Skip to main content

Wheat Improvement in India: Present and Future

  • Protocol
  • First Online:
Wheat Biotechnology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1679))

Abstract

Wheat (Triticum aestivum L.) contributes substantially to global food and nutritional security. With the growing demands under the constraints of depleting natural resources, environmental fluctuation, and increased risk of epidemic outbreaks, the task of increasing wheat production has become daunting. The factors responsible for first green revolution seem to be exhausting rapidly, and there is an immediate need to develop the technologies which can not only increase the wheat production but also sustain the same at a higher level without adversely affecting the natural resources. Understanding abiotic stress factors such as temperature, drought tolerance, and biotic stress tolerance traits such as insect pest and pathogen resistance in combination with high yield in plants is of paramount importance to counter climate change related adverse effects on the productivity of wheat crops. Thus, an important goal of wheat breeding is to develop high-yielding varieties with better nutritional quality and resistance to major diseases. Therefore, in this chapter, we present a judicious mixture of basic as well as applied research outlooks. We trust that the information covered in this chapter would bridge the much-researched area of stress in plants with the information to breed climate-ready crop cultivars to ensure food security in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reynolds MP, Dixon J, Ammar K, Kosina P, Braun HJ (2008) Stakeholders’ priorities for internationally-coordinated wheat research. In: Reynolds MP, Pietragalla J, Braun H-J (eds) International symposium on wheat yield potential: challenges to International Wheat Breeding. CIMMYT, Mexico, DF

    Google Scholar 

  2. Jain KBL, Byerlee D (1999) Investment efficiency at the national level: wheat improvement research in India. In: Maredia MK, Byerlee D (eds) The global wheat improvement system: prospects for enhancing efficiency in the presence of spillovers, CIMMYT Research Report No. 5. CIMMYT, Mexico, DF

    Google Scholar 

  3. Rejesus RM, Heisey PW, Smale M (1999) Sources of productivity growth in wheat: a review of recent performance and medium to long-term prospects. CIMMYT economics working paper. CIMMYT, Mexico, DF, pp 99–105

    Google Scholar 

  4. Slafer GA, Araus JL, Royo C, DelMoral LFG (2005) Promising eco-physiological traits for genetic improvement of cereal yields in Mediterranean environments. Ann Appl Biol 146:61–70

    Article  Google Scholar 

  5. Swaminathan MS (2006) An evergreen revolution. Crop Sci 46:2293–2303

    Article  Google Scholar 

  6. Joshi AK, Mishra BR, Chatrath G, Ortiz-Ferrara G, Singh RP (2007) Wheat improvement in India: present status, emerging challenges and future prospects. Euphytica 157:431–446

    Article  Google Scholar 

  7. Joshi AK, Kumari M, Singh VP, Reddy CM, Kumar S, Rane J, Chand R (2007) Stay Green trait: variation, inheritance and its association with spot blotch resistance in spring wheat (Triticum aestivum L.) Euphytica 153:59–71

    Article  Google Scholar 

  8. Ortiz R, Sayre KD, Govaerts B, Gupta R, Subbarao GV, Ban T, Hodson D, Dixon JM, Ortiz-Monasterio JI, Reynolds M (2008) Climate change: can wheat beat the heat? Agric Ecosyst Environ 126:46–58

    Article  Google Scholar 

  9. Chatrath RB, Mishra G, Ferrara O, Singh SK, Joshi AK (2007) Challenges to wheat production in South Asia. Euphytica 157:447–456

    Article  Google Scholar 

  10. Tuberosa R, Salvi S (2006) Genomics-based approaches to improve drought tolerance of crops. Trends Plant Sci 11:405–412

    Article  CAS  PubMed  Google Scholar 

  11. Singh A, Deveshwar J, Ahlawat A, Singh B (2007) Identification of novel variants of high molecular weight glutenin subunits in Indian bread wheat landraces. Cereal Res Commun 35:99–108

    Article  CAS  Google Scholar 

  12. Sehgal D, Vikram P, Sansaloni CP, Ortiz C, Saint Pierre C, Payne T, Ellis M, Amri A, Petroli CD, Wenzl P, Singh S (2015) Exploring and mobilizing the gene bank biodiversity for wheat improvement. PLoS One 10:e0132112

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hirani AH, Asif M, Sharma M, Basu SK, Iqbal M, Sajad M (2014) Genomics, transcriptomics, and molecular breeding for improving cereals. In: Omics technologies and crop improvement. CRC Press, Boca Raton, FL, pp 303–322

    Google Scholar 

  14. Barnabás B, Jäger K, Fehér A (2008) The effect of drought and heat stress on reproductive processes in cereals. Plant Cell Environ 31:11–38

    PubMed  Google Scholar 

  15. Varshney RK, Hoisington DA, Tyagi AK (2006) Advances in cereal genomics and applications in crop breeding. Trends Biotechnol 24:490–499

    Article  CAS  PubMed  Google Scholar 

  16. Tyagi S, Mir RR, Kaur H, Chhuneja P, Ramesh B, Balyan HS, Gupta PK (2014) Marker-assisted pyramiding of eight QTLs/genes for seven different traits in common wheat (Triticum aestivum L.) Mol Breed 34:167–175

    Article  CAS  Google Scholar 

  17. Varshney RK, Bansal KC, Aggarwal PK, Datta SK, Craufurd PQ (2011) Agricultural biotechnology for crop improvement in a variable climate: hope or hype? Trends Plant Sci 16:363–371

    Article  CAS  PubMed  Google Scholar 

  18. Berkman PJ, Lai K, Lorenc MT, Edwards D (2012) Next-generation sequencing applications for wheat crop improvement. Am J Bot 99:365–371

    Article  CAS  PubMed  Google Scholar 

  19. Kadam S, Singh K, Shukla S, Goel S, Vikram P, Pawar V, Gaikwad K, Khanna-Chopra R, Singh NK (2012) Genomic associations for drought tolerance on the short arm of wheat chromosome 4B. Funct Integr Genomics 12:447–464

    Article  CAS  PubMed  Google Scholar 

  20. Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Biol 49:249–279

    Article  CAS  Google Scholar 

  21. Mohapatra PK, Patro L, Raval MK, Ramaswamy NK, Biswal UC, Biswal B (2010) Senescence-induced loss in photosynthesis enhances cell wall β-glucosidase activity. Physiol Plant 138:346–355

    Article  CAS  PubMed  Google Scholar 

  22. Shukla S, Singh K, Patil RV, Kadam S, Bharti S, Prasad P, Singh NK, Khanna-Chopra R (2014) Genomic regions associated with grain yield under drought stress in wheat (Triticum aestivum L.) Euphytica 203:449–467

    Article  Google Scholar 

  23. Ahmad MQ, Khan SH, Khan AS, Kazi AM, Basra SMA (2014) Identification of QTLs for drought tolerance traits on wheat chromosome 2A using association mapping. Int J Agric Biol 16:862–870

    Google Scholar 

  24. Sheoran S, Malik R, Narwal S, Tyagi BS, Mittal V, Kharub AS, Tiwari V, Sharma I (2016) Genetic and molecular dissection of drought tolerance in wheat and barley. J Wheat Res 7:1–13

    Google Scholar 

  25. Sehgal D, Singh R, Rajpal VR (2016) Quantitative trait loci mapping in plants: concepts and approaches. In: Molecular breeding for sustainable crop improvement. Springer, New York, pp 31–59

    Chapter  Google Scholar 

  26. Fokar M, Blum A, Nguyen HT (1998) Heat tolerance in spring wheat: II. Grain filling. Euphytica 104:9–15

    Article  Google Scholar 

  27. Farooq M, Bramley H, Palta JA, Siddique KH (2011) Heat stress in wheat during reproductive and grain-filling phases. Crit Rev Plant Sci 30:491–507

    Article  Google Scholar 

  28. Reynolds MP, Quilligan E, Aggarwal PK, Bansal KC, Cavalieri AJ, Chapman SC, Chapotin SM, Datta SK, Duveiller E, Gill KS, Jagadish KS (2016) An integrated approach to maintaining cereal productivity under climate change. Glob Food Sec 8:9–18

    Article  Google Scholar 

  29. Singh KK, Kalra N (2016) Simulating impact of climatic variability and extreme climatic events on crop production. Mausam 67(1):113–130

    Google Scholar 

  30. Bhagat KP, Kumar RA, Ratnakumar P, Kumar S, Bal SK, Agrawal PK (2014) Photosynthesis and associated aspects under abiotic stresses environment. In: Approaches to plant stress and their management. Springer, New Delhi, pp 191–205

    Chapter  Google Scholar 

  31. Ashraf M, Harris PJC (2013) Photosynthesis under stressful environments: an overview. Photosynthetica 51:163–190

    Article  CAS  Google Scholar 

  32. Paliwal R, Röder MS, Kumar U, Srivastava JP, Joshi AK (2012) QTL mapping of terminal heat tolerance in hexaploid wheat (T. aestivum L.) Theor Appl Genet 125:561–575

    Article  PubMed  Google Scholar 

  33. Balla K, Karsai I, Kiss T, Bencze S, Bedő Z, Veisz O (2012) Productivity of a doubled haploid winter wheat population under heat stress. Cent Eur J Biol 7:1084–1091

    Google Scholar 

  34. Hasanuzzaman M, Nahar K, Alam MM, Roychowdhury R, Fujita M (2013) Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int J Mol Sci 14:9643–9684

    Article  PubMed  PubMed Central  Google Scholar 

  35. Blum A (1988) Plant breeding for stress environments. CRC Press, Boca Raton, FL, p 223

    Google Scholar 

  36. Vijayalakshmi K, Fritz AK, Paulsen GM, Bai G, Pandravada S, Gill BS (2010) Modelling and mapping QTL for senescence-related traits in winter wheat under high temperature. Mol Breed 26:163–175

    Article  CAS  Google Scholar 

  37. Githiri SM, Watanabe S, Harada K, Takahashi R (2006) QTL analysis of flooding tolerance in soybean at an early vegetative growth stage. Plant Breed 125:613–618

    Article  CAS  Google Scholar 

  38. Kirigwi FM, Van Ginkel M, Brown-Guedira G, Gill BS, Paulsen GM, Fritz AK (2007) Markers associated with a QTL for grain yield in wheat under drought. Mol Breed 20:401–413

    Article  CAS  Google Scholar 

  39. Mason RE, Mondal S, Beecher FW, Pacheco A, Jampala B, Ibrahim AM, Hays DB (2010) QTL associated with heat susceptibility index in wheat (Triticum aestivum L.) under short-term reproductive stage heat stress. Euphytica 174:423–436

    Article  Google Scholar 

  40. Tuteja N (2009) Integrated calcium signaling in plants. In: Baluska F, Mancuso S (eds) Signaling in plants, vol 131. Springer, Heidelberg, Germany, pp 29–49

    Chapter  Google Scholar 

  41. Ahmad P, Bhardwaj R, Tuteja N (2012) Plant signalling under abiotic stress environment. In: Ahmad P, Prasad MNV (eds) Environmental adaptations and stress tolerance of plants in the era of climate change. Springer, New York, pp 297–324

    Chapter  Google Scholar 

  42. Kaur N, Gupta AK (2005) Signal transduction pathways under abiotic stresses in plants. Curr Sci 88:1771–1780

    CAS  Google Scholar 

  43. Kumar RR, Rai RD (2014) Can wheat beat the heat: understanding the mechanism of thermotolerance in wheat (Triticum aestivum L.) a review. Cereal Res Commun 42:1–18

    Article  CAS  Google Scholar 

  44. Chauhan H, Khurana N, Tyagi AK, Khurana JP, Khurana P (2011) Identification and characterization of high-temperature stress responsive genes in bread wheat (Triticum aestivum L.) and their regulation at various stages of development. Plant Mol Biol 75:35–51

    Article  CAS  PubMed  Google Scholar 

  45. Majoul T, Bancel E, Triboï E, Ben Hamida J, Branlard G (2004) Proteomic analysis of the effect of heat stress on hexaploid wheat grain: characterization of heat-responsive proteins from the non-prolamins fraction. Proteomics 4:505–513

    Article  CAS  PubMed  Google Scholar 

  46. Rodríguez M, Canales E, Borrás-Hidalgo O (2005) Molecular aspects of abiotic stress in plants. Biotechnol Appl 22:1–10

    Google Scholar 

  47. Swaminathan MS (2007) Agriculture cannot wait: new horizons in Indian agriculture. Academic Foundation, New Delhi

    Google Scholar 

  48. Rathore M, Mishra DP, Singh NK (2003) Screening of wheat varieties for use as donors for the production of near isogenic lines with different seed protein alleles. Ind J Genet Plant Breed 63:206–208

    Google Scholar 

  49. Goel S, Rathore M, Grewal S, Jain N, Singh BK, Ahlawat AK, Singh AM, Singh PK, Singh NK (2015) Effect of allelic variation in triticin on bread-and chapati-making qualities of wheat (Triticum aestivum). Agribiol Res 4:139–151

    Article  CAS  Google Scholar 

  50. Sarkar S, Singh AM, Ahlawat AK, Chakraborti M, Singh SK (2015) Genetic diversity of bread wheat genotypes based on high molecular weight glutenin subunit profiling and its relation to bread making quality. J Plant Biochem Biotechnol 24:218–224

    Article  CAS  Google Scholar 

  51. Mohan M, Nair S, Bhagwat A et al (1997) Genome mapping, molecular markers and marker-assisted selection in crop plants. Mol Breed 3:87–103

    Article  CAS  Google Scholar 

  52. Kathuria DK, Sidhu JS (1984) Indian durum wheats: I. Effect of conditioning treatments on the milling quality and composition of semolina. Cereal Chem 61:460–462

    Google Scholar 

  53. Kaur A, Singh N, Kaur S, Katyal M, Virdi AS, Kaur D, Ahlawat AK, Singh AM (2015) Relationship of various flour properties with noodle making characteristics among durum wheat varieties. Food Chem 188:517–526

    Article  CAS  PubMed  Google Scholar 

  54. Garg M, Tsujimoto H, Gupta RK, Kumar A, Kaur N, Kumar R, Chunduri V, Sharma NK, Chawla M, Sharma S, Mundey JK (2016) Chromosome specific substitution lines of Aegilops geniculata alter parameters of bread-making quality of wheat. PLoS One 18:e0162350

    Article  Google Scholar 

  55. Hemalatha MS, Manohar RS, Salimath PV, Rao UJP (2013) Effect of added arabinoxylans isolated from good and poor chapati making wheat varieties on rheological properties of dough and chapati making quality. Food Nutr Sci 4:884–892

    Article  CAS  Google Scholar 

  56. Sharma R, Rawat A, Misra BK, Nagarajan S (2012) Distribution of grain hardness in Indian wheat varieties and landraces. Wheat Inf Serv 114:1–8

    Google Scholar 

  57. Pushpendra KG, Harindra SB, Pawan LK, Neeraj K, Ajay K, Reyazul RM, Amita M, Jitendra K (2000) QTL analysis for some quantitative traits in bread wheat. J Zhejiang Univ Sci B 78:807–814

    Google Scholar 

  58. Prasad M, Kumar N, Kulwal PL, Röder M, Balyan HS, Dhaliwal HS, Gupta PK (2003) QTL analysis for grain protein content using SSR markers and validation studies using NILs in bread wheat. Theor Appl Genet 106:659–667

    Article  CAS  PubMed  Google Scholar 

  59. Ramya P, Chaubal A, Kulkarni K, Gupta L, Kadoo N, Dhaliwal HS, Chhuneja P, Lagu M, Gupt V (2010) QTL mapping of 1000-kernel weight, kernel length, and kernel width in bread wheat (Triticum aestivum L.) J Appl Genet 51:421–429

    Article  CAS  PubMed  Google Scholar 

  60. Singh NK, Shepherd KW (1988) Linkage mapping of genes controlling endosperm storage proteins in wheat. Theor Appl Genet 75:642–650

    Article  CAS  Google Scholar 

  61. Garg M, Rao YS, Goyal A, Singh B (2007) Variations in seed storage protein-Triticin among diploid Triticum and Aegilops species. Biotechnology 6:444–446

    Article  CAS  Google Scholar 

  62. Gopalareddy K, Singh AM, Ahlawat AK, Singh GP, Jaiswal JP (2015) Genotype-environment interaction for grain iron and zinc concentration in recombinant inbred lines of a bread wheat (Triticum aestivum L.) cross. Ind J Genet Plant Breed 75:307–313

    Article  CAS  Google Scholar 

  63. Singh RP, Hodson DP, Huerta-Espino J, Jin Y, Njau P, Wanyera R, Herrera-Foessel SA, Ward RW (2008) Will stem rust destroy the world’s wheat crop? Adv Agron 98:271–309

    Article  CAS  Google Scholar 

  64. Pandey SP, Kumar S, Kumar U, Chand R, Joshi AK (2005) Sources of inoculum and reappearance of spot blotch of wheat in rice–wheat cropping. Eur J Plant Pathol 111:47–55

    Article  Google Scholar 

  65. Singh RP, Huerta-Espino J, William HM (2005) Genetics and breeding for durable resistance to leaf and stripe rusts in wheat. Turk J Agric For 29:121–127

    CAS  Google Scholar 

  66. Singh R, Datta D, Singh S, Tiwari R (2004) Marker-assisted selection for leaf rust resistance genes Lr19 and Lr24 in wheat (Triticum aestivum L.) J Appl Genet 45:399–404

    PubMed  Google Scholar 

  67. Bhardwaj SC, Prashar M, Kumar S, Jain SK, Datta D (2005) Lr19 resistance in wheat becomes susceptible to Puccinia triticina in India. Plant Dis 89:1360–1360

    Article  Google Scholar 

  68. Joshi AK, Mishra B, Prashar M, Tomar SMS, Singh RP (2008) Ug99 race of stem rust pathogen: challenges and current status of research to sustain wheat production in India. Ind J Genet Plant Breed 68:231–241

    Google Scholar 

  69. Langridge P, Lagudah ES, Holton TA, Appels R, Sharp PJ, Chalmers KJ (2001) Trends in genetic and genome analyses in wheat: a review. Crop Past Sci 52:1043–1077

    Article  CAS  Google Scholar 

  70. Sharma RC, Duveiller E, Jacquemin JM (2007) Microsatellite markers associated with spot blotch resistance in spring wheat. J Phytopathol 155:316–319

    Article  CAS  Google Scholar 

  71. Kumar U, Joshi AK, Kumar S, Chand R, Röder MS (2009) Mapping of resistance to spot blotch disease caused by Bipolaris sorokiniana in spring wheat. Theor Appl Genet 118:783–792

    Article  CAS  PubMed  Google Scholar 

  72. Kumar U, Joshi AK, Kumar S, Chand R, Röder MS (2010) Quantitative trait loci for resistance to spot blotch caused by Bipolarissorokiniana in wheat (T. aestivum L.) lines ‘Ning 8201’and ‘Chirya 3’. Mol Breed 26:477–491

    Article  Google Scholar 

  73. Lillemo M, Joshi AK, Prasad R, Chand R, Singh RP (2013) QTL for spot blotch resistance in bread wheat line Saar co-locate to the biotrophic disease resistance loci Lr34 and Lr46. Theor Appl Genet 126:711–719

    Article  CAS  PubMed  Google Scholar 

  74. Joshi AK, Chand R, Arun B (2002) Relationship of plant height and days to maturity with resistance to spot blotch in wheat. Euphytica 123:221–228

    Article  Google Scholar 

  75. Sharma AK, Sharma RK, Babu KS (2004) Effect of planting options and irrigation schedules on the development of powdery mildew and yield of wheat in the North Western plains of India. Crop Protect 23:249–253

    Article  Google Scholar 

  76. Kaur S, Dhaliwal L, Kaur P (2008) Impact of climate change on wheat disease scenario in Punjab. J Res 45:161–170

    Google Scholar 

  77. Sivamani E, Bahieldin A, Wraith JM, Al-Niemi T, Dyer WE, Ho THD, Qu R (2000) Improved biomass productivity and water use efficiency under water deficit conditions in transgenic wheat constitutively expressing the barley HVA gene. Plant Sci 155:1–9

    Article  CAS  PubMed  Google Scholar 

  78. Somers DJ, Isaac P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.) Theor Appl Genet 109:1105–1114

    Article  CAS  PubMed  Google Scholar 

  79. Peng JH, Fahima T, Röder MS, Huang QY, Dahan A, Li YC, Grama A, Nevo E (2000) High-density molecular map of chromosome region harbouring stripe-rust resistance genes YrH52 and Yr15 derived from wild emmer wheat, Triticum dicoccoides. Genetica 109:199–210

    Article  CAS  PubMed  Google Scholar 

  80. Yan L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J (2003) Positional cloning of the wheat vernalization gene VRN1. Proc Natl Acad Sci U S A 100:6263–6268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Trethowan RM, Van Ginkel M, Ammar K, Crossa J, Payne TS, Cukadar B, Rajaram S, Hernandez E (2003) Associations among twenty years of international bread wheat yield evaluation environments. Crop Sci 43:1698–1711

    Article  Google Scholar 

  82. Scofield SR, Huang L, Brandt AS, Gill BS (2005) Development of a virus-induced gene-silencing system for hexaploid wheat and its use in functional analysis of the Lr21-mediated leaf rust resistance pathway. Plant Physiol 138:2165–2173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Uthayakumaran S, Gras PW, Stoddard FL, Bekes F (1999) Effect of varying protein content and glutenin-to-gliadin ratio on the functional properties of wheat dough. Cereal Chem 76:389–394

    Article  CAS  Google Scholar 

  84. Anand A, Trick HN, Gill BS, Muthukrishnan S (2003) Stable transgene expression and random gene silencing in wheat. Plant Biotechnol J 1:241–251

    Article  CAS  PubMed  Google Scholar 

  85. Yu H, Fan X, Zhang C, Ding C, Wang Z (2008) Phylogenetic relationships of species in Pseudogroegneria (Poaceae: Triticeae) and related genera inferred from nuclear rDNA ITS (internal transcribed spacer sequences). Biologia 64:498–505

    Google Scholar 

  86. Bansal KC, Lenka SK, Mondal TK (2014) Genomic resources for breeding crops with enhanced abiotic stress tolerance. Plant Breed 133:1–11

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonia Goel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Goel, S., Singh, K., Singh, N.K. (2017). Wheat Improvement in India: Present and Future. In: Bhalla, P., Singh, M. (eds) Wheat Biotechnology. Methods in Molecular Biology, vol 1679. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7337-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7337-8_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7335-4

  • Online ISBN: 978-1-4939-7337-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics