Skip to main content
Log in

Paramagnetic labelling of proteins and oligonucleotides for NMR

  • Perspective
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

An Erratum to this article was published on 19 February 2011

Abstract

Paramagnetic effects offer a rich source of long-range structural restraints. Here we review current methods for site-specific tagging of proteins and oligonucleotides with paramagnetic molecules. The paramagnetic tags include nitroxide radicals and metal chelators. Particular emphasis is placed on tags suitable for site-specific and rigid attachment of lanthanide ions to macromolecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Allegrozzi M, Bertini I, Janik MBL, Lee YM, Liu G, Luchinat C (2000) Lanthanide-induced pseudocontact shifts for solution structure refinements of macromolecules in shells up to 40 Å from the metal ion. J Am Chem Soc 122:4154–4161

    Google Scholar 

  • Arnesano F, Banci L, Piccoli M (2005) NMR structures of paramagnetic metalloproteins. Q Rev Biophys 38:167–219

    Google Scholar 

  • Balogh E, Wu D, Zhou G, Gochin M (2009) NMR second site screening for structure determination of ligands bound in the hydrophobic pocket of HIV-1 gp41. J Am Chem Soc 131:2821–2823

    Google Scholar 

  • Berliner LJ (1976) Spin labeling: theory and applications. Academic Press, New York

    Google Scholar 

  • Berliner LJ, Grunwald J, Hankovszky HO, Hideg K (1982) A novel reversible thiol-specific spin label-papain active-site labeling and inhibition. Anal Biochem 119:450–453

    Google Scholar 

  • Bertini I, Janik MBL, Lee YM, Luchinat C, Rosato A (2001) Magnetic susceptibility tensor anisotropies for a lanthanide ion series in a fixed protein matrix. J Am Chem Soc 123:4181–4188

    Google Scholar 

  • Bertini I, Luchinat C, Parigi G (2002a) Paramagnetic constraints: an aid for quick solution structure determination of paramagnetic metalloproteins. Concepts Magn Reson 14:259–286

    Google Scholar 

  • Bertini I, Luchinat C, Parigi G (2002b) Magnetic susceptibility in paramagnetic NMR. Prog NMR Spectr 40:249–273

    Google Scholar 

  • Bertini I, Gelis I, Katsaros N, Luchinat C, Provenzani A (2003) Tuning the affinity for lanthanides of calcium binding proteins. Biochemistry 42:8011–8021

    Google Scholar 

  • Bertini I, Del Bianco C, Gelis I, Katsaros N, Luchinat C, Parigi G, Pena M, Provenzani A, Zoroddu MA (2004) Experimentally exploring the conformational space sampled by domain reorientation in calmodulin. Proc Natl Acad Sci USA 101:6841–6846

    ADS  Google Scholar 

  • Biekofsky RR, Muskett FW, Schmidt JM, Martin SR, Browne JP, Bayley PM, Feeney J (1999) NMR approaches for monitoring domain orientations in calcium-binding proteins in solution using partial replacement of Ca2+ by Tb3+. FEBS Lett 460:519–526

    Google Scholar 

  • Boisbouvier J, Gans P, Blackledge M, Brutscher B, Marion D (1999) Long-range structural information in NMR studies of paramagnetic molecules from electron spin-nuclear spin cross-correlated relaxation. J Am Chem Soc 121:7700–7701

    Google Scholar 

  • Brautigam CA, Aschheim K, Steitz TA (1999) Structural elucidation of the binding and inhibitory properties of lanthanide (III) ions at the 3′-5′ exonucleolytic active site of the Klenow fragment. Chem Biol 6:901–908

    Google Scholar 

  • Campbell ID, Dobson CM, Williams RJP, Xavier AV (1973) The determination of the structure of proteins in solution: lysozyme. Ann N Y Acad Sci 222:163–174

    ADS  Google Scholar 

  • Caron M, Dugas H (1976) Specific spin-labeling of transfer ribonucleic acid molecules. Nucleic Acids Res 3:35–47

    Google Scholar 

  • Chen J, Selvin PR (1999) Thiol-reactive luminescent chelates of terbium and europium. Bioconjugate Chem 10:311–315

    Google Scholar 

  • Clore GM, Tang C, Iwahara J (2007) Elucidating transient macromolecular interactions using paramagnetic relaxation enhancement. Curr Opin Struct Biol 17:603–616

    Google Scholar 

  • Donaldson LW, Skrynnikov NR, Choy WY, Muhandiram DR, Sarkar B, Forman-Kay JD, Kay LE (2001) Structural characterization of proteins with an attached ATCUN motif by paramagnetic relaxation enhancement NMR spectroscopy. J Am Chem Soc 123:9843–9847

    Google Scholar 

  • Dvoretsky A, Gaponenko V, Rosevear PR (2002) Derivation of structural restraints using a thiol-reactive chelator. FEBS Lett 528:189–192

    Google Scholar 

  • Edwards TE, Sigurdsson ST (2007) Site-specific incorporation of nitroxide spin-labels into 2’-positions of nucleic acids. Nat Protoc 2:1954–1962

    Google Scholar 

  • Edwards TE, Okonogi TM, Robinson BH, Sigurdsson ST (2001) Site-specific incorporation of nitroxide spin-labels into internal sites of the TAR RNA; structure-dependent dynamics of RNA by EPR spectroscopy. J Am Chem Soc 123:1527–1528

    Google Scholar 

  • Fanucci GE, Cafiso DS (2006) Recent advances and applications of site-directed spin labelling. Curr Opin Struct Biol 16:644–653

    Google Scholar 

  • Feeney J, Birdsall B, Bradbury AF, Biekofsky RR, Bayley PM (2001) Calmodulin tagging provides a general method of using lanthanide induced magnetic field orientation to observe residual dipolar couplings in proteins in solution. J Biomol NMR 21:41–48

    Google Scholar 

  • Frey MW, Frey ST, Horrocks WD Jr, Kaboord BF, Benkovic SJ (1996) Elucidation of the metal-binding properties of the Klenow fragment of Escherichia coli polymerase I and bacteriophage T4 DNA polymerase by lanthanide(III) luminescence spectroscopy. Chem Biol 3:393–403

    Google Scholar 

  • Gaponenko V, Altieri AS, Li J, Byrd RA (2002) Breaking symmetry in the structure determination of (large) symmetric protein dimmers. J Biomol NMR 24:143–148

    Google Scholar 

  • Ghose R, Prestegard JH (1997) Electron spin-nuclear spin cross-correlation effects on multiplet splittings in paramagnetic proteins. J Magn Reson 128:138–143

    ADS  Google Scholar 

  • Grant GPG, Qin PZ (2007) A facile method for attaching nitroxide spin labels at the 5’ terminus of nucleic acids. Nucleic Acids Res 35:e77

    Google Scholar 

  • Grenthe I (1960) Stability relationships among rare earth dipicolinates. J Am Chem Soc 83:360–364

    Google Scholar 

  • Griff OH, McConnell HM (1966) A nitroxide-maleimide spin label. Proc Nat Acad Sci USA 55:8–11

    ADS  Google Scholar 

  • Haberz P, Rodriguez-Castañeda F, Junker J, Becker S, Leonov A, Griesinger C (2006) Two new chiral EDTA-based metal chelates for weak alignment of proteins in solution. Org Lett 8:1275–1278

    Google Scholar 

  • Hankovsky HO, Hideg K, Lex L (1980) Nitroxyls VII. Synthesis and reactions of highly reactive 1-oxyl-2, 2, 5, 5-tetramethyl-2, 5-dihydropyrrole-3-ylmethylsulfonates. Synthesis 91:4–916

    Google Scholar 

  • Hubbell WL, Altenbach C (1994) Investigation of structure and dynamics in membrane proteins using site-directed spin labeling. Curr Opin Struct Biol 4:566–573

    Google Scholar 

  • Hubbell WL, Gross A, Langen R, Lietzow MA (1996) Recent advances in site-directed spin labeling of proteins. Curr Opin Struct Biol 8:649–656

    Google Scholar 

  • Hustedt EJ, Beth AH (1999) Nitroxide spin-spin interactions: applications to protein structure and dynamics. Annu Rev Biophys Biomol Struct 28:129–153

    Google Scholar 

  • Ikegami T, Verdier L, Sakhaii P, Grimme S, Pescatore B, Fiebig KM, Griesinger C (2004) Novel techniques for weak alignment of proteins in solution using chemical tags coordinating lanthanide ions. J Biomol NMR 29:339–349

    Google Scholar 

  • Iwahara J, Anderson DE, Murphy EC, Clore GM (2003) EDTA-derivatized deoxythymidine as a tool for rapid determination of protein binding polarity to DNA by intermolecular paramagnetic relaxation enhancement. J Am Chem Soc 125:6634–6635

    Google Scholar 

  • Jahnke W, Perez LB, Paris CG, Strauss A, Fendrich G, Nalin CM (2000) Second-site NMR screening with a spin-labeled first ligand. J Am Chem Soc 122:7394–7395

    Google Scholar 

  • John M, Otting G (2007) Strategies for measurements of pseudocontact shifts in protein NMR spectroscopy. Chemphyschem 8:2309–2313

    Google Scholar 

  • John M, Park AY, Pintacuda G, Dixon NE, Otting G (2005) Weak alignment of paramagnetic proteins warrants correction for residual CSA effects in measurements of pseudocontact shifts. J Am Chem Soc 127:17190–17191

    Google Scholar 

  • John M, Pintacuda G, Park AY, Dixon NE, Otting G (2006) Structure determination of protein–ligand complexes by transferred paramagnetic shifts. J Am Chem Soc 128:12910–12916

    Google Scholar 

  • John M, Schmitz C, Park AY, Dixon NE, Huber T, Otting G (2007a) Sequence- and stereospecific assignment of methyl groups using paramagnetic lanthanides. J Am Chem Soc 129:13749–13757

    Google Scholar 

  • John M, Headlam M, Dixon NE, Otting G (2007b) Assignment of paramagnetic 15N-HSQC spectra by heteronuclear exchange spectroscopy. J Biomol NMR 37:43–51

    Google Scholar 

  • Jones EY, Davis SJ, Williams AF, Harlos K, Stuart DI (1992) Crystal structure at 2.8 Å resolution of a soluble form of the cell adhesion molecule CD2. Nature 360:232–239

    ADS  Google Scholar 

  • Kamen DE, Cahill SM, Girvin ME (2007) Multiple alignments of membrane proteins for measuring residual dipolar couplings using lanthanide ions bound to a small metal chelator. J Am Chem Soc 129:1846–1847

    Google Scholar 

  • Karim CB, Zhang Z, Thomas DD (2007) Synthesis of TOAC spin-labeled proteins and reconstitution in lipid membranes. Nat Protoc 2:42–49

    Google Scholar 

  • Keizers PH, Desreux JF, Overhand M, Ubbink M (2007) Increased paramagnetic effect of a lanthanide protein probe by two-point attachment. J Am Chem Soc 129:9292–9293

    Google Scholar 

  • Keizers PH, Saragliadis A, Hiruma Y, Overhand M, Ubbink M (2008) Design, synthesis, and evaluation of a lanthanide chelating protein probe: CLaNP-5 yields predictable paramagnetic effects independent of environment. J Am Chem Soc 130:14802–14812

    Google Scholar 

  • Kim NK, Murali A, DeRose VJ (2004) A distance ruler for RNA using EPR and site-directed spin labeling. Chem Biol 11:939–948

    Google Scholar 

  • Kosen PA (1989) Spin labelling of proteins. Meth Enzymol 177:86–121

    Google Scholar 

  • Lee L, Sykes BD (1981) Proton nuclear magnetic resonance determination of the sequential ytterbium replacement of calcium in carp parvalbumin. Biochemistry 20:1156–1162

    Google Scholar 

  • Lee HS, Spraggon G, Schultz PG, Wang F (2009) Genetic incorporation of a metal-ion chelating amino acid into proteins as a biophysical probe. J Am Chem Soc 131:2481–2483

    Google Scholar 

  • Leonov A, Voigt B, Rodriguez-Castañeda F, Sakhaii P, Griesinger C (2005) Convenient synthesis of multifunctional EDTA-based chiral metal chelates substituted with an S-mesylcysteine. Chem Eur J 11:3342–3348

    Google Scholar 

  • Li S, Yang W, Maniccia AW, Barrow D Jr, Tjong H, Zhou HX, Yang JJ (2008) Rational design of a conformation-switchable Ca2+- and Tb3+-binding protein without the use of multiple coupled metal-binding sites. FEBS J 275:5048–5061

    Google Scholar 

  • Lindfors HE, de Koning PE, Drijfhout JW, Venezia B, Ubbink M (2008) Mobility of TOAC spin-labelled peptides binding to the Src SH3 domain studied by paramagnetic NMR. J Biomol NMR 41:157–167

    Google Scholar 

  • Lu Y, Berry SM, Pfister TD (2001) Engineering novel metalloproteins: design of metal-binding sites into native protein scaffolds. Chem Rev 101:3047–3080

    Google Scholar 

  • Ma C, Opella SJ (2000) Lanthanide ions bind specifically to an added ‘EF-hand’ and orient a membrane protein in micelles for solution NMR spectroscopy. J Magn Reson 146:381–384

    ADS  Google Scholar 

  • MacManus JP, Hogue CW, Marsden BJ, Sikorska M, Szabo AG (1990) Terbium luminescence in synthetic peptide loops from calcium-binding proteins with different energy donors. J Biol Chem 265:10358–10366

    Google Scholar 

  • Macosko JC, Pio MS, Tinoco I Jr, Shin YK (1999) A novel 5′ displacement spin-labeling technique for electron paramagnetic resonance spectroscopy of RNA. RNA 5:1158–1166

    Google Scholar 

  • Mao H, Hart SA, Schink A, Pollok BA (2004) Sortase-mediated protein ligation: a new method for protein engineering. J Am Chem Soc 126:2670–2671

    Google Scholar 

  • Marchetto R, Schreier S, Nakaie CR (1993) A novel spin-labeled amino acid derivative for use in peptide chemistry: (9-fluorenylmethyloxycarbonyl)2,2,6,6-tetramethylpiperidine–N-oxyl-4-amino-4-carboxylic acid. J Am Chem Soc 115:11042–11043

    Google Scholar 

  • Margittai M, Langen R (2008) Fibrils with parallel in-register structure constitute a major class of amyloid fibrils: molecular insights from electron paramagnetic resonance spectroscopy. Q Rev Biophys 41:265–297

    Google Scholar 

  • Martin LJ, Hähnke MJ, Nitz M, Wöhnert J, Silvaggi NR, Allen KN, Schwalbe H, Imperiali B (2007) Double-lanthanide-binding tags: design, photophysical properties, and NMR applications. J Am Chem Soc 129:7106–7113

    Google Scholar 

  • Mchaourab HS, Kálmán T, Hideg K, Hubbell WL (1999) Motion of spin-labeled side chains in T4 lysozyme: effect of side chain structure. Biochemistry 38:2947–2955

    Google Scholar 

  • Muralidharan V, Muir TW (2006) Protein ligation: an enabling technology for the biophysical analysis of proteins. Nat Methods 3:429–438

    Google Scholar 

  • Nitz M, Franz KJ, Maglathlin RL, Imperiali B (2003) A powerful combinatorial screen to identify high-affinity terbium(III)-binding peptides. Chembiochem 4:272–276

    Google Scholar 

  • Nitz M, Sherawat M, Franz KJ, Peisach E, Allen KN, Imperiali B (2004) Structural origin of the high affinity of a chemically evolved lanthanide-binding peptide. Angew Chem Int Ed 43:3682–3685

    Google Scholar 

  • Ogawa S, McConnell HM (1967) Spin-label study of hemoglobin conformations in solution. Proc Nat Acad Sci USA 58:19–26

    ADS  Google Scholar 

  • Otting G (2008) Prospects for lanthanides in structural biology by NMR. J Biomol NMR 42:1–9

    Google Scholar 

  • Parker D, Dickins RS, Puschmann H, Crossland C, Howard JA (2002) Being excited by lanthanide coordination complexes: aqua species, chirality, excited-state chemistry, and exchange dynamics. Chem Rev 102:1977–2010

    Google Scholar 

  • Pidcock E, Moore GR (2001) Structural characteristics of protein binding sites for calcium and lanthanide ions. J Biol Inorg Chem 6:479–489

    Google Scholar 

  • Pintacuda G, Keniry MA, Huber T, Park AY, Dixon NE, Otting G (2004a) Fast structure-based assignment of 15N HSQC spectra of selectively 15N-labeled paramagnetic proteins. J Am Chem Soc 126:2963–2970

    Google Scholar 

  • Pintacuda G, Kaikkonen A, Otting G (2004b) Modulation of the distance dependence of paramagnetic relaxation enhancements by CSAxDSA cross-correlation. J Magn Reson 171:233–243

    ADS  Google Scholar 

  • Pintacuda G, Moshref A, Leonchiks A, Sharipo A, Otting G (2004c) Site-specific labelling with a metal chelator for protein-structure refinement. J Biomol NMR 29:351–361

    Google Scholar 

  • Pintacuda G, Park AY, Keniry MA, Dixon NE, Otting G (2006) Lanthanide labeling offers fast NMR approach to 3D structure determinations of protein-protein complexes. J Am Chem Soc 128:3696–3702

    Google Scholar 

  • Pintacuda G, John M, Su XC, Otting G (2007) NMR structure determination of protein–ligand complexes by lanthanide labelling. Acc Chem Res 40:206–212

    Google Scholar 

  • Piton N, Mu Y, Stock G, Prisner TF, Schiemann O, Engels JW (2007) Base-specific spin-labeling of RNA for structure determination. Nucleic Acids Res 35:3128–3143

    Google Scholar 

  • Prudêncio M, Rohovec J, Peters JA, Tocheva E, Boulanger MJ, Murphy MEP, Hupkes HK, Kosters W, Impagliazzo A, Ubbink M (2004) A caged lanthanide complex as a paramagnetic shift agent for protein NMR. Chem Eur J 10:3252–3260

    Google Scholar 

  • Qin PZ, Dieckmann T (2004) Application of NMR and EPR methods to the study of RNA. Curr Opin Struct Biol 14:350–359

    Google Scholar 

  • Qin PZ, Butcher SE, Feigon J, Hubbell WL (2001) Quantitative analysis of the isolated GAAA tetraloop/receptor interaction in solution: a site-directed spin labeling study. Biochemistry 40:6929–6936

    Google Scholar 

  • Qin PZ, Hideg K, Feigon J, Hubbell WL (2003) Monitoring RNA base structure and dynamics using site-directed spin labeling. Biochemistry 42:6772–6783

    Google Scholar 

  • Ramos A, Varani G (1998) A new method to detect long-range protein-RNA contacts: NMR detection of electron-proton relaxation induced by nitroxide spin-labeled RNA. J Am Chem Soc 120:10992–10993

    Google Scholar 

  • Rao ST, Satyshur KA, Greaser ML, Sundaralingam M (1996) X-ray structures of Mn, Cd and Tb metal complexes of troponin C. Acta Crystallogr D Biol Crystallogr 52:916–922

    Google Scholar 

  • Rodriguez-Castañeda F, Haberz P, Leonov A, Griesinger C (2006) Paramagnetic tagging of diamagnetic proteins for solution NMR. Magn Reson Chem 44:S10–S16

    Google Scholar 

  • Sattler M, Fesik SW (1997) Resolving resonance overlap in the NMR spectra of proteins from differential lanthanide-induced shifts. J Am Chem Soc 119:7885–7886

    Google Scholar 

  • Schmidt PG, Kuntz ID (1984) Distance measurements in spin labeled lysozyme. Biochemistry 23:4261–4266

    Google Scholar 

  • Schmitz C, John M, Park AY, Dixon NE, Otting G, Pintacuda G, Huber T (2006) Efficient χ-tensor determination and NH assignment of paramagnetic proteins. J Biomol NMR 35:79–87

    Google Scholar 

  • Schmitz C, Stanton-Cook MJ, Su XC, Otting G, Huber T (2008) Numbat: an interactive software tool for fitting Δχ-tensors to molecular coordinates using pseudocontact shifts. J Biomol NMR 41:179–189

    Google Scholar 

  • Shelling JG, Bjornson ME, Hodges RS, Taneja AK, Sykes BD (1984) Contact and dipolar contributions to lanthanide-induced NMR shifts of amino acid and peptide models for calcium binding sites in proteins. J Magn Reson 57:99–114

    Google Scholar 

  • Smith DJ, Maggio ET, Kenyon GL (1975) Simple alkanethiol groups for temporary blocking of sulfhydryl groups of enzymes. Biochemistry 14:766–771

    Google Scholar 

  • Sowa GZ, Qin PZ (2008) Site-directed spin labeling studies on nucleic acid structure and dynamics. Prog Nucl Acid Res Mol Biol 82:147–197

    Google Scholar 

  • Su XC, Huber T, Dixon NE, Otting G (2006) Site-specific labelling of proteins with a lanthanide-binding tag. Chembiochem 7:1469–1474

    Google Scholar 

  • Su XC, McAndrew K, Huber T, Otting G (2008a) Lanthanide-binding peptides for NMR measurements of residual dipolar couplings and paramagnetic effects from multiple angles. J Am Chem Soc 130:1681–1687

    Google Scholar 

  • Su XC, Man B, Beeren S, Liang H, Simonsen S, Schmitz C, Huber T, Messerle BA, Otting G (2008b) A dipicolinic acid tag for rigid lanthanide tagging of proteins and paramagnetic NMR spectroscopy. J Am Chem Soc 130:10486–10487

    Google Scholar 

  • Sunnerhagen M, Nilges M, Otting G, Carey J (1997) Solution structure of the DNA-binding domain and model for the binding of multifunctional arginine repressor to DNA. Nat Struct Biol 4:819–826

    Google Scholar 

  • Tolman JR, Flanagan JM, Kennedy MA, Prestegard JH (1997) Nuclear magnetic dipole interactions in field-oriented proteins: information for structure determination in solution. Proc Natl Acad Sci USA 92:9279–9283

    ADS  Google Scholar 

  • Vlasie MD, Comuzzi C, van den Nieuwendijk AM, Prudêncio M, Overhand M, Ubbink M (2007) Long-range-distance NMR effects in a protein labeled with a lanthanide-DOTA chelate. Eur J Chem 13:1715–1723

    Google Scholar 

  • Wöhnert J, Franz KJ, Nitz M, Imperiali B, Schwalbe H (2003) Protein alignment by a coexpressed lanthanide-binding tag for the measurement of residual dipolar couplings. J Am Chem Soc 125:13338–13339

    Google Scholar 

  • Xie J, Schultz PG (2005) Adding amino acids to the genetic repertoire. Curr Opin Chem Biol 9:548–554

    Google Scholar 

  • Xie J, Liu W, Schultz PG (2007) A genetically encoded bidentate, metal-binding amino acid. Angew Chem Int Ed 46:9239–9242

    Google Scholar 

  • Zecherle GN, Oleinikov A, Traut RR (1992) The proximity of the C-terminal domain of Escherichia coli ribosomal protein L7/L12 to L10 determined by cysteine site-directed mutagenesis and protein-protein cross-linking. J Biol Chem 267:5889–5896

    Google Scholar 

  • Zhuang T, Lee HS, Imperiali B, Prestegard JH (2008) Structure determination of a Galectin-3-carbohydrate complex using paramagnetism-based NMR constraints. Protein Sci 17:1220–1231

    Google Scholar 

Download references

Acknowledgments

Financial support by the Australian Research Council is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gottfried Otting.

Additional information

An erratum to this article can be found online at http://dx.doi.org/10.1007/s10858-011-9475-7

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su, XC., Otting, G. Paramagnetic labelling of proteins and oligonucleotides for NMR. J Biomol NMR 46, 101–112 (2010). https://doi.org/10.1007/s10858-009-9331-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-009-9331-1

Keywords

Navigation