Skip to main content
Log in

Efficient χ-tensor determination and NH assignment of paramagnetic proteins

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

Anisotropic magnetic susceptibility tensors χ of paramagnetic metal ions are manifested in pseudocontact shifts, residual dipolar couplings, and other paramagnetic observables that present valuable long-range information for structure determinations of protein-ligand complexes. A program was developed for automatic determination of the χ-tensor anisotropy parameters and amide resonance assignments in proteins labeled with paramagnetic metal ions. The program requires knowledge of the three-dimensional structure of the protein, the backbone resonance assignments of the diamagnetic protein, and a pair of 2D 15N-HSQC or 3D HNCO spectra recorded with and without paramagnetic metal ion. It allows the determination of reliable χ-tensor anisotropy parameters from 2D spectra of uniformly 15N-labeled proteins of fairly high molecular weight. Examples are shown for the 185-residue N-terminal domain of the subunit ε from E. coli DNA polymerase III in complex with the subunit θ and La3+ in its diamagnetic and Dy3+, Tb3+, and Er3+ in its paramagnetic form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

θ:

subunit θ of E. coli polymerase III

ε186:

N-terminal 185 residues of the E. coli polymerase III subunit ε

PCS:

pseudocontact shift

PRE:

paramagnetic relaxation enhancement

RACS:

residual anisotropic chemical shifts.

References

  • Allegrozzi M., Bertini I., Janik M.B.L., Lee Y.M., Lin G.H. and Luchinat C. (2000). J. Am. Chem. Soc. 122: 4154–4161

    Article  Google Scholar 

  • Babini E., Bertini I., Capozzi F., Felli I.C., Lelli M. and Luchinat C. (2004). J. Am. Chem. Soc. 126: 10496–10497

    Article  Google Scholar 

  • Baig I., Bertini I., Del Bianco C., Gupta Y.K., Lee Y.M., Luchinat C. and Quattrone A. (2004). Biochemistry 43: 5562–5573

    Article  Google Scholar 

  • Banci L., Bertini I., Gori Savellini G.., Romagnoli A., Turano P., Cremonini M.A., Luchinat C. and Gray H.B. (1997). Proteins 29: 68–76

    Article  Google Scholar 

  • Banci L., Bertini I., Cremonini M.A., Gori-Savellini G., Luchinat C., Wüthrich K. and Güntert P. (1998) J. Biomol. NMR 12: 553–557

    Article  Google Scholar 

  • Barbieri R., Bertini I., Cavallaro G., Lee Y.M., Luchinat C., Rosato A. (2002). J. Am. Chem. Soc. 124: 5581–5587

    Article  Google Scholar 

  • Bertini I., Janik M.B., Lee Y.M., Luchinat C. and Rosato A. (2001a). J. Am. Chem. Soc. 123: 4181–4188

    Article  Google Scholar 

  • Bertini I., Luchinat C. and Parigi G. (2001b). Solution NMR of Paramagnetic Molecules: Applications to Metallobiomolecules and Models. Elsevier, Amsterdam, London

    Book  Google Scholar 

  • Bertini I., Luchinat C. and Parigi G. (2002) Prog. NMR Spectrosc. 40: 249–273

    Article  Google Scholar 

  • Brautigam C.A., Aschheim K. and Steitz T.A. (1999) Chem. Biol. 6: 901–908

    Article  Google Scholar 

  • Carpaneto G. and Toth P. (1980). ACM TOMS 6: 104–111

    Article  Google Scholar 

  • Cornilescu G. and Bax A. (2000). J. Am. Chem. Soc. 122: 10143–10154

    Article  Google Scholar 

  • DeRose E.F., Li D., Darden T., Harvey S., Perrino F.W., Schaaper R.M. and London R.E. (2002) Biochemistry 41: 94–110

    Article  Google Scholar 

  • DeRose E.F., Darden T., Harvey S., Gabel S., Perrino F.W., Schaaper R.M. and London R.E. (2003) Biochemistry 42: 3635–3644

    Article  Google Scholar 

  • Diaz-Moreno I., Diaz-Quintana A., De la Rosa M.A. and Ubbink M. (2005). J. Biol. Chem., 280, 18908–18915

    Article  Google Scholar 

  • Frey M.W., Frey S.T., DeW Horrocks W., Jr., Kaboord B. and Benkovic S.J. (1996). Chem. Biol. 3: 393–403

    Article  Google Scholar 

  • Gaponenko V., Altieri A.S., Li J. and Byrd R.A. (2002). J. Biomol. NMR, 24: 143–148

    Article  Google Scholar 

  • Gaponenko V., Sarma S.P., Altieri A.S., Horita D.A., Li J. and Byrd R.A. (2004). J. Biomol. NMR 28: 205–212

    Article  Google Scholar 

  • Gochin M. (1998). J. Biomol. NMR 12: 243–257

    Article  Google Scholar 

  • Gochin M. (2000). Structure 8: 441–452

    Article  Google Scholar 

  • Goddard T.D. and Kneller D.G. (2004). SPARKY 3. University of California, San Francisco

    Google Scholar 

  • Goodfellow B.J., Nunes S.G., Rusnak F., Moura I., Ascenso C., Moura J.J.G., Volkman B.F. and Markley J.L. (2002). Prot. Sci. 11: 2464–2470

    Article  Google Scholar 

  • Hamdan S., Carr P.D., Brown S.E., Ollis D.L. and Dixon N.E. (2002). Structure 10: 535–546

    Article  Google Scholar 

  • Hus J.-C., Prompers J.J. and Brüschweiler R. (2002). J. Magn. Reson. 157: 119–123

    Article  ADS  Google Scholar 

  • Ikegami T., Verdier L., Sakhaii P., Grimme S., Pescatore B., Saxena K., Fiebig K.M. and Griesinger C. (2004). J. Biomol. NMR 29: 339–349

    Article  Google Scholar 

  • John, M., Park, A.Y., Pintacuda, G., Dixon, N.E. and Otting, G. (2005) J. Am. Chem. Soc., 127, 17190–17191

    Google Scholar 

  • Kuhn H.W. (1955). Naval Res. Logistic Quarterly 2: 83–97

    Article  MathSciNet  Google Scholar 

  • La Mar G.N., Kolczak U., Tran A.T. and Chien E.Y. (2001) J. Am. Chem. Soc. 123: 4266–4274

    Article  Google Scholar 

  • Leonov A., Voigt B., Rodriguez-Castaneda F., Sakhaii P. and Griesinger C. (2005). Chemistry 11: 3342–3348

    Article  Google Scholar 

  • Ma C. and Opella S.J. (2000). J. Magn. Reson. 146: 381–384

    Article  ADS  Google Scholar 

  • Markwick P.R.L. and Sattler M. (2005). J. Am. Chem. Soc. 126: 11424–11425

    Article  Google Scholar 

  • Peters J.A., Huskens J. and Raber D.J. (1996). Prog. NMR Spectrosc. 28: 283–350

    Article  Google Scholar 

  • Pintacuda G., Keniry M.A., Huber T., Park A.Y., Dixon N.E. and Otting G. (2004). J. Am. Chem. Soc. 126: 2963–2970

    Article  Google Scholar 

  • Tjandra N. and Bax A. (1997). Science 278: 1111–1114

    Article  ADS  Google Scholar 

  • Tolman J.R., Flanagan J.M., Kennedy M.A. and Prestegard J.H. (1995). Proc. Natl. Acad. Sci. USA 92: 9279–9283

    Article  ADS  Google Scholar 

  • Ubbink M., Ejdebäck M., Karlsson B.G. and Bendall D.S. (1998). Structure 6: 323–335

    Article  Google Scholar 

  • van Dijk A.D., Fushman D. and Bonvin A.M. (2005). Proteins 60: 367–381

    Article  Google Scholar 

  • Wöhnert J., Franz K.J., Nitz M., Imperiali B. and Schwalbe H. (2003). J. Am. Chem. Soc. 125: 13338–13339

    Article  Google Scholar 

Download references

Acknowledgements

M.J. thanks the Alexander von Humboldt Foundation for a fellowship. Financial support from the Australian Research Council for a Federation Fellowship for G.O. and the 800 MHz NMR spectrometer at ANU is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Huber.

Additional information

The first two authors contributed equally to the project.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmitz, C., John, M., Park, A. et al. Efficient χ-tensor determination and NH assignment of paramagnetic proteins. J Biomol NMR 35, 79–87 (2006). https://doi.org/10.1007/s10858-006-9002-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-006-9002-4

Key words

Navigation