Skip to main content

Novel Ternary Vectors for Efficient Sorghum Transformation

  • Protocol
  • First Online:
Sorghum

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1931))

Abstract

Sorghum has been considered a recalcitrant crop for tissue culture and genetic transformation. A breakthrough in Agrobacterium-mediated sorghum transformation was achieved with the use of super-binary cointegrate vectors based on plasmid pSB1. However, even with pSB1, transformation capability was restricted to certain sorghum genotypes, excluding most of the important African sorghum varieties. We recently developed a ternary vector system incorporating the pVIR accessory plasmid. The ternary vector system not only doubled the transformation frequency (TF) in Tx430, but also extended the transformation capability into an important African sorghum elite variety.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Reference

  1. Che P, Anand A, Wu E, Sander JD, Simon MK, Zhu W et al (2018) Developing a flexible, high-efficiency Agrobacterium-mediated sorghum transformation system with broad application. Plant Biotechnol J 16(7):1388–1395 https://doi.org/10.1111/pbi.128792

    Article  CAS  Google Scholar 

  2. Wu E, Lenderts B, Glassman K, Berezowska-Kaniewska M, Christensen H, Asmus T et al (2014) Optimized Agrobacterium-mediated sorghum transformation protocol and molecular data of transgenic sorghum plants. In Vitro Cell Dev Biol Plant 50:9–18

    Article  Google Scholar 

  3. Que Q, Elumalai S, Li X, Zhong H, Nalapalli S, Schweiner M et al (2014) Maize transformation technology development for commercial event generation. Front Plant Sci 5:379

    Article  Google Scholar 

  4. Jackson MA, Anderson DJ, Birch RG (2013) Comparison of Agrobacterium and particle bombardment using whole plasmid or minimal cassette for production of high-expressing, low-copy transgenic plants. Transgenic Res 22:143–151

    Article  CAS  Google Scholar 

  5. Komari T (1990) Transformation of cultured cells of Chenopodium quinoa by binary vectors that carry a fragment of DNA from the virulence region of pTiBo542. Plant Cell Rep 9:303–306

    Article  CAS  Google Scholar 

  6. Komari T, Hiei Y, Saito Y, Murai N, Kumashiro T (1996) Vectors carrying two separate T-DNAs for co-transformation of higher plants mediated by agrobacterium tumefaciens and segregation of transformants free from selection markers. Plant J 10:165–174

    Article  CAS  Google Scholar 

  7. Zhao ZY, Cai T, Tagliani L, Miller M, Wang N, Pang H et al (2000) Agrobacterium mediated sorghum transformation. Plant Mol Biol 44:789–798

    Article  CAS  Google Scholar 

  8. Zhi L, TeRonde S, Meyer S, Arling ML, Register JC III, Zhao ZY et al (2015) Effect of Agrobacterium strain and plasmid copy number on transformation frequency, event quality and usable event quality in an elite maize cultivar. Plant Cell Rep 34:745–754

    Article  CAS  Google Scholar 

  9. Cho M-J, Wu E, Kwan J, Yu M, Banh J, Linn W et al (2014) Agrobacterium-mediated high-frequency transformation of an elite commercial maize (Zea mays L.) inbred line. Plant Cell Rep 33:1767–1777

    Article  CAS  Google Scholar 

  10. Luo Z-Q, Farrand SK (1999) Cloning and characterization of a tetracycline resistance determinant present in Agrobacterium tumefaciens C58. J Bacteriol 181:618–626

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Anand A, Bass SH, Cho HJ, Klein TM, Lassner M, McBride KE (2017) Methods and compositions of improved plant transformation. WO2017078836 A1: Patent publication

    Google Scholar 

  12. Anand A, Bass SH, Wu E, Wang N, McBride KE, Annaluru N et al (2018) An improved ternary vector system for Agrobacterium-mediated rapid maize transformation. Plant Mol Biol. https://doi.org/10.1007/s11103-018-0732-y

    Article  CAS  Google Scholar 

  13. Wu E, Zhao ZY (2017) Agrobacterium-mediated sorghum transformation. In: Schmidt A (ed) Plant Germline development, methods and protocols, methods in molecular biology, vol 1669. Humana Press, New York, pp 355–364

    Google Scholar 

  14. Ozsolak F (2012) Third-generation sequencing techniques and applications to drug discovery. Expert Opin Drug Discov 7:231–243

    Article  CAS  Google Scholar 

  15. Schhuster SC (2008) Next generation sequencing transforms today’s biology. Nat Methods 5:16–18. https://doi.org/10.1038/nmeth1156

    Article  CAS  Google Scholar 

  16. Fraley RT, Rogers SG, Horsch RB, Eichholtz DA, Flick JS, Fink CL et al (1985) The SEV system: a new disarmed Ti plasmid vector system for plant transformation. Bio/Technol 3:629–635

    CAS  Google Scholar 

  17. Fraley RT, Rogers SG, Horsch RB, Sanders PR, Flick JS, Adams SP et al (1983) Expression of bacterial genes in plant cells. Proc Natl Acad Sci U S A 80:4803–4807

    Article  CAS  Google Scholar 

  18. Zambryski P, Joos PH, Genetello C, Leemans J, Van Montagu M, Schell J (1983) Ti plasmid vector for the introduction of DNA into plant cells without alteration of their normal regeneration capacity. EMBO J 2:2143–2150

    Article  CAS  Google Scholar 

  19. Bevan M (1984) Binary agrobacterium vectors for plant transformation. Nuc Acids Res 12:8711–8721

    Article  CAS  Google Scholar 

  20. Hoekema A, Hirsh PR, Hooykaas PJJ, Schilperoort RA (1983) A binary plant vector strategy based on separation of vir-and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature 303:179–180

    Article  CAS  Google Scholar 

  21. Kikuchi R, Sage-Ono K, Kamada H, Ono M (2005) Efficient transformation mediated by agrobacterium tumefaciens with a ternary plasmid in Pharbitis nil. Plant Biotech J 22:295–302

    Article  CAS  Google Scholar 

  22. van der Fits L, Deakin EA, Hoge JHC, Memelink J (2000) The ternary transformation system: constitutive virG on a compatible plasmid dramatically increases agrobacterium-mediated plant transformation. Plant MolBiol 43:495–502

    Google Scholar 

  23. Nester EW (2014) Agrobacterium: nature’s genetic engineer. Front Plant Sci 5:730

    PubMed  Google Scholar 

  24. Stanisich VA, Bennett PM, Richmond MH (1997) Characterization of a translocation unit encoding resistance to mercuric ions that occurs on a nonconjugative plasmid in Pseudomonas aeruginosa. J Bacteriol 129:1227–1233

    Google Scholar 

  25. Depicker A, Sanders M, Meyer P (2005) Transgene silencing. In: Meyer P (ed) Plant epigenetics. Blackwell Publishing Ltd, Oxford, pp 1–31

    Google Scholar 

  26. Srivastava V, Ariza-Nieto M, Wilson AJ (2004) Cre-mediated site-specific gene integration for consistent transgene expression in rice. Plant Biotechnol J 2:169–179

    Article  CAS  Google Scholar 

  27. De Buck S, Windels P, De Loose M, Depicker A (2004) Single-copy T-DNAs integrated at different positions in the Arabidopsis genome display uniform and comparable β-glucuronidase accumulation levels. Cell Mol Life Sci 61:2632–2645

    Article  Google Scholar 

Download references

Acknowledgments

The work described here was supported by the Applied Science and Technology department at Corteva Agriscience™, Agriculture Division of DowDuPont™. We are grateful to the assistance received from multiple teams including Vector Construction, Crop Genome Engineering, Controlled Environments, Genomics and Nucleic Acid Analysis. The leadership support received from Scott Betts and Doane Chilcoat is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajith Anand .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Anand, A., Che, P., Wu, E., Jones, T.J. (2019). Novel Ternary Vectors for Efficient Sorghum Transformation. In: Zhao, ZY., Dahlberg, J. (eds) Sorghum. Methods in Molecular Biology, vol 1931. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9039-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9039-9_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9038-2

  • Online ISBN: 978-1-4939-9039-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics