Skip to main content

3D Computational Modeling of Proteins Using Sparse Paramagnetic NMR Data

  • Protocol
  • First Online:
Bioinformatics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1526))

Abstract

Computational modeling of proteins using evolutionary or de novo approaches offers rapid structural characterization, but often suffers from low success rates in generating high quality models comparable to the accuracy of structures observed in X-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy. A computational/experimental hybrid approach incorporating sparse experimental restraints in computational modeling algorithms drastically improves reliability and accuracy of 3D models. This chapter discusses the use of structural information obtained from various paramagnetic NMR measurements and demonstrates computational algorithms implementing pseudocontact shifts as restraints to determine the structure of proteins at atomic resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wuthrich K (1986) NMR of proteins and nucleic acids. The George Fisher Baker Non-resident Lectureship in Chemistry at Cornell University

    Google Scholar 

  2. Andreini C, Bertini I, Rosato A (2009) Metalloproteomes: a bioinformatic approach. Acc Chem Res 42:1471–1479

    Article  CAS  PubMed  Google Scholar 

  3. Otting G (2010) Protein NMR using paramagnetic ions. Annu Rev Biophys 39:387–405

    Article  CAS  PubMed  Google Scholar 

  4. Su X-C, McAndrew K, Huber T, Otting G (2008) Lanthanide-binding peptides for NMR measurements of residual dipolar couplings and paramagnetic effects from multiple angles. J Am Chem Soc 130:1681–1687

    Article  CAS  PubMed  Google Scholar 

  5. Loh CT, Ozawa K, Tuck KL, Barlow N, Huber T, Otting G, Graham B (2013) Lanthanide tags for site-specific ligation to an unnatural amino acid and generation of pseudocontact shifts in proteins. Bioconjug Chem 24:260–268

    Article  CAS  PubMed  Google Scholar 

  6. Rodriguez-Castañeda, F., Haberz, P., Leonov, A., Griesinger, C. (2006) Paramagnetic tagging of diamagnetic proteins for solution NMR. Magn Reson Chem 44 Spec No, S10–S16.

    Google Scholar 

  7. Su X-C, Otting G (2010) Paramagnetic labelling of proteins and oligonucleotides for NMR. J Biomol NMR 46:101–112

    Article  CAS  PubMed  Google Scholar 

  8. Koehler J, Meiler J (2011) Expanding the utility of NMR restraints with paramagnetic compounds: background and practical aspects. Prog Nucl Magn Reson Spectrosc 59:360–389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Liu W-M, Overhand M, Ubbink M (2014) The application of paramagnetic lanthanoid ions in NMR spectroscopy on proteins. Coord Chem Rev 273–274:2–12

    Article  Google Scholar 

  10. Bertini I, Luchinat C, Parigi G (2002) Magnetic susceptibility in paramagnetic NMR. Prog Nucl Magn Reson Spectrosc 40:249–273

    Article  CAS  Google Scholar 

  11. Bertini I, Luchinat C, Parigi G, Pierattelli R (2008) Perspectives in paramagnetic NMR of metalloproteins. Dalton Trans 29:3782–3790

    Article  Google Scholar 

  12. Iwahara J, Schwieters CD, Clore GM (2004) Ensemble approach for NMR structure refinement against (1)H paramagnetic relaxation enhancement data arising from a flexible paramagnetic group attached to a macromolecule. J Am Chem Soc 126:5879–5896

    Article  CAS  PubMed  Google Scholar 

  13. Keizers PHJ, Mersinli B, Reinle W, Donauer J, Hiruma Y, Hannemann F, Overhand M, Bernhardt R, Ubbink M (2010) A solution model of the complex formed by adrenodoxin and adrenodoxin reductase determined by paramagnetic NMR spectroscopy. Biochemistry 49:6846–6855

    Article  CAS  PubMed  Google Scholar 

  14. Schmitz C, Stanton-Cook M, Su X-C, Otting G, Huber T (2008) Numbat: an interactive software tool for fitting Deltachi-tensors to molecular coordinates using pseudocontact shifts. J Biomol NMR 41:179–189

    Article  CAS  PubMed  Google Scholar 

  15. John M, Schmitz C, Park AY, Dixon NE, Huber T, Otting G (2007) Sequence-specific and stereospecific assignment of methyl groups using paramagnetic lanthanides. J Am Chem Soc 129:13749–13757

    Article  CAS  PubMed  Google Scholar 

  16. Schmitz C, John M, Park AY, Dixon NE, Otting G, Pintacuda G, Huber T (2006) Efficient chi-tensor determination and NH assignment of paramagnetic proteins. J Biomol NMR 35:79–87

    Article  CAS  PubMed  Google Scholar 

  17. Skinner SP, Moshev M, Hass MAS, Keizers PHJ, Ubbink M (2013) PARAssign—paramagnetic NMR assignments of protein nuclei on the basis of pseudocontact shifts. J Biomol NMR 55:379–389

    Article  CAS  PubMed  Google Scholar 

  18. John M, Pintacuda G, Park AY, Dixon NE, Otting G (2006) Structure determination of protein-ligand complexes by transferred paramagnetic shifts. J Am Chem Soc 128:12910–12916

    Article  CAS  PubMed  Google Scholar 

  19. Saio T, Ogura K, Shimizu K, Yokochi M, Burke TR, Inagaki F (2011) An NMR strategy for fragment-based ligand screening utilizing a paramagnetic lanthanide probe. J Biomol NMR 51:395–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Guan J-Y, Keizers PHJ, Liu W-M, Loehr F, Skinner SP, Heeneman EA, Schwalbe H, Ubbink M, Siegal GD, Löhr F, Skinner SP, Heeneman EA, Schwalbe H, Ubbink M, Siegal GD (2013) Small molecule binding sites on proteins established by paramagnetic NMR spectroscopy. J Am Chem Soc 135:5859–5868

    Article  CAS  PubMed  Google Scholar 

  21. Pintacuda G, Park AY, Keniry MA, Dixon NE, Otting G (2006) Lanthanide labeling offers fast NMR approach to 3D structure determinations of protein-protein complexes. J Am Chem Soc 128:3696–3702

    Article  CAS  PubMed  Google Scholar 

  22. Hiruma Y, Gupta A, Kloosterman A, Olijve C, Olmez B, Hass MA, Ubbink M (2014) Hot-spot residues in the cytochrome P450cam-putidaredoxin binding interface. Chembiochem 15:80–86

    Article  CAS  PubMed  Google Scholar 

  23. Schmitz C, Bonvin AMJJ (2011) Protein-protein HADDocking using exclusively pseudocontact shifts. J Biomol NMR 50:263–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Allegrozzi M, Bertini I, Janik MBL, Lee Y, Liu G, Luchinat C (2000) Lanthanide-induced pseudocontact shifts for solution structure refinements of macromolecules in shells up to 40 Å from the metal ion. J Am Chem Soc 122:4154–4161

    Article  CAS  Google Scholar 

  25. Gaponenko V, Sarma SP, Altieri AS, Horita DA, Li J, Byrd RA (2004) Improving the accuracy of NMR structures of large proteins using pseudocontact shifts as long-range restraints. J Biomol NMR 28:205–212

    Article  CAS  PubMed  Google Scholar 

  26. Song Y, Dimaio F, Wang RY-R, Kim D, Miles C, Brunette T, Thompson J, Baker D (2013) High-resolution comparative modeling with RosettaCM. Structure 21:1735–1742

    Article  CAS  PubMed  Google Scholar 

  27. Meiler J, Baker D (2003) Rapid protein fold determination using unassigned NMR data. Proc Natl Acad Sci U S A 100:15404–15409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Raman S, Lange OF, Rossi P, Tyka M, Wang X, Aramini JM, Liu G, Ramelot TA, Eletsky A, Szyperski T, Kennedy MA, Prestegard J, Montelione GT, Baker D (2010) NMR structure determination for larger proteins using backbone-only data. Science 327:1014–1018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shen Y, Vernon R, Baker D, Bax A (2009) De novo protein structure generation from incomplete chemical shift assignments. J Biomol NMR 43:63–78

    Article  CAS  PubMed  Google Scholar 

  30. Shen Y, Lange O, Delaglio F, Rossi P, Aramini JM, Liu G, Eletsky A, Wu Y, Singarapu KK, Lemak A, Ignatchenko A, Arrowsmith CH, Szyperski T, Montelione GT, Baker D, Bax A (2008) Consistent blind protein structure generation from NMR chemical shift data. Proc Natl Acad Sci U S A 105:4685–4690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lange OF, Baker D (2012) Resolution-adapted recombination of structural features significantly improves sampling in restraint-guided structure calculation. Proteins Struct Funct Bioinforma 80:884–895

    Article  CAS  Google Scholar 

  32. Baker D (2014) Centenary award and Sir Frederick Gowland Hopkins Memorial Lecture. Protein folding, structure prediction and design. Biochem Soc Trans 42:225–229

    Article  CAS  PubMed  Google Scholar 

  33. Rohl CA, Strauss CEM, Misura KMS, Baker D (2004) Protein structure prediction using Rosetta. Methods Enzymol 383:66–93

    Article  CAS  PubMed  Google Scholar 

  34. Das R, Baker D (2008) Macromolecular modeling with Rosetta. Annu Rev Biochem 77:363–382

    Article  CAS  PubMed  Google Scholar 

  35. Schmitz C, Vernon R, Otting G, Baker D, Huber T (2012) Protein structure determination from pseudocontact shifts using ROSETTA. J Mol Biol 416:668–677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yagi H, Pilla KB, Maleckis A, Graham B, Huber T, Otting G (2013) Three-dimensional protein fold determination from backbone amide pseudocontact shifts generated by lanthanide tags at multiple sites. Structure 21:883–890

    Article  CAS  PubMed  Google Scholar 

  37. Liepinsh E, Baryshev M, Sharipo A, Ingelman-Sundberg M, Otting G, Mkrtchian S (2001) Thioredoxin fold as homodimerization module in the putative chaperone ERp29: NMR structures of the domains and experimental model of the 51 kDa dimer. Structure 9:457–471

    Article  CAS  PubMed  Google Scholar 

  38. Barak NN, Neumann P, Sevvana M, Schutkowski M, Naumann K, Malesević M, Reichardt H, Fischer G, Stubbs MT, Ferrari DM (2009) Crystal structure and functional analysis of the protein disulfide isomerase-related protein ERp29. J Mol Biol 385:1630–1642

    Article  CAS  PubMed  Google Scholar 

  39. Graham B, Loh CT, Swarbrick JD, Ung P, Shin J, Yagi H, Jia X, Chhabra S, Barlow N, Pintacuda G, Huber T, Otting G (2011) DOTA-amide lanthanide tag for reliable generation of pseudocontact shifts in protein NMR spectra. Bioconjug Chem 22:2118–2125

    Article  CAS  PubMed  Google Scholar 

  40. Swarbrick JD, Ung P, Chhabra S, Graham B (2011) An iminodiacetic acid based lanthanide binding tag for paramagnetic exchange NMR spectroscopy. Angew Chem 123:4495–4498

    Article  Google Scholar 

  41. Hong M, Zhang Y, Hu F (2012) Membrane protein structure and dynamics from NMR spectroscopy. Annu Rev Phys Chem 63:1–24

    Article  CAS  PubMed  Google Scholar 

  42. De Paepe G, Lewandowski JR, Loquet A, Bockmann A, Griffin RG, De Paëpe G, Lewandowski JR, Loquet A, Böckmann A, Griffin RG (2008) Proton assisted recoupling and protein structure determination. J Chem Phys 129:245101

    Article  PubMed  PubMed Central  Google Scholar 

  43. Korukottu J, Schneider R, Vijayan V, Lange A, Pongs O, Becker S, Baldus M, Zweckstetter M (2008) High-resolution 3D structure determination of kaliotoxin by solid-state NMR spectroscopy. PLoS One 3:e2359

    Article  PubMed  PubMed Central  Google Scholar 

  44. Wasmer C, Lange A, Van Melckebeke H, Siemer AB, Riek R, Meier BH (2008) Amyloid fibrils of the HET-s(218-289) prion form a beta solenoid with a triangular hydrophobic core. Science 319:1523–1526

    Article  CAS  PubMed  Google Scholar 

  45. Loquet A, Lv G, Giller K, Becker S, Lange A (2011) 13C spin dilution for simplified and complete solid-state NMR resonance assignment of insoluble biological assemblies. J Am Chem Soc 133:4722–4725

    Article  CAS  PubMed  Google Scholar 

  46. Su X-C, Man B, Beeren S, Liang H, Simonsen S, Schmitz C, Huber T, Messerle BA, Otting G (2008) A dipicolinic acid tag for rigid lanthanide tagging of proteins and paramagnetic NMR spectroscopy. J Am Chem Soc 130:10486–10487

    Article  CAS  PubMed  Google Scholar 

  47. Li J, Pilla KB, Li Q, Zhang Z, Su X, Huber T, Yang J (2013) Magic angle spinning NMR structure determination of proteins from pseudocontact shifts. J Am Chem Soc 135:8294–8303

    Article  CAS  PubMed  Google Scholar 

  48. Gallagher T, Alexander P, Bryan P, Gilliland GL (1994) Two crystal structures of the B1 immunoglobulin-binding domain of streptococcal protein G and comparison with NMR. Biochemistry 33:4721–4729

    Article  CAS  PubMed  Google Scholar 

  49. Schmitz C (2009) Computational study of proteins with paramagnetic NMR: automatic assignments of spectral resonances, determination of protein-protein and protein-ligand complexes, and structure determination of proteins. Ph.D. thesis, University of Queensland

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Huber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Pilla, K.B., Otting, G., Huber, T. (2017). 3D Computational Modeling of Proteins Using Sparse Paramagnetic NMR Data. In: Keith, J. (eds) Bioinformatics. Methods in Molecular Biology, vol 1526. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6613-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6613-4_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6611-0

  • Online ISBN: 978-1-4939-6613-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics