Skip to main content

Advertisement

Log in

Role of way of life, latitude, elevation and climate on the richness and distribution of orchid species

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

We are experiencing climate warming that is likely to affect all regions worldwide, although in a different manner, when its consequences (e.g. increase of temperature, lower seasonality, lower environmental stochasticity) are considered. Thus, our prediction of how global change will affect distribution and survival of species can be estimated by using our knowledge, how species richness and distribution is related with latitude and elevation. We used 193 terrestrial orchid species and subspecies as an example and we classified them according to their root system. This trait represents the evolution of strategies for underground storage of resources and resource acquisition as well as a characteristics that can be described as a life history trait. Classification of orchid life history traits that focus on belowground strategies has never been examined in a macroecological study. We then explored the associations between species richness, mean niche breadth and mean distribution on one hand and selected predictors on the other hand, using regression techniques for all orchids, and then for their subsets with different root systems. The predictive power, as well as the significance of the predictors, was also tested using polynomial second order generalized linear models. Species richness for the three belowground strategies was significantly affected by the predictors, whereas their mean niche breadth and mean distribution were largely dependent on their evolutionary history. The correlations of mean niche breadth and mean distribution with maximum elevation, latitude and longitude were significant for all orchid taxa and their subsets. All the variables together accounted for almost 50% or more of the variance in each of the subsets. The maximum elevation was the most significant factor for rhizomatous and intermediate orchids, whereas minimum temperature in the coldest month was highly significant for the tuberous orchids. Spatial distribution of Greek orchids is associated with a combination of elevation, latitude and climate. The distributions of rhizomatous and intermediate orchids are mainly associated with the orographic configuration of Greece, whereas the tuberous orchids are widely distributed in the southern, central and north-western areas of Greece, where most of them are limited by the harsh winter climate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Acharya KP, Vetaas OR, Birks HJB (2011) Orchid species richness along Himalayan elevational gradients. J Biogeogr 38:1821–1833

    Article  Google Scholar 

  • Anon. (2009) PASW 18 for Windows. Rel. 18.0.0. SPSS Inc, Chicago

    Google Scholar 

  • Anon. (2012) ArcGIS—ArcMap: ArcInfo (version 10.1). Environmental Science Research Institute (ESRI) Inc, Redlands

    Google Scholar 

  • Antonopoulos Z, Tsiftsis S (2017) Atlas of the Greek Orchids, vol II. Mediterraneo Editions, Rethymno

    Google Scholar 

  • Averyanov L (1990) A review of the genus Dactylorhiza. In: Arditti J (ed) Orchid biology—reviews and perspectives, vol V. Timber Press Inc, Portland, pp 159–206

    Google Scholar 

  • Bachman S, Baker WJ, Brummitt N, Dransfield J, Moat J (2004) Elevational gradients, area and tropical island diversity: an example from the palms of New Guinea. Ecography 27:299–310

    Article  Google Scholar 

  • Bhattarai KR, Vetaas OR (2003) Variation in plant species richness of different life forms along a subtropical elevation gradient in the Himalayas, east Nepal. Glob Ecol Biogeogr 12:327–340

    Article  Google Scholar 

  • Bjørndalen JE (2015) Protection of Norwegian orchids—a review of achievements and challenges. Eur J Environ Sci 5:121–133

    Article  Google Scholar 

  • Brown JH (1995) Macroecology. University of Chicago Press, Chicago

    Google Scholar 

  • Chapin FS, Körner C (1995) Arctic and alpine biodiversity: patterns, causes and ecosystem consequences. Springer, Berlin

    Book  Google Scholar 

  • Chen S-B, Ferry Slik JW, Gao J, Mao L-F, Bi M-J, Shen M-W, Zhou K-X (2015) Latitudinal diversity gradients in bryophytes and woody plants: roles of temperature and water availability. J Syst Evol 53:535–545

    Article  CAS  Google Scholar 

  • Colwell RK, Hurtt GC (1994) Nonbiological gradients in richness and a spurious Rapoport effect. Am Nat 144:570–595

    Article  Google Scholar 

  • Conord C, Gurevitch J, Fady B (2012) Large-scale longitudinal gradients of genetic diversity: a meta-analysis across six phyla in the Mediterranean basin. Ecol Evol 2:2600–2614

    Article  PubMed  PubMed Central  Google Scholar 

  • Crame JA (2001) Taxonomic diversity gradients through geological time. Divers Distrib 7:175–189

    Article  Google Scholar 

  • Dafni A (1987) Pollination in Orchis and related genera: evolution from reward to deception. In: Adritti J (ed) Orchid biology, reviews and perspectives, vol IV. Cornell University Press, Ithaca, pp 79–104

    Google Scholar 

  • Del Prete C, Mazzola P (1995) Endemism and speciation in the orchids of Mediterranean islands. Fl Medit 21:119–134

    Google Scholar 

  • Delforge P (2006) Orchids of Europe, North Africa and the Middle East. A & C Black, London

    Google Scholar 

  • Dixon AFG, Kindlmann P, Lepš J, Holman J (1987) Why are there so few species of aphids, especially in the tropics? Am Nat 129:580–592

    Article  Google Scholar 

  • Dolédec S, Chessel D, Gimaret-Carpentier C (2000) Niche separation in community analysis: a new method. Ecology 81:2914–2927

    Article  Google Scholar 

  • Dressler RL (1981) The orchids: natural history and classification. Harvard University Press, Cambridge

    Google Scholar 

  • Eccarius W (2016) Die Orchideengattung Dactylorhiza. Phylogenie, Taxonomie, Morphologie, Biologie, Verbreitung, Ökologie und Hybridisation. W. Eccarius, Eisenach

    Google Scholar 

  • Essl F, Staudinger M, Stöhr O, Schratt-Ehrendorfer L, Rabitsch W, Nikfeld H (2009) Distribution patterns, range size and niche breadth of Austrian endemic plants. Biol Conserv 142:2547–2558

    Article  Google Scholar 

  • Francis AP, Currie DJ (2003) A globally consistent richness–climate relationship for angiosperms. Am Nat 161:523–536

    Article  PubMed  Google Scholar 

  • Füller F (1974) Epipactis und Cephalanthera. Orchideen Mitteleuropas, 5. Teil. Die Neue Brehm-Bücherei. A. Ziemsen Verlag, Wittenberg Lutherstadt

    Google Scholar 

  • Gaston KJ, Blackburn TM (2000) Patterns and process in macroecology. Blackwell Science Ltd, Cambridge

    Book  Google Scholar 

  • Grytnes JA (2003) Species-richness patterns of vascular plants along seven altitudinal transects in Norway. Ecography 26:291–300

    Article  Google Scholar 

  • Hágsater E, Dumont V (eds) (1996) Orchids: status, survey and conservation action plan. IUCN, Gland

    Google Scholar 

  • Hedrén M, Fay MF, Chase MW (2001) Amplified fragment length polymorphisms (AFLP) reveal details of polyploid evolution in Dactylorhiza (Orchidaceae). Am J Bot 88:1868–1880

    Article  PubMed  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Hillebrand H (2004) On the generality of the latitudinal diversity gradient. Am Nat 163:192–211

    Article  Google Scholar 

  • Hrivnák R, Gömöry D, Slezák M, Ujházy K, Hédl R, Jarčuška B, Ujházyová M (2014) Species richness pattern along altitudinal gradient in central European beech forests. Folia Geobot 49:425–441

    Article  Google Scholar 

  • IGME (1983) Geological map of Greece, 1:500,000. IGME, Athens

    Google Scholar 

  • Jacquemyn H, Micheneau C, Roberts DL, Pailler T (2005) Elevational gradients of species diversity, breeding system and floral traits of orchid species on Reunion Island. J Biogeogr 32:1751–1761

    Article  Google Scholar 

  • Jacquemyn H, Duffy KJ, Selosse M-A (2017) Biogeography of orchid mycorrhizas. Ecol Stud 230:159–177

    Article  Google Scholar 

  • Karamesouti M, Detsis V, Kounalaki A, Vasiliou P, Salvati L, Kosmas C (2015) Land-use and land degradation processes affecting soil resources: evidence from a traditional Mediterranean cropland (Greece). CATENA 132:45–55

    Article  Google Scholar 

  • Körner C (2007) The use of “altitude” in ecological research. Trends Ecol Evol 22:569–574

    Article  PubMed  Google Scholar 

  • Kostikova A, Litsios G, Salamin N, Pearman PB (2013) Linking life-history traits, ecology, and niche breadth evolution in North American eriogonoids (Polygonaceae). Am Nat 182:760–774

    Article  PubMed  Google Scholar 

  • MacArthur RH (1972) Geographical ecology. Princeton University Press, Princeton

    Google Scholar 

  • Marshall KE, Baltzer JL (2015) Decreased competitive interactions drive a reverse species richness latitudinal gradient in subarctic forests. Ecology 96:461–470

    Article  PubMed  Google Scholar 

  • Martin K (2001) Wildlife in alpine and sub-alpine habitats. In: Johnson DH, O’Neil TA (eds) Wildlife habitats and relationships in Oregon and Washington. Oregon State University Press, Corvallis, pp 239–260

    Google Scholar 

  • Mateo RG, Broennimann O, Normand S, Petitpierre B, Araújo MB, Svenning J-C, Baselga A, Fernández-González F, Gómez-Rubio V, Muñoz J, Suarez GM, Luoto M, Guisan A, Vanderpoorten A (2016) The mossy North: an inverse latitudinal diversity gradient in European bryophytes. Sci Rep. https://doi.org/10.1038/srep25546

    Article  PubMed  PubMed Central  Google Scholar 

  • McCain CM, Knight KB (2013) Elevational Rapoport’s rule is not pervasive on mountains. Glob Ecol Biogeogr 22:750–759

    Article  Google Scholar 

  • Morinière J, Van Dam HM, Hawlitschek O, Bergsten J, Michat MC, Hendrich L, Ribera I, Toussaint EFA, Balke M (2016) Phylogenetic niche conservatism explains an inverse latitudinal diversity gradient in freshwater arthropods. Sci Rep. https://doi.org/10.1038/srep26340

    Article  PubMed  PubMed Central  Google Scholar 

  • Papacostas KJ, Freestone AL (2016) Latitudinal gradient in niche breadth of brachyuran crabs. Glob Ecol Biogeogr 25:207–2017

    Article  Google Scholar 

  • Petřík P, Wild J (2006) Environmental correlates of the patterns of plant distribution at the mesoscale: a case study from Northern Bohemia (Czech Republic). Preslia 78:211–234

    Google Scholar 

  • Pfeifer M, Schatz B, Picó FX, Passalacqua NG, Fay MF, Carey PD, Jeltsch F (2009) Phylogeography and genetic structure of the orchid Himantoglossum hircinum (L.) Spreng. accross its European central-marginal gradient. J Biogeogr 36:2353–2365

    Article  Google Scholar 

  • Phitos D, Strid A, Snogerup S, Greuter W (eds) (1995) The red data book of rare and threatened plants of Greece. WWF for Nature, Athens

    Google Scholar 

  • Phitos D, Constantinidis T, Kamari G (eds) (2009) The red data book of rare and threatened plants of Greece, vol I: A–D. Hellenic Botanical Society, Patra (in Greek)

  • Pillon Y, Fay M, Shipunov A, Chase M (2006) Species diversity versus phylogenetic diversity: a practical study in the taxonomically difficult genus Dactylorhiza (Orchidaceae). Biol Conserv 129:4–13

    Article  Google Scholar 

  • Pridgeon A, Cribb P, Chase M, Rasmussen F (eds) (2001) Genera Orchidacearum. vol. 2. Orchidoideae (Part 1). Oxford University Press Inc, New York

  • R Core Team (2013) R: a language and environment for statistical computing. http://www.R-project.org/. Accessed 3 Feb 2016

  • Rahbek C (1995) The elevational gradient of species richness: a uniform pattern? Ecography 18:200–205

    Article  Google Scholar 

  • Rahbek C (2005) The role of spatial scale and the perception of large-scale species-richness patterns. Ecol Lett 8:224–239

    Article  Google Scholar 

  • Rasmann S, Alvarez N, Pellissier L (2014) The altitudinal niche-breadth hypothesis in insect–plant interactions. Ann Plant Rev 47:339–359

    Article  CAS  Google Scholar 

  • Rasmussen HN (1995) Terrestrial orchids from seed to mycotrophic plant. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Ribas CR, Schoereder JH (2006) Is the Rapoport effect widespread? Null models revisited. Glob Ecol Biogeogr 15:614–624

    Article  Google Scholar 

  • Rohde K (1992) Latitudinal gradients in species-diversity: the search for the primary cause. Oikos 65:514–527

    Article  Google Scholar 

  • Rosenzweig ML, Ziv Y (1999) The echo pattern of species diversity: patterns and processes. Ecography 22:614–629

    Article  Google Scholar 

  • Ruggiero A, Werenkraut V (2007) One-dimensional analyses of Rapoport’s rule reviewed through meta-analysis. Glob Ecol Biogeogr 16:401–414

    Article  Google Scholar 

  • Sanders NJ, Lessard J-P, Fitzpatrick MC, Dunn RR (2007) Temperature, but not productivity or geometry, predicts elevational diversity gradients in ants across spatial grains. Glob Ecol Biogeogr 16:640–649

    Article  Google Scholar 

  • Shipunov AB, Fay MF, Pillon Y, Bateman RM, Chase MW (2004) Dactylorhiza (Orchidaceae) in European Russia: combined molecular and morphological analysis. Am J Bot 91:1419–1426

    Article  CAS  PubMed  Google Scholar 

  • Steinbauer MJ, Grytnes J-Α, Jurasinski G, Kulonen A, Lenoir J, Pauli H, Rixen C, Winkler M, Bardy-Durchhalter M, Barni E, Bjorkman AD, Breiner FT, Burg S, Czortek P, Dawes MA, Delimat A, Dullinger S, Erschbamer B, Felde VA, Fernández-Arberas O, Fossheim KF, Gómez-García D, Georges D, Grindrud ET, Haider S, Haugum SV, Henriksen H, Herreros MJ, Jaroszewicz B, Jaroszynska F, Kanka R, Kapfer J, Klanderud K, Kühn I, Lamprecht A, Matteodo M, di Cella UM, Normand S, Odland A, Olsen SL, Palacio S, Petey M, Piscová V, Sedlakova B, Steinbauer K, Stöckli V, Svenning J-C, Teppa G, Theurillat J-P, Vittoz P, Woodin SJ, Zimmermann NE, Wipf S (2018) Accelerated increase in plant species richness on mountain summits is linked to warming. Nature 556:231–234

    Article  CAS  PubMed  Google Scholar 

  • Stevens GC (1989) The latitudinal gradient in geographical range: how so many species coexist in the tropics. Am Nat 133:240–256

    Article  Google Scholar 

  • Stevens GC (1992) The elevational gradient in altitudinal range: an extension of Rapoport’s latitudinal rule to altitude. Am Nat 140:893–911

    Article  CAS  PubMed  Google Scholar 

  • Štípková Z, Romportl D, Černocká V, Kindlmann P (2017) Factors associated with the distributions of orchids in the Jeseníky Mountains, Czech Republic. Eur J Environ Sci 7:135–145

    Article  Google Scholar 

  • Strid A, Tan K (eds) (1997) Flora Hellenica, vol I. Koeltz Scientific Books, Königstein

    Google Scholar 

  • Swarts ND, Dixon KW (2009) Terrestrial orchid conservation in the age of extinction. Ann Bot 104:543–556

    Article  PubMed  PubMed Central  Google Scholar 

  • Tatarenko I (2007) Growth habits of temperate terrestrial orchids. In: Cameron KM, Arditti J, Kull T (eds) Orchid biology—reviews and perspectives, vol IX. The New York Botanical Garden Press. Bronx, New York, pp 91–161

    Google Scholar 

  • Thompson JD (2005) Plant evolution in the Mediterranean. Oxford University Press, Oxford

    Book  Google Scholar 

  • Trigas P, Panitsa M, Tsiftsis S (2013) Elevational gradient of vascular plant species richness and endemism in Crete—the effect of post-isolation mountain uplift on a continental island system. PLoS ONE 8(3):e59425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsiftsis S, Antonopoulos Z (2017) Atlas of the Greek Orchids, vol I. Mediterraneo Editions, Rethymno

    Google Scholar 

  • Tsiftsis S, Tsiripidis I, Karagiannakidou V, Alifragis D (2008) Niche analysis and conservation of the orchids of east Macedonia (NE Greece). Acta Oecol 33:27–35

    Article  Google Scholar 

  • Ulrich W, Fattorini S (2013) Longitudinal gradients in the phylogenetic community structure of European Tenebrionidae (Coleoptera) do not coincide with the major routes of postglacial colonization. Ecography 36:1106–1116

    Article  Google Scholar 

  • Vakhrameeva MG, Tatarenko IV, Varlygina TI, Torosyan GK, Zagulskii MN (2008) Orchids of Russia and adjacent countries (within the borders of the Former USSR). A.R.G. Gantner Verlag, Ruggell/Liechtenstein

    Google Scholar 

  • Vetaas OR, Grytnes JA (2002) Distribution of vascular plant species richness and endemic richness along the Himalayan elevation gradient in Nepal. Glob Ecol Biogeogr 11:291–301

    Article  Google Scholar 

  • Webb TJ, Gaston KJ (2003) On the heritability of geographic range sizes. Am Nat 161:553–566

    Article  PubMed  Google Scholar 

  • Zhang S-B, Chen W-Y, Huang J-L, Bi Y-F, Yang X-F (2015a) Orchid species richness along elevational and environmental gradients in Yunnan, China. PLoS ONE 10(11):e0142621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Yan Y, Tian Y, Li J, He J-S, Tang Z (2015b) Distribution and conservation of orchid species richness in China. Biol Conserv 181:64–72

    Article  Google Scholar 

  • Zheleznaya E (2015) Results of a study of Cypripedium in several regions of Siberia (Russia). Eur J Environ Sci 5:134–141

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic Grant No. LO1415 to ZS and ST and by the Grant No. GB14-36098G of the Grant Agency of the Czech Republic to PK. We are grateful to Dr. Schatz Bertrand, and an anonymous reviewer, who provided valuable comments and suggestions on the manuscript. We also thank Tony Dixon for his assistance to the linguistic improvement of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Spyros Tsiftsis.

Additional information

Communicated by Daniel Sanchez Mata.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsiftsis, S., Štípková, Z. & Kindlmann, P. Role of way of life, latitude, elevation and climate on the richness and distribution of orchid species. Biodivers Conserv 28, 75–96 (2019). https://doi.org/10.1007/s10531-018-1637-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-018-1637-4

Keywords

Navigation