Skip to main content
Log in

Numbat: an interactive software tool for fitting Δχ-tensors to molecular coordinates using pseudocontact shifts

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

Pseudocontact shift (PCS) effects induced by a paramagnetic lanthanide bound to a protein have become increasingly popular in NMR spectroscopy as they yield a complementary set of orientational and long-range structural restraints. PCS are a manifestation of the χ-tensor anisotropy, the Δχ-tensor, which in turn can be determined from the PCS. Once the Δχ-tensor has been determined, PCS become powerful long-range restraints for the study of protein structure and protein–ligand complexes. Here we present the newly developed package Numbat (New User-friendly Method Built for Automatic Δχ-Tensor determination). With a Graphical User Interface (GUI) that allows a high degree of interactivity, Numbat is specifically designed for the computation of the complete set of Δχ-tensor parameters (including shape, location and orientation with respect to the protein) from a set of experimentally measured PCS and the protein structure coordinates. Use of the program for Linux and Windows operating systems is illustrated by building a model of the complex between the E. coli DNA polymerase III subunits ε186 and θ using PCS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

α:

Subunit α of the E. coli polymerase III

ε186:

N-terminal 185 residues of the E. coli polymerase III subunit ε

θ:

Subunit θ of the E. coli polymerase III

CSA:

Chemical shielding anisotropy

GUI:

Graphical user interface

HOT:

The bacteriophage P1-encoded homolog of θ

PCS:

Pseudocontact shift

RACS:

Residual anisotropic chemical shift

RDC:

Residual dipolar coupling

UTR:

Unique Δχ-tensor representation

References

  • Allegrozzi M, Bertini I, Janik MBL, Lee Y-M, Liu G, Luchinat C (2000) Lanthanide-induced pseudocontact shifts for solution structure refinements of macromolecules in shells up to 40 Å from the metal ion. J Am Chem Soc 122:4154–4161

    Article  Google Scholar 

  • Banci L, Dugad LB, La Mar GN, Keating KA, Luchinat C, Pierattelli R (1992) 1H nuclear magnetic resonance investigation of cobalt(II) substituted carbonic anhydrase. Biophys J 63:530–543

    Article  Google Scholar 

  • Banci L, Bertini I, Bren KL, Cremonini MA, Gray HB, Luchinat C, Turano P (1996) The use of pseudocontact shifts to refine solution structures of paramagnetic metalloproteins: Met80Ala cyano-cytochrome c as an example. J Biol Inorg Chem 1:117–126

    Article  Google Scholar 

  • Banci L, Bertini I, Savellini GG, Romagnoli A, Turano P, Cremonini MA, Luchinat C, Gray HB (1997) Pseudocontact shifts as constraints for energy minimization and molecular dynamics calculations on solution structures of paramagnetic metalloproteins. Proteins Struct Funct Genet 29:68–76

    Google Scholar 

  • Banci L, Bertini I, Cremonini MA, Savellini GG, Luchinat C, Wüthrich K, Güntert P (1998) PSEUDYANA for NMR structure calculation of paramagnetic metalloproteins using torsion angle molecular dynamics. J Biomol NMR 12:553–557

    Article  Google Scholar 

  • Banci L, Bertini I, Cavallaro G, Giachetti A, Luchinat C, Parigi G (2004) Paramagnetism-based restraints for Xplor-NIH. J Biomol NMR 28:249–261

    Article  Google Scholar 

  • Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242

    Article  Google Scholar 

  • Bertini I, Donaire A, Jiménez B, Luchinat C, Parigi G, Piccioli M, Poggi L (2001) Paramagnetism-based versus classical constraints: an analysis of the solution structure of Ca Ln calbindin D9k. J Biomol NMR 21:85–98

    Article  Google Scholar 

  • Bertini I, Luchinat C, Parigi G (2002) Magnetic susceptibility in paramagnetic NMR. Prog NMR Spectrosc 40:249–273

    Article  Google Scholar 

  • Bertini I, Del Bianco C, Gelis I, Katsaros N, Luchinat C, Parigi G, Peana M, Provenzani A, Zoroddu MA (2004) Experimentally exploring the conformational space sampled by domain reorientation in calmodulin. Proc Natl Acad Sci U S A 101:6841–6846

    Article  ADS  Google Scholar 

  • Bugayevskiy LM, Snyder JP (1995) Map projections: a reference manual. Taylor & Francis, London

    Google Scholar 

  • Capozzi F, Cremonini MA, Luchinat C, Sola M (1993) Assignment of pseudo-contact-shifted 1H NMR resonances in the EF site of Yb3+-substituted rabbit parvalbumin through a combination of 2D techniques and magnetic susceptibility tensor determination. Magn Reson Chem 31:S118–S127

    Article  Google Scholar 

  • Clore GM, Gronenborn AM, Bax A (1998) A robust method for determining the magnitude of the fully asymmetric alignment tensor of oriented macromolecules in the absence of structural information. J Magn Reson 133:216–221

    Article  ADS  Google Scholar 

  • Cornilescu G, Bax A (2000) Measurement of proton, nitrogen, and carbonyl chemical shielding anisotropies in a protein dissolved in a dilute liquid crystalline phase. J Am Chem Soc 122:10143–10154

    Article  Google Scholar 

  • DeLano WL (2002) The PyMOL molecular graphics system. Palo Alto, CA, USA

    Google Scholar 

  • Dosset P, Hus J-C, Blackledge M, Marion D (2000) Efficient analysis of macromolecular rotational diffusion from heteronuclear relaxation data. J Biomol NMR 16:23–28

    Article  Google Scholar 

  • Eichmüller C, Skrynnikov NR (2007) Observation of μs time-scale protein dynamics in the presence of Ln3+ ions: application to the N-terminal domain of cardiac troponin C. J Biomol NMR 37:79–95

    Article  Google Scholar 

  • Emerson SD, La Mar GN (1990) NMR determination of the orientation of the magnetic susceptibility tensor in cyanometmyoglobin: a new probe of steric tilt of bound ligand. Biochemistry 29:1556–1566

    Article  Google Scholar 

  • Galassi M, Davies J, Theiler J, Gough B, Jungman G, Booth M, Rossi F (2006) GNU scientific library reference manual. Network Theory Ltd, Bristol

    Google Scholar 

  • Gaponenko V, Sarma SP, Altieri AS, Horita DA, Li J, Byrd RA (2004) Improving the accuracy of NMR structures of large proteins using pseudocontact shifts as long-range restraints. J Biomol NMR 28:205–212

    Article  Google Scholar 

  • Güntert P, Mumenthaler C, Wüthrich K (1997) Torsion angle dynamics for NMR structure calculation with the new program DYANA. J Mol Biol 273:283–298

    Article  Google Scholar 

  • Hess B, Scheek RM (2003) Orientation restraints in molecular dynamics simulations using time and ensemble averaging. J Magn Reson 164:19–27

    Article  ADS  Google Scholar 

  • Jensen MR, Hansen DF, Ayna U, Dagil R, Hass MAS, Christensen HEM, Led JJ (2006) On the use of pseudocontact shifts in the structure determination of metalloproteins. Magn Reson Chem 44:294–301

    Article  Google Scholar 

  • John M, Park AY, Pintacuda G, Dixon NE, Otting G (2005) Weak alignment of paramagnetic proteins warrants correction for residual CSA effects in measurements of pseudocontact shifts. J Am Chem Soc 127:17190–17191

    Article  Google Scholar 

  • John M, Pintacuda G, Park AY, Dixon NE, Otting G (2006) Structure determination of protein–ligand complexes by transferred paramagnetic shifts. J Am Chem Soc 128:12910–12916

    Article  Google Scholar 

  • Keniry MA, Park AY, Owen EA, Hamdan SM, Pintacuda G, Otting G, Dixon NE (2006) Structure of the θ subunit of Escherichia coli DNA polymerase III in complex with the ε subunit. J Bacteriol 188:4464–4473

    Article  Google Scholar 

  • Kirby TW, Harvey S, DeRose EF, Chalov S, Chikova AK, Perrino FW, Schaaper RM, London RE, Pedersen LC (2006) Structure of the Escherichia coli DNA polymerase III ε-HOT proofreading complex. J Biol Chem 281:38466–38471

    Article  Google Scholar 

  • Koradi R, Billeter M, Wüthrich K (1996) MOLMOL: a program for display and analysis of macromolecular structures. J Mol Graphics 14:51–55

    Article  Google Scholar 

  • Krause A (2007) Foundations of GTK + development. Apress. Berkeley, CA, USA

    Google Scholar 

  • Lee L, Sykes BD (1983) Use of lanthanide-induced nuclear magnetic resonance shifts for determination of protein structure in solution: EF calcium binding site of carp parvalbumin. Biochemistry 22:4366–4373

    Article  Google Scholar 

  • Marquardt DW (1963) An algorithm for least-squares estimation of nonlinear parameters. J Soc Ind Appl Math 11:431–441

    Article  MathSciNet  MATH  Google Scholar 

  • Nelder JA, Mead R (1965) A simplex method for function minimization. Comput J 7:308–313

    MATH  Google Scholar 

  • Pintacuda G, John M, Su X-C, Otting G (2007) NMR structure determination of protein–ligand complexes by lanthanide labeling. Acc Chem Res 40:206–212

    Article  Google Scholar 

  • Pintacuda G, Keniry MA, Huber T, Park AY, Dixon NE, Otting G (2004) Fast structure-based assignment of 15N HSQC spectra of selectively 15N-labeled paramagnetic proteins. J Am Chem Soc 126:2963–2970

    Article  Google Scholar 

  • Pintacuda G, Park AY, Keniry MA, Dixon NE, Otting G (2006) Lanthanide labeling offers fast NMR approach to 3D structure determinations of protein–protein complexes. J Am Chem Soc 128:3696–3702

    Article  Google Scholar 

  • Schmitz C, John M, Park AY, Dixon NE, Otting G, Pintacuda G, Huber T (2006) Efficient χ-tensor determination and NH assignment of paramagnetic proteins. J Biomol NMR 35:79–87

    Article  Google Scholar 

  • Schwieters CD, Kuszewski JJ, Tjandra N, Clore GM (2003) The Xplor-NIH NMR molecular structure determination package. J Magn Reson 160:65–73

    Article  ADS  Google Scholar 

  • Schwieters CD, Kuszewski JJ, Clore GM (2006) Using Xplor-NIH for NMR molecular structure determination. Prog NMR Spectrosc 48:47–62

    Article  Google Scholar 

  • Sherry AD, Pascual E (1977) Proton and carbon lanthanide-induced shifts in aqueous alanine. Evidence for structural changes along the lanthanide series. J Am Chem Soc 99:5871–5876

    Article  Google Scholar 

  • Su X-C, McAndrew K, Huber T, Otting G (2008) Lanthanide-binding peptides for NMR measurements of residual dipolar couplings and paramagnetic effects from multiple angles. J Am Chem Soc 130:1681–1687

    Article  Google Scholar 

  • Tolman JR, Flanagan JM, Kennedy MA, Prestegard JH (1995) Nuclear magnetic dipole interactions in field-oriented proteins: Information for structure determination in solution. Proc Natl Acad Sci U S A 92:9279–9283

    Article  ADS  Google Scholar 

  • Valafar H, Prestegard JH (2004) REDCAT: a residual dipolar coupling analysis tool. J Magn Reson 167:228–241

    Article  ADS  Google Scholar 

  • Van der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC (2005) GROMACS: fast, flexible, and free. J Comput Chem 26:1701–1718

    Article  Google Scholar 

  • Veitch NC, Whitford D, Williams RJP (1990) An analysis of pseudocontact shifts and their relationship to structural features of the redox states of cytochrome b5. FEBS Lett 269:297–304

    Article  Google Scholar 

  • Wang X, Srisailam S, Yee AA, Lemak A, Arrowsmith C, Prestegard JH, Tian F (2007) Domain-domain motions in proteins from time-modulated pseudocontact shifts. J Biomol NMR 39:53–61

    Article  Google Scholar 

  • Wei Y, Werner MH (2006) iDC: a comprehensive toolkit for the analysis of residual dipolar couplings for macromolecular structure determination. J Biomol NMR 35:17–25

    Article  Google Scholar 

  • Zweckstetter M, Bax A (2000) Prediction of sterically induced alignment in a dilute liquid crystalline phase: aid to protein structure determination by NMR. J Am Chem Soc 122:3791–3792

    Article  Google Scholar 

Download references

Acknowledgment

Financial support from the Australian Research Council for project grants to G.O and T.H. is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Huber.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmitz, C., Stanton-Cook, M.J., Su, XC. et al. Numbat: an interactive software tool for fitting Δχ-tensors to molecular coordinates using pseudocontact shifts. J Biomol NMR 41, 179–189 (2008). https://doi.org/10.1007/s10858-008-9249-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-008-9249-z

Keywords

Navigation