Skip to main content
Log in

QTL mapping of 1000-kernel weight, kernel length, and kernel width in bread wheat (Triticum aestivum L.)

  • Original article
  • Published:
Journal of Applied Genetics Aims and scope Submit manuscript

Abstract

Kernel size and morphology influence the market value and milling yield of bread wheat (Triticum aestivum L.). The objective of this study was to identify quantitative trait loci (QTLs) controlling kernel traits in hexaploid wheat. We recorded 1000-kernel weight, kernel length, and kernel width for 185 recombinant inbred lines from the cross Rye Selection 111 × Chinese Spring grown in 2 agro-climatic regions in India for many years. Composite interval mapping (CIM) was employed for QTL detection using a linkage map with 169 simple sequence repeat (SSR) markers. For 1000-kernel weight, 10 QTLs were identified on wheat chromosomes 1A, 1D, 2B, 2D, 4B, 5B, and 6B, whereas 6 QTLs for kernel length were detected on 1A, 2B, 2D, 5A, 5B and 5D. Chromosomes 1D, 2B, 2D, 4B, 5B and 5D had 9 QTLs for kernel width. Chromosomal regions with QTLs detected consistently for multiple year-location combinations were identified for each trait. Pleiotropic QTLs were found on chromosomes 2B, 2D, 4B, and 5B. The identified genomic regions controlling wheat kernel size and shape can be targeted during further studies for their genetic dissection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ammiraju JSS, Dholakia BB, Santra DK, Singh H, Lagu MD, Tamhankar SA et al. 2001. Identification of inter simple sequence repeat (ISSR) markers associated with seed size in wheat. Theor Appl Genet 102: 726–732.

    Article  CAS  Google Scholar 

  • Ammiraju JSS, Dholakia BB, Jawdekar G, Santra DK, Singh H, Lagu MD, et al. 2002. Inheritance and identification of DNA markers associated with yellow berry tolerance in wheat (T. aestivum L.). Euphytica 123: 229–233.

    Article  CAS  Google Scholar 

  • Ammiraju JSS, Dholakia BB, Jawdekar G, Santra DK, Röder MS, Singh H, et al. 2004. Identification of chromosomal regions governing grain size and shape in wheat (Triticum aestivum L.). J Genet & Breed 58: 91–100.

    CAS  Google Scholar 

  • Ayoub M, Symons SJ, Edney MJ, Mather DE, 2002. QTLs affecting kernel size and shape in a two-rowed by six-rowed barley cross. Theor Appl Genet 105:237–247.

    Article  CAS  PubMed  Google Scholar 

  • Baker S, Herrman TJ, Loughin T, 1999. Segregating hard red winter wheat into dough factor groups using single kernel measurements and whole grain protein analysis. Cereal Chem 76, 884–889.

    Article  CAS  Google Scholar 

  • Baril CP, 1992. Factor regression for interpreting genotype-environment interaction in bread-wheat trials. Theor Appl Genet 83: 1022–1026.

    Article  Google Scholar 

  • Berman M, Bason ML, Ellison R, Peden G, Wrigley CW, 1996. Image analysis of the whole grains to screen for flour-milling yield in wheat breeding. Cereal Chem 73: 323–327.

    CAS  Google Scholar 

  • Börner A, Schumann E, Fürste A, Cöster H, Leithold B, Röder MS, Weber WE, 2002. Mapping of quantitative trait loci for agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet 105: 921–936.

    Article  PubMed  Google Scholar 

  • Breseghello F, Sorrells ME, 2006. Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics 177: 1165–1177.

    Google Scholar 

  • Breseghello F, Sorrells ME, 2007. QTL analysis of kernel size and shape in two hexaploid wheat mapping populations. Field Crop Res 101: 172–179.

    Article  Google Scholar 

  • Campbell KG, Bergman CJ, Gualberto DG, Anderson JA, Giroux MJ, Hareland G, et al. 1999. Quantitative trait loci associated with kernel traits in soft × hard wheat cross. Crop Sci 39: 1184–1195.

    Article  CAS  Google Scholar 

  • Churchill GA, Doerge RW, 1994. Empirical threshold values for quantitative trait mapping. Genetics 138: 963–971.

    CAS  PubMed  Google Scholar 

  • Dholakia BB, Ammiraju JSS, Singh H, Lagu MD, Röder MS, Rao VS et al. 2003. Molecular marker analysis of kernel size and shape in bread wheat. Plant Breeding 122: 392–395.

    Article  CAS  Google Scholar 

  • Doerge RW, Churchill GA, 1996. Permutation tests for multiple loci affecting a quantitative character. Genetics 142: 285–294.

    CAS  PubMed  Google Scholar 

  • Fan C, Xing Y, Mao H, Lu T, Han B, Xu C, Li X, Zhang Q, 2006.Gs3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet 112: 1164–1171.

    Article  CAS  PubMed  Google Scholar 

  • Giura A, Saulescu NN, 1996. Chromosomal location of genes controlling grain size in a large grained selection of wheat (Triticum aestivum L.). Euphytica 89: 77–80.

    Article  Google Scholar 

  • Groh S, Kianian SF, Philips RL, Rines HW, Stuthman DD, Wesenberg DM, Fulcher RG, 2001. Analysis of factors influencing milling yield and their association to other traits by QTL analysis in two hexaploid oat populations. Theor Appl Genet 103:9–18.

    Article  CAS  Google Scholar 

  • Groos C, Robert N, Bervas E, Charmet G, 2003. Genetic analysis of grain protein content, grain yield and thousand-kernel weight in bread wheat. Theor Appl Genet 106: 1032–1040.

    CAS  PubMed  Google Scholar 

  • Huang XQ, Cloutier S, Lycar L, Radovanovic N, Humphreys DG, Noll JS, et al. 2006. Molecular detection of QTLs for agronomic and quality traits in a doubled haploid population derived from two Canadian wheats (Triticum aestivum L.). Theor Appl Genet 113: 753–766.

    Article  CAS  PubMed  Google Scholar 

  • Jiang C, Zeng Z-B, 1995. Multiple trait analysis of genetic mapping for quantitative trait loci. Genetics 140: 1111–1127

    CAS  PubMed  Google Scholar 

  • Kosambi DD, 1944. The estimation of map distances from recombination values. Ann Eugen 12: 172–175.

    Google Scholar 

  • Kumar N, Kulwal PL, Gaur A, Tyagi AK, Khurana JP, Khurana P, et al. 2006. QTL analysis for grain weight in common wheat. Euphytica 151: 135–144.

    Article  CAS  Google Scholar 

  • Marshall DR, Mares DJ, Moss HJ, Ellison FW, 1986. Effects of grain shape and size on milling yields in wheat. II. Experimental studies. Aust J Agr Res 37:331–342.

    Article  Google Scholar 

  • McIntosh RA, Yamazaki Y, Devos KM, Dubcovsky J, Rogers WJ, Appels R, 2003. Catalog of gene symbols for wheat. Tenth International Wheat Genetics Symposium, Paestum, Italy, 1–6 September 2003.

  • Morgan BC, Dexter JE, Preston KR, 2000. Relationship of kernel size to flour water absorption for Canada Western Red Spring Wheat. Cereal Chem 77, 286–292.

    Article  CAS  Google Scholar 

  • Novaro P, Colucci F, Venora G, D’Egidio MG, 2001. Image analysis of whole grains: A noninvasive method to predictsemolina yield in durum wheat. Cereal Chem 78: 217–221.

    Article  CAS  Google Scholar 

  • Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy P, Ganal MW, 1998. A microsatellite map of wheat. Genetics 149: 2007–2023.

    PubMed  Google Scholar 

  • Röder MS, Huang XQ, Börner A, 2008. Fine mapping of the region on wheat chromosome 7D controlling grain weight. Funct Integr Genomics 8: 79–86.

    Article  PubMed  CAS  Google Scholar 

  • Sanguinetti CJ, Dias Neto E, Simpson AJG, 1994. Rapid silver staining and recovery of PCR products separated on polyacrylamide gels. Biotechniques 17: 915–919.

    Google Scholar 

  • Somers DJ, Isaac P, Edwards K, 2004. A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109: 1105–1114.

    Article  CAS  PubMed  Google Scholar 

  • Song J-X, Huang W, Shi M, Zhu Z-M, Lin X-H, 2007. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nature Genet 39: 623–630

    Article  CAS  PubMed  Google Scholar 

  • Sourdille P, Singh S, Cadalen T, Brown-Guedira GL, Gay G, Qi L et al. 2004. Microsatellite-based deletion bin system for the establishment of genetic-physical map relationships in wheat (Triticum aestivum L.). Funct Integr Genomics 4: 12–25

    Article  CAS  PubMed  Google Scholar 

  • Stein N, Herren G, Keller B, 2001. A new DNA extraction method for high-throughput marker analysis in a large-genome species such asTriticum aestivum. Plant Breeding 120: 354–356.

    Article  CAS  Google Scholar 

  • VanOoijen JW, 2006. JoinMap®4, Software for the calculation of genetic linkage maps in experimental populations. Kyazma BV, Wageningen, Netherlands.

    Google Scholar 

  • Varshney RK, Prasad M, Roy JK, Kumar N, Singh H, Dhaliwal HS, et al. 2000. Identification of eight chromosomes and a microsatellite marker on1 AS associated with QTLs for grain weight in bread wheat. Theor Appl Genet 100: 1290–1294.

    Article  CAS  Google Scholar 

  • Voorrips, RE, 2002. MapChart: Software for the graphical presentation of linkage maps and QTLs. J Hered 93: 77–78.

    Article  CAS  PubMed  Google Scholar 

  • Wang RX, Hai L, Zhang XY, You GX, Yan CS, Xiao SH, 2009. QTL mapping for grain filling rate and yield-related traits in RILs of the Chinese winter wheat population Heshangmai × Yu8679. Theor Appl Genet 118: 313–325.

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Basten CJ, Zeng ZB, 2007. WindowsQTLCartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC. (http://statgen.ncsu.edu/qtlcart/WQTLCart.htm).

    Google Scholar 

  • Wiersma JJ, Busch RH, Fulcher GG, Hareland G, 2001. Recurrent selection for kernel weight in spring wheat. Crop Sci 41: 999–1005.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Gupt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramya, P., Chaubal, A., Kulkarni, K. et al. QTL mapping of 1000-kernel weight, kernel length, and kernel width in bread wheat (Triticum aestivum L.). J Appl Genet 51, 421–429 (2010). https://doi.org/10.1007/BF03208872

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03208872

Keywords

Navigation