet 8:893–902. doi:10.1007/s10592-006-9244-4

    Article  CAS  Google Scholar 

  • Ridley HN (1990) The dispersal of plants throughout the world. Reprint. Koeltz, Königstein

    Google Scholar 

  • Rothmaler W (Begr.) (1996) Exkursionsflora von Deutschland. Gefäßpflanzen: Grundband. K. Fischer Verlag, Jena

  • Schneider S, Roessli D, Excoffier L (2000) ARLEQUIN ver 2.000. A software for population genetic data analysis. Genetics and Biometry Laboratory. University of Geneva, Switzerland

    Google Scholar 

  • Schulz F, Wiegleb G (2000) Development options of natural habitats in a post-mining landscape. Land Degrad Dev 11:99–110. doi:10.1002/(SICI) 1099-145X(200003/04) 11:2<99::AID-LDR368>3.0.CO;2-I

  • Sebald O, Seybold S, Philippi G, Wörz A (Hrsg.) (1998) Die Farn- und Blütenpflanzen Baden-Württembergs. Band 8, Teil 2. Ulmer, Stuttgart

  • Swofford DL (2002) PAUP*: Phylogenetic Analysis Using Parsimony (*and other methods), version 4.0. Sinauer Associates, Sunderland

  • Tackenberg O (2001) Methoden zur Bewertung gradueller Unterschiede des Ausbreitungspotentials von Pflanzenarten. Diss Bot 347, J. Cramer, Stuttgart

  • Tackenberg O, Poschlod P, Bonn S (2003) Assessment of wind dispersal potential in plant species. Ecol Monogr 73:191–205. doi:10.1890/0012-9615(2003)073[0191:AOWDPI]2.0.CO;2

    Article  Google Scholar 

  • ter Braak CJF, Smilauer P (2002) Canoco 4.5 Reference Manual. Biometris, Wageningen, Ceske Budejovice

    Google Scholar 

  • Tischew S, Kirmer A (2003) Entwicklung der Biodiversität in Tagebaufolgelandschaften: Spontane und initiierte Besiedlungsprozesse. Nova Acta Leopold 87:249–286

    Google Scholar 

  • Tischew S, Kirmer A (2007) Application of basic studies in restoration ecology: success and deficiencies in the ecological restoration of surface-mined land in eastern Germany. Restor Ecol 15:321–325. doi:10.1111/j.1526-100X.2007.00217.x

    Article  Google Scholar 

  • Tremetsberger K, Stuessy TF, Samuel RM, Baeza CM, Fay MF (2003) Genetics of colonization in Hypochaeris tenuifolia (Asteraceae, Lactuceae) on Volcán Lonquimay, Chile. Mol Ecol 12:2649–2659. doi:10.1046/j.1365-294X.2003.01956.x

    Article  PubMed  CAS  Google Scholar 

  • Twigg LE, Fox BJ, Jia L (1989) The modified primary succession following sand mining–a validation of the use of chronosequence analysis. Aust J Ecol 14:441–447. doi:10.1111/j.1442-9993.1989.tb01453.x

    Article  Google Scholar 

  • Wallace LE (2002) Examining the effects of fragmentation on genetic variation on Platanthera leucophaea (Orchidaceae). Inferences from alloenzyme and random amplified polymorphic DNA markers. Pl Species Biol 17:37–49. doi:10.1046/j.1442-1984.2002.00072.x

    Article  Google Scholar 

  • Welk E (2002) Arealkundliche Analyse und Bewertung der Schutzrelevanz seltener und gefährdeter Gefäßpflanzen Deutschlands. Bundesamt für Naturschutz, Bonn

    Google Scholar 

  • Welsh J, McClelland M (1990) Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res 18:7213–7218. doi:10.1093/nar/18.24.7213

    Article  PubMed  CAS  Google Scholar 

  • Wiegleb G, Felinks B (2001) Predictability of early stages of primary succession in post-mining landscapes of Lower Lusatia, Germany. Appl Veg Sci 4:5–18

    Google Scholar 

  • Willems JH (1982) Establishment, development of a population of Orchis simia Lamk. in the Netherlands, 1972 to 1981. N Phytol 91:757–765. doi:10.1111/j.1469-8137.1982.tb03355.x

    Article  Google Scholar 

  • Williams JG, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18:6531–6535. doi:10.1093/nar/18.22.6531

    Article  PubMed  CAS  Google Scholar 

  • Ziegenspeck H (1936) Orchidaceae. In: von Kirchner O, Loew E, Schröter C (eds) Lebensgeschichte der Blütenpflanzen Mitteleuropas, Vol 1, 4. Ulmer, Stuttgart

    Google Scholar 

Download references

Acknowledgements

We would like to thank Anke Dittbrenner for assistance in the field and the ‘Regierungspräsidium Halle’, the ‘Thüringer Ministerium für Landwirtschaft, Naturschutz und Umwelt’, and ‘LMU Mecklenburg-Vorpommern’ for the permission to collect leaves of Epipactis palustris in protected areas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Korinna Esfeld.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Esfeld, K., Hensen, I., Wesche, K. et al. Molecular data indicate multiple independent colonizations of former lignite mining areas in Eastern Germany by Epipactis palustris (Orchidaceae). Biodivers Conserv 17, 2441–2453 (2008). https://doi.org/10.1007/s10531-008-9391-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-008-9391-7

Keywords

Navigation