Advertisement

Plant Tissue Culture: A Battle Horse in the Genome Editing Using CRISPR/Cas9

  • Víctor M. Loyola-Vargas
  • Randy N. Avilez-Montalvo
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1815)

Abstract

Plant tissue culture (PTC) is a set of techniques for culturing cells, tissues, or organs in an aseptic medium with a defined chemical composition, in a controlled environment. Tissue culture, when combined with molecular biology techniques, becomes a powerful tool for the study of metabolic pathways, elucidation of cellular processes, genetic improvement and, through genetic engineering, the generation of cell lines resistant to biotic and abiotic stress, obtaining improved plants of agronomic interest, or studying the complex cellular genome. In this chapter, we analyze in general the use of plant tissue culture, in particular protoplasts and calli, in the implementation of CRISPR/Cas9 technology.

Key words

Calli CRISPR/Cas9 Gene editing Plant tissue culture Protoplasts 

Notes

Acknowledgments

The work from VMLV laboratory was supported by a grant received from the National Council for Science and Technology (CONACyT, Frontiers of Sciences, 1515).

References

  1. 1.
    Loyola-Vargas VM, De-la-Peña C, Galaz-Ávalos RM et al (2008) Plant tissue culture. In: Walker JM, Rapley R (eds) Molecular biomethods handbook. Humana Press, Totowa, pp 875–904. https://doi.org/10.1007/978-1-60327-375-6_50 CrossRefGoogle Scholar
  2. 2.
    Urnov FD, Rebar EJ, Holmes MC et al (2010) Genome editing with engineered zinc finger nucleases. Nat Rev Genet 11:636–646. https://doi.org/10.1038/nrg2842 CrossRefPubMedGoogle Scholar
  3. 3.
    Cermak T, Doyle EL, Christian M et al (2011) Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res 39:e82. https://doi.org/10.1093/nar/gkr218 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Tsutsui H, Higashiyama T (2017) pKAMA-ITACHI vectors for highly efficient CRISPR/Cas9-mediated gene knockout in Arabidopsis thaliana. Plant Cell Physiol 58:46–56. https://doi.org/10.1093/pcp/pcw191 CrossRefPubMedGoogle Scholar
  5. 5.
    Shalem O, Sanjana NE, Hartenian E et al (2014) Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343:84–87. https://doi.org/10.1126/science.1247005 CrossRefPubMedGoogle Scholar
  6. 6.
    Komaroff AL (2017) Gene editing using CRISPR: why the excitement? JAMA 318:699–700. https://doi.org/10.1001/jama.2017.10159 CrossRefPubMedGoogle Scholar
  7. 7.
    Doudna JA, Charpentier E (2014) The new frontier of genome engineering with CRISPR-Cas9. Science 346:1258096-1–1258096-9. https://doi.org/10.1126/science.1258096 CrossRefGoogle Scholar
  8. 8.
    Yamamoto T (2015) Targeted genome editing using site-specific nucleases. ZFNs, TALENs, and the CRISPR/Cas9 system. Springer, TokyoGoogle Scholar
  9. 9.
    Bannikov AV, Lavrov AV (2017) CRISPR/CAS9, the king of genome editing tools. Mol Biol 51:514–525. https://doi.org/10.1134/S0026893317040033 CrossRefGoogle Scholar
  10. 10.
    Yin K, Gao C, Qiu JL (2017) Progress and prospects in plant genome editing. Nat Plants 3:17107. https://doi.org/10.1038/nplants.2017.107 CrossRefPubMedGoogle Scholar
  11. 11.
    Mojica FJM, Díez-Villaseñor C, García-Martínez J et al (2005) Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol 60:174–182. https://doi.org/10.1007/s00239-004-0046-3 CrossRefPubMedGoogle Scholar
  12. 12.
    Gasiunas G, Barrangou R, Horvath P et al (2012) Cas-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci U S A 109:E2579–E2586. https://doi.org/10.1073/pnas.1208507109 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Nishimasu H, Ran FA, Hsu PD et al (2014) Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 156:935–949. https://doi.org/10.1016/j.cell.2014.02.001 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Jinek M, Chylinski K, Fonfara I et al (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821. https://doi.org/10.1126/science.1225829 CrossRefGoogle Scholar
  15. 15.
    Feng Z, Y Mao NX et al (2014) Multigeneration analysis reveals the inheritance, specificity, and patterns of CRISPR/Cas-induced gene modifications in Arabidopsis. Proc Natl Acad Sci U S A 111:4632–4637. https://doi.org/10.1073/pnas.1400822111 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Shankaran SS, Dahlem TJ, Bisgrove BW et al (2017) CRISPR/Cas9-directed gene editing for the generation of loss-of-function mutants in high-throughput zebrafish F0 screens. Curr Protoc Mol Biol 119:31.9.1–31.9.22. https://doi.org/10.1002/cpmb.42 CrossRefGoogle Scholar
  17. 17.
    Liang Z, Zong Y, Gao C (2016) An efficient targeted mutagenesis system using CRISPR/Cas in monocotyledons. Curr Protoc Plant Biol 1:329–344. https://doi.org/10.1002/cppb.20021 CrossRefGoogle Scholar
  18. 18.
    Gao J, Wang G, Ma S et al (2015) CRISPR/Cas9-mediated targeted mutagenesis in Nicotiana tabacum. Plant Mol Biol 87:99–110. https://doi.org/10.1007/s11103-014-0263-0 CrossRefPubMedGoogle Scholar
  19. 19.
    Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157:1262–1278. https://doi.org/10.1016/j.cell.2014.05.010 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Makarova KS, Haft DH, Barrangou R et al (2011) Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol 9:467–477. https://doi.org/10.1038/nrmicro2577 CrossRefPubMedGoogle Scholar
  21. 21.
    Liu X, S Wu JX et al (2017) Application of CRISPR/Cas9 in plant biology. Acta Pharm Sin B 7:292–302. https://doi.org/10.1016/j.apsb.2017.01.002 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Feng Z, Zhang B, Ding W et al (2013) Efficient genome editing in plants using a CRISPR/Cas system. Cell Res 23:1229–1232. https://doi.org/10.1038/cr.2013.114 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Mao Y, Zhang H, Xu N et al (2013) Application of the CRISPR-Cas system for efficient genome engineering in plants. Mol Plant 6:2008–2011. https://doi.org/10.1093/mp/sst121 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Osakabe Y, Osakabe K (2015) Genome editing in higher plants. In: Yamamoto T (ed) Targeted genome editing using site-specific nucleases: ZFNs, TALENs, and the CRISPR/Cas9 system. Springer, Tokyo, pp 197–205. https://doi.org/10.1007/978-4-431-55227-7_13 CrossRefGoogle Scholar
  25. 25.
    Miao J, Guo D, Zhang J et al (2013) Targeted mutagenesis in rice using CRISPR-Cas system. Cell Res 23:1233–1236. https://doi.org/10.1038/cr.2013.123 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Xing HL, Dong L, Wang ZP et al (2014) A CRISPR/Cas9 toolkit for multiplex genome editing in plants. BMC Plant Biol 14:327. https://doi.org/10.1186/s12870-014-0327-y CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Korotkova AM, Gerasimova SV, Shumny VK et al (2017) Crop genes modified using the CRISPR/Cas system. Russ J Gen Appl Res 7:822–832. https://doi.org/10.1134/S2079059717050124 CrossRefGoogle Scholar
  28. 28.
    Li X, Xie Y, Zhu Q et al (2017) Targeted genome editing in genes and cis-regulatory regions improves qualitative and quantitative traits in crops. Mol Plant 10:1368–1370. https://doi.org/10.1016/j.molp.2017.10.009 CrossRefPubMedGoogle Scholar
  29. 29.
    Arora L, Narula A (2017) Gene editing and crop improvement using CRISPR-Cas9 system. Front Plant Sci 8:1932. https://doi.org/10.3389/fpls.2017.01932 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Baltes NJ, Gil-Humanes J, Voytas DF (2017) Genome engineering and agriculture: opportunities and challenges. In: PWaB D (ed) Progress in molecular biology and translational science gene editing in plants. Academic Press, Cambridge, pp 1–26. https://doi.org/10.1016/bs.pmbts.2017.03.011 CrossRefGoogle Scholar
  31. 31.
    Chilcoat D, Liu ZB, Sander J (2017) Use of CRISPR/Cas9 for crop improvement in maize and soybean. In: PWaB D (ed) Progress in molecular biology and translational science gene editing in plants. Academic Press, Cambridge, pp 27–46. https://doi.org/10.1016/bs.pmbts.2017.04.005 CrossRefGoogle Scholar
  32. 32.
    Rouet P, Smih F, Jasin M (1994) Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Mol Cell Biol 14:8096–8106. https://doi.org/10.1128/MCB.14.12.8096 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Puchta H, Dujon B, Hohn B (1996) Two different but related mechanisms are used in plants for the repair of genomic double-strand breaks by homologous recombination. Proc Natl Acad Sci U S A 93:5055–5060CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Puchta H, Fauser F (2014) Synthetic nucleases for genome engineering in plants: prospects for a bright future. Plant J 78:727–741. https://doi.org/10.1111/tpj.12338 CrossRefPubMedGoogle Scholar
  35. 35.
    Puchta H (2017) Applying CRISPR/Cas for genome engineering in plants: the best is yet to come. Curr Opin Plant Biol 36:1–8. https://doi.org/10.1016/j.pbi.2016.11.011 CrossRefPubMedGoogle Scholar
  36. 36.
    Jiang W, Zhou H, Bi H et al (2013) Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res 41:e18810. https://doi.org/10.1093/nar/gkt780 CrossRefGoogle Scholar
  37. 37.
    Li JF, Norville JE, Aach J et al (2013) Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol 31:688–691. https://doi.org/10.1038/nbt.2654 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Nekrasov V, Staskawicz B, Weigel D et al (2013) Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat Biotechnol 31:691–693. https://doi.org/10.1038/nbt.2655 CrossRefPubMedGoogle Scholar
  39. 39.
    Shan Q, Wang Y, Li J et al (2013) Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol 31:686–688. https://doi.org/10.1038/nbt.2650 CrossRefPubMedGoogle Scholar
  40. 40.
    Upadhyay SK, Kumar J, Alok A et al (2013) RNA-guided genome editing for target gene mutations in wheat. G3 3:2233–2238. https://doi.org/10.1534/g3.113.008847 CrossRefPubMedGoogle Scholar
  41. 41.
    Xie K, Yang Y (2013) RNA-guided genome editing in plants using a CRISPR-Cas system. Mol Plant 6:1975–1983. https://doi.org/10.1093/mp/sst119 CrossRefPubMedGoogle Scholar
  42. 42.
    Belhaj K, Chaparro-Garcia A, Kamoun S et al (2013) Plant genome editing made easy: targeted mutagenesis in model and crop plants using the CRISPR/Cas system. Plant Methods 9:1–10. https://doi.org/10.1186/1746-4811-9-39 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Gao X, Chen J, Dai X et al (2016) An effective strategy for reliably isolating heritable and Cas9-free Arabidopsis mutants generated by CRISPR/Cas9-mediated genome editing. Plant Physiol 171:1794–1800. https://doi.org/10.1104/pp.16.00663 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Mao Y, Zhang Z, Feng Z et al (2016) Development of germ-line-specific CRISPR-Cas9 systems to improve the production of heritable gene modifications in Arabidopsis. Plant Biotechnol J 14:519–532. https://doi.org/10.1111/pbi.12468 CrossRefPubMedGoogle Scholar
  45. 45.
    Peterson BA, Haak DC, Nishimura MT et al (2016) Genome-wide assessment of efficiency and specificity in CRISPR/Cas9 mediated multiple site targeting in Arabidopsis. PLoS One 11:e0162169. https://doi.org/10.1371/journal.pone.0162169 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Ji X, Zhang H, Zhang Y et al (2015) Establishing a CRISPR-Cas-like immune system conferring DNA virus resistance in plants. Nat Plants 1:15144. https://doi.org/10.1038/nplants.2015.144 CrossRefPubMedGoogle Scholar
  47. 47.
    Baltes NJ, Hummel AW, Konecna E et al (2015) Conferring resistance to geminiviruses with the CRISPR-Cas prokaryotic immune system. Nat Plants 1:15145. https://doi.org/10.1038/nplants.2015.145 CrossRefGoogle Scholar
  48. 48.
    Zhang H, Zhang J, Wei P et al (2014) The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnol J 12:797–807. https://doi.org/10.1111/pbi.12200 CrossRefPubMedGoogle Scholar
  49. 49.
    Xu R, Qin R, Li H et al (2017) Generation of targeted mutant rice using a CRISPR-Cpf1 system. Plant Biotechnol J 15:713–717. https://doi.org/10.1111/pbi.12669 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Li M, Li X, Zhou Z et al (2016) Reassessment of the four yield-related genes Gn1a, DEP1, GS3, and IPA1 in rice using a CRISPR/Cas9 system. Front Plant Sci 7:377. https://doi.org/10.3389/fpls.2016.00377 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Ma J, Chen J, Wang M et al (2018) Disruption of OsSEC3A increases the content of salicylic acid and induces plant defense responses in rice. J Exp Bot. https://doi.org/10.1093/jxb/erx458
  52. 52.
    Wang Y, Cheng X, Shan Q et al (2014) Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol 32:947–951. https://doi.org/10.1038/nbt.2969 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Zhang Y, Liang Z, Zong Y et al (2016) Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nat Commun 7:12617. https://doi.org/10.1038/ncomms12617 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Char SN, Neelakandan AK, Nahampun H et al (2017) An Agrobacterium-delivered CRISPR/Cas9 system for high-frequency targeted mutagenesis in maize. Plant Biotechnol J 15:257–268. https://doi.org/10.1111/pbi.12611 CrossRefPubMedGoogle Scholar
  55. 55.
    Liang Z, Zhang K, Chen K et al (2014) Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. J Genet Genomics 41:63–68. https://doi.org/10.1016/j.jgg.2013.12.001 CrossRefPubMedGoogle Scholar
  56. 56.
    Shi J, Gao H, Wang H et al (2017) ARGOS8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnol J 15:207–216. https://doi.org/10.1111/pbi.12603 CrossRefPubMedGoogle Scholar
  57. 57.
    Fan D, Liu T, Li C et al (2015) Efficient CRISPR/Cas9-mediated targeted mutagenesis in Populus in the first generation. Sci Rep 5:12217. https://doi.org/10.1038/srep12217 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Jia H, Wang N (2014) Targeted genome editing of sweet orange using Cas9/sgRNA. PLoS One 9:e93806. https://doi.org/10.1371/journal.pone.0093806 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Chandrasekaran J, Brumin M, Wolf D et al (2016) Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology. Mol Plant Pathol 17:1140–1153. https://doi.org/10.1111/mpp.12375 CrossRefPubMedGoogle Scholar
  60. 60.
    Peng A, Chen S, Lei T et al (2017) Engineering canker-resistant plants through CRISPR/Cas9-targeted editing of the susceptibility gene CsLOB1 promoter in citrus. Plant Biotechnol J 15:1509–1519. https://doi.org/10.1111/pbi.12733 CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Jacobs TB, LaFayette PR, Schmitz RJ et al (2015) Targeted genome modifications insoybean with CRISPR/Cas9. BMC Biotechnol 15:1–10. https://doi.org/10.1186/s12896-015-0131-2 CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Li Z, Liu ZB, Xing A et al (2015) Cas9-guide RNA directed genome editing in soybean. Plant Physiol 169:960–970. https://doi.org/10.1104/pp.15.00783 CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Pan C, Ye L, Qin L et al (2016) CRISPR/Cas9-mediated efficient and heritable targeted mutagenesis in tomato plants in the first and later generations. Sci Rep 6:24765. https://doi.org/10.1038/srep24765 CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Ali Z, Abulfaraj A, Idris A et al (2015) CRISPR/Cas9-mediated viral interference in plants. Genome Biol 16:238. https://doi.org/10.1186/s13059-015-0799-6 CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Soyk S, Muller NA, Park SJ et al (2017) Variation in the flowering gene SELF PRUNING 5G promotes day-neutrality and early yield in tomato. Nat Genet 49:162–168. https://doi.org/10.1038/ng.3733 CrossRefPubMedGoogle Scholar
  66. 66.
    Ito Y, Nishizawa-Yokoi A, Endo M et al (2015) CRISPR/Cas9-mediated mutagenesis of the RIN locus that regulates tomato fruit ripening. Biochem Biophys Res Commun 467:76–82. https://doi.org/10.1016/j.bbrc.2015.09.117 CrossRefPubMedGoogle Scholar
  67. 67.
    Ueta R, Abe C, Watanabe T et al (2017) Rapid breeding of parthenocarpic tomato plants using CRISPR/Cas9. Sci Rep 7:507. https://doi.org/10.1038/s41598-017-00501-4 CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Nekrasov V, Wang C, Win J et al (2017) Rapid generation of a transgene-free powdery mildew resistant tomato by genome deletion. Sci Rep 7:482. https://doi.org/10.1038/s41598-017-00578-x CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Butler NM, Atkins PA, Voytas DF et al (2015) Generation and inheritance of targeted mutations in potato (Solanum tuberosum L.) using the CRISPR/Cas system. PLoS One 10:e0144591. https://doi.org/10.1371/journal.pone.0144591 CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Nishitani C, Hirai N, Komori S et al (2016) Efficient genome editing in apple using a CRISPR/Cas9 system. Sci Rep 6:31481. https://doi.org/10.1038/srep31481 CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Lawrenson T, Shorinola O, Stacey N et al (2015) Induction of targeted, heritable mutations in barley and Brassica oleracea using RNA-guided Cas9 nuclease. Genome Biol 16:258. https://doi.org/10.1186/s13059-015-0826-7 CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Yang H, Wu JJ, Tang T et al (2017) CRISPR/Cas9-mediated genome editing efficiently creates specific mutations at multiple loci using one sgRNA in Brassica napus. Sci Rep 7:7489. https://doi.org/10.1038/s41598-017-07871-9 CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Sugano SS, Shirakawa M, Takagi J et al (2014) CRISPR/Cas9-mediated targeted mutagenesis in the liverwort Marchantia polymorpha L. Plant Cell Physiol 55:475–481. https://doi.org/10.1093/pcp/pcu014 CrossRefPubMedGoogle Scholar
  74. 74.
    Morineau C, Bellec Y, Tellier F et al (2017) Selective gene dosage by CRISPR-Cas9 genome editing in hexaploid Camelina sativa. Plant Biotechnol J 15:729–739. https://doi.org/10.1111/pbi.12671 CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Jiang WZ, Henry IM, Lynagh PG et al (2017) Significant enhancement of fatty acid composition in seeds of the allohexaploid, Camelina sativa, using CRISPR/Cas9 gene editing. Plant Biotechnol J 15:648–657. https://doi.org/10.1111/pbi.12663 CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Nejat N, Rookes J, Mantri NL et al (2017) Plant-pathogen interactions: toward development of next-generation disease-resistant plants. Crit Rev Biotechnol 37:229–237. https://doi.org/10.3109/07388551.2015.1134437 CrossRefPubMedGoogle Scholar
  77. 77.
    Shen L, Wang C, Fu Y et al (2018) QTL editing confers opposing yield performance in different rice varieties. J Int Plant Biol 60(2):89–93. https://doi.org/10.1111/jipb.12501 CrossRefGoogle Scholar
  78. 78.
    Yu Q, Wang B, Li N et al (2017) CRISPR/Cas9-induced targeted mutagenesis and gene replacement to generate long-shelf life tomato lines. Sci Rep 7:11874. https://doi.org/10.1038/s41598-017-12262-1 CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Jia H, Orbovic V, Jones JB et al (2016) Modification of the PthA4 effector binding elements in type I CsLOB1 promoter using Cas9/sgRNA to produce transgenic Duncan grapefruit alleviating XccDpthA4:dCsLOB1.3 infection. Plant Biotechnol J 14:1291–1301. https://doi.org/10.1111/pbi.12495 CrossRefPubMedGoogle Scholar
  80. 80.
    Zhou JP, Deng K, Cheng Y et al (2017) CRISPR-Cas9 based genome editing reveals new insights into microRNA function and regulation in rice. Front Plant Sci 8:1598. https://doi.org/10.3389/fpls.2017.01598 CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Puchta H (2016) Using CRISPR/Cas in three dimensions: towards synthetic plant genomes, transcriptomes and epigenomes. Plant J 87:5–15. https://doi.org/10.1111/tpj.13100 CrossRefPubMedGoogle Scholar
  82. 82.
    Thakore PI, D'Ippolito AM, Song L et al (2015) Highly specific epigenome editing by CRISPR-Cas9 repressors for silencing of distal regulatory elements. Nat Meth 12:1143–1149. https://doi.org/10.1038/nmeth.3630 CrossRefGoogle Scholar
  83. 83.
    Kaya H, Mikami M, Endo A et al (2016) Highly specific targeted mutagenesis in plants using Staphylococcus aureus Cas9. Sci Rep 6:26871. https://doi.org/10.1038/srep26871
  84. 84.
    Steinert J, Schiml S, Fauser F et al (2015) Highly efficient heritable plant genome engineering using Cas9 orthologues from Streptococcus thermophilus and Staphylococcus aureus. Plant J 84:1295–1305. https://doi.org/10.1111/tpj.13078 CrossRefPubMedGoogle Scholar
  85. 85.
    Zetsche B, Gootenberg J, Abudayyeh O et al (2015) Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163:759–771. https://doi.org/10.1016/j.cell.2015.09.038 CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Tang X, Lowder LG, Zhang T et al (2017) A CRISPR-Cpf1 system for efficient genome editing and transcriptional repression in plants. Nat Plants 3:17018. https://doi.org/10.1038/nplants.2017.18 CrossRefPubMedGoogle Scholar
  87. 87.
    Ancona V, Barra Caracciolo A, Grenni P et al (2017) Plant-assisted bioremediation of a historically PCB and heavy metal-contaminated area in southern Italy. New Biotechnol 38:65–73. https://doi.org/10.1016/j.nbt.2016.09.006 CrossRefGoogle Scholar
  88. 88.
    Sobariu DL, Fertu DIT, Diaconu M et al (2017) Rhizobacteria and plant symbiosis in heavy metal uptake and its implications for soil bioremediation. New Biotechnol 39:125–134. https://doi.org/10.1016/j.nbt.2016.09.002 CrossRefGoogle Scholar
  89. 89.
    Vaghari H, Jafarizadeh-Malmiri H, Anarjan N et al (2017) Hairy root culture: a biotechnological approach to produce valuable metabolites. In: Meena VS, Mishra PK, Bisht JK et al (eds) Agriculturally important microbes for sustainable agriculture, Plant-soil-microbe nexus, vol I. Springer, Singapore, pp 131–160. https://doi.org/10.1007/978-981-10-5589-8_7 CrossRefGoogle Scholar
  90. 90.
    Vázquez-Flota FA, Monforte-González M, de Lourdes Miranda-Ham M (2016) Application of somatic embryogenesis to secondary metabolite-producing plants. In: Loyola-Vargas VM, Ochoa-Alejo N (eds) Somatic embryogenesis: fundamental aspects and applications. Springer, Cham, pp 455–469. https://doi.org/10.1007/978-3-319-33705-0_25 CrossRefGoogle Scholar
  91. 91.
    Loyola-Vargas VM, Ochoa-Alejo N (2012) An introduction to plant cell culture: the future ahead. In: Loyola-Vargas VM, Ochoa-Alejo N (eds) Plant cell culture protocols, methods in molecular biology, vol 877. Humana Press, Heidelberg, pp 1–8. https://doi.org/10.1007/978-1-61779-818-4_1 CrossRefGoogle Scholar
  92. 92.
    Loyola-Vargas VM, Ochoa-Alejo N (2016) Somatic embryogenesis. Fundamental aspects and applications. Springer, SwitzerlandCrossRefGoogle Scholar
  93. 93.
    Shen J, Fu J, Ma J et al (2014) Isolation, culture, and transient transformation of plant protoplasts. Curr Protoc Cell Biol 63:2.8.1–2.8.17. https://doi.org/10.1002/0471143030.cb0208s63 CrossRefGoogle Scholar
  94. 94.
    Davey MR, Anthony P, Power JB et al (2005) Plant protoplasts: status and biotechnological perspectives. Biotechnol Adv 23:131–171. https://doi.org/10.1016/j.biotechadv.2004.09.008 CrossRefPubMedGoogle Scholar
  95. 95.
    Cocking EC (2000) Plant protoplasts. In Vitro Cell Dev Biol Plant 36:77–82. https://doi.org/10.1007/s11627-000-0018-2 CrossRefGoogle Scholar
  96. 96.
    Davey MR, Cocking EC, Freeman J et al (1980) Transformation of petunia protoplasts by isolated Agrobacterium plasmids. Plant Sci Lett 18:307–313. https://doi.org/10.1016/0304-4211(80)90121-2 CrossRefGoogle Scholar
  97. 97.
    Ahmad MM, Ali A, Siddiqui S et al (2017) Methods in transgenic technology. In: Abdin MZ, Kiran U, Kamaluddin et al (eds) Plant biotechnology: principles and applications. Springer, Singapore, pp 93–115. https://doi.org/10.1007/978-981-10-2961-5_4 CrossRefGoogle Scholar
  98. 98.
    Phillips GC (2004) In vitro morphogenesis in plants - recent advances. In Vitro Cell Dev Biol Plant 40:342–345. https://doi.org/10.1079/IVP2004555 CrossRefGoogle Scholar
  99. 99.
    Quiroz-Figueroa FR, Rojas-Herrera R, Galaz-Ávalos RM et al (2006) Embryo production through somatic embryogenesis can be used to study cell differentiation in plants. Plant Cell Tissue Org 86:285–301. https://doi.org/10.1007/s11240-006-9139-6 CrossRefGoogle Scholar
  100. 100.
    Gaj MD (2004) Factors influencing somatic embryogenesis induction and plant regeneration with particular reference to Arabidopsis thaliana (L.) Heynh. Plant Growth Regul 43:27–47. https://doi.org/10.1023/B:GROW.0000038275.29262.fb CrossRefGoogle Scholar
  101. 101.
    Cabrera-Ponce JL, López L, León-Ramírez CG et al (2015) Stress induced acquisition of somatic embryogenesis in common bean Phaseolus vulgaris L. Protoplasma 252:559–570. https://doi.org/10.1007/s00709-014-0702-4 CrossRefPubMedGoogle Scholar
  102. 102.
    Ochatt S, Revilla M (2016) From stress to embryos: some of the problems for induction and maturation of somatic embryos. In: Germanà MA, Lambardi M (eds) In vitro embryogenesis in higher plants. Springer, New York, pp 523–536. https://doi.org/10.1007/978-1-4939-3061-6_31 CrossRefGoogle Scholar
  103. 103.
    Salo HM, Sarjala T, Jokela A et al (2016) Moderate stress responses and specific changes in polyamine metabolism characterize scots pine somatic embryogenesis. Tree Physiol 36:292–402. https://doi.org/10.1093/treephys/tpv136 CrossRefGoogle Scholar
  104. 104.
    Krishnan SRS, Siril EA (2017) Auxin and nutritional stress coupled somatic embryogenesis in Oldenlandia umbellata L. Physiol Mol Biol Plants 23:471–475. https://doi.org/10.1007/s12298-017-0425-z CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Loyola-Vargas VM, Ochoa-Alejo N (2016) Somatic embryogenesis. An overview. In: Loyola-Vargas VM, Ochoa-Alejo N (eds) Somatic embryogenesis. Fundamental aspects and applications. Springer, Switzerland, pp 1–10. https://doi.org/10.1007/978-3-319-33705-0_1 CrossRefGoogle Scholar
  106. 106.
    Canché-Moor RLR, Kú-González A, Burgeff C et al (2006) Genetic transformation of Coffea canephora by vacuum infiltration. Plant Cell Tissue Org 84:373–377. https://doi.org/10.1007/s11240-005-9036-4 CrossRefGoogle Scholar
  107. 107.
    Arroyo-Herrera A, Ku-Gonzalez A, Canche-Moo R et al (2008) Expression of WUSCHEL in Coffea canephora causes ectopic morphogenesis and increases somatic embryogenesis. Plant Cell Tissue Org 94:171–180. https://doi.org/10.1007/s11240-008-9401-1 CrossRefGoogle Scholar
  108. 108.
    Bouchabké-Coussa O, Obellianne M, Linderme D et al (2013) Wuschel overexpression promotes somatic embryogenesis and induces organogenesis in cotton (Gossypium hirsutum L.) tissues cultured in vitro. Plant Cell Rep 32:675–686. https://doi.org/10.1007/s00299-013-1402-9 CrossRefPubMedGoogle Scholar
  109. 109.
    Ochoa-Alejo N (2016) The uses of somatic embryogenesis for genetic transformation. In: Loyola-Vargas VM, Ochoa-Alejo N (eds) Somatic embryogenesis: fundamental aspects and applications. Springer, Cham, pp 415–434. https://doi.org/10.1007/978-3-319-33705-0_23 CrossRefGoogle Scholar
  110. 110.
    Ikeuchi M, Ogawa Y, Iwase A et al (2016) Plant regeneration: cellular origins and molecular mechanisms. Development 143:1442–1451. https://doi.org/10.1242/dev.134668 CrossRefPubMedGoogle Scholar
  111. 111.
    Woo JW, Kim J, Kwon SI et al (2015) DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nat Biotechnol 33:1162–1164. https://doi.org/10.1038/nbt.3389 CrossRefPubMedGoogle Scholar
  112. 112.
    Shan Q, Wang Y, Li J et al (2014) Genome editing in rice and wheat using the CRISPR/Cas system. Nat Prot 9:2395–2410. https://doi.org/10.1038/nprot.2014.157 CrossRefGoogle Scholar
  113. 113.
    Zhou H, Liu B, Weeks DP et al (2014) Large chromosomal deletions and heritable small genetic changes induced by CRISPR/Cas9 in rice. Nucleic Acids Res 42:10903–10914. https://doi.org/10.1093/nar/gku806 CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Cermák T, Curtin SJ, Gil-Humanes J et al (2017) A multipurpose toolkit to enable advanced genome engineering in plants. Plant Cell 29:1196–1217. https://doi.org/10.1105/tpc.16.00922
  115. 115.
    Gil-Humanes J, Wang Y, Liang Z et al (2017) High-efficiency gene targeting in hexaploid wheat using DNA replicons and CRISPR/Cas9. Plant J 89:1251–1262. https://doi.org/10.1111/tpj.13446 CrossRefPubMedGoogle Scholar
  116. 116.
    Kim D, Alptekin B, Budak H (2018) CRISPR/Cas9 genome editing in wheat. Funct Integr Genomics 18:31–41. https://doi.org/10.1007/s10142-017-0572-x CrossRefPubMedGoogle Scholar
  117. 117.
    Liang Z, Chen K, Li T et al (2017) Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nat Commun 8:14261. https://doi.org/10.1038/ncomms14261 CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Wang Y, Zong Y, Gao C (2017) Targeted mutagenesis in hexaploid bread wheat using the TALEN and CRISPR/Cas systems. In: Bhalla PL, Singh MB (eds) Wheat biotechnology: methods and protocols. Springer, New York, pp 169–185. https://doi.org/10.1007/978-1-4939-7337-8_11 CrossRefGoogle Scholar
  119. 119.
    Zhu J, Song N, Sun S et al (2016) Efficiency and inheritance of targeted mutagenesis in maize using CRISPR-Cas9. J Genet Genomics 43:25–36. https://doi.org/10.1016/j.jgg.2015.10.006 CrossRefPubMedGoogle Scholar
  120. 120.
    Malnoy M, Viola R, Jung MH et al (2016) DNA-free genetically edited grapevine and apple protoplast using CRISPR/Cas9 ribonucleoproteins. Front Plant Sci 7:1904. https://doi.org/10.3389/fpls.2016.01904 CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Subburaj S, Chung SJ, Lee C et al (2016) Site-directed mutagenesis in Petunia x hybrida protoplast system using direct delivery of purified recombinant Cas9 ribonucleoproteins. Plant Cell Rep 35:1535–1544. https://doi.org/10.1007/s00299-016-1937-7 CrossRefPubMedGoogle Scholar
  122. 122.
    Xu C, Liberatore KL, MacAlister CA et al (2015) A cascade of arabinosyltransferases controls shoot meristem size in tomato. Nat Genet 47:784–792. https://doi.org/10.1038/ng.3309 CrossRefPubMedGoogle Scholar
  123. 123.
    Andersson M, Turesson H, Nicolia A et al (2017) Efficient targeted multiallelic mutagenesis in tetraploid potato (Solanum tuberosum) by transient CRISPR-Cas9 expression in protoplasts. Plant Cell Rep 36:117–128. https://doi.org/10.1007/s00299-016-2062-3 CrossRefPubMedGoogle Scholar
  124. 124.
    Xu R, Li H, Qin R et al (2014) Gene targeting using the Agrobacterium tumefaciens-mediated CRISPR-Cas system in rice. Rice 7:5. https://doi.org/10.1186/s12284-014-0005-6 CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Baysal C, Bortesi L, Zhu C et al (2016) CRISPR/Cas9 activity in the rice OsBEIIb gene does not induce off-target effects in the closely related paralog OsBEIIa. Mol Breed 36:108. https://doi.org/10.1007/s11032-016-0533-4 CrossRefGoogle Scholar
  126. 126.
    Li J, Du Y Sun J et al (2017) Generation of targeted point mutations in rice by a modified CRISPR/Cas9 system. Mol Plant 10:526–529. https://doi.org/10.1016/j.molp.2016.12.001 CrossRefPubMedGoogle Scholar
  127. 127.
    Minkenberg B, Xie K, Yang Y (2017) Discovery of rice essential genes by characterizing a CRISPR-edited mutation of closely related rice MAP kinase genes. Plant J 89:636–648. https://doi.org/10.1111/tpj.13399 CrossRefPubMedGoogle Scholar
  128. 128.
    Holme IB, Wendt T, Gil-Humanes J et al (2017) Evaluation of the mature grain phytase candidate HvPAPhy_a gene in barley (Hordeum vulgare L.) using CRISPR/Cas9 and TALENs. Plant Mol Biol 95:111–121. https://doi.org/10.1007/s11103-017-0640-6 CrossRefPubMedGoogle Scholar
  129. 129.
    Nonaka S, Arai C, Takayama M et al (2017) Efficient increase of g-aminobutyric acid (GABA) content in tomato fruits by targeted mutagenesis. Sci Rep 7:7057. https://doi.org/10.1038/s41598-017-06400-y CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Svitashev S, Schwartz C, Lenderts B et al (2016) Genome editing in maize directed by CRISPR-Cas9 ribonucleoprotein complexes. Nat Commun 7:13274. https://doi.org/10.1038/ncomms13274 CrossRefPubMedPubMedCentralGoogle Scholar
  131. 131.
    Odipio J, Alicai T, Ingelbrecht I et al (2017) Efficient CRISPR/Cas9 genome editing of phytoene desaturase in cassava. Front Plant Sci 8:1780. https://doi.org/10.3389/fpls.2017.01780
  132. 132.
    Brooks C, Nekrasov V, Lippman ZB et al (2014) Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR-associated9 system. Plant Physiol 166:1292–1297. https://doi.org/10.1104/pp.114.247577 CrossRefPubMedPubMedCentralGoogle Scholar
  133. 133.
    Xu C, Park SJ, Van Eck J et al (2016) Control of inflorescence architecture in tomato by BTB/POZ transcriptional regulators. Genes Dev 30:2048–2061. https://doi.org/10.1101/gad.288415.116 CrossRefPubMedPubMedCentralGoogle Scholar
  134. 134.
    Wang L, Chen L, Li R et al (2017) Reduced drought tolerance by CRISPR/Cas9-mediated SlMAPK3 mutagenesis in tomato plants. J Agric Food Chem 65:8674–8682. https://doi.org/10.1021/acs.jafc.7b02745 CrossRefPubMedGoogle Scholar
  135. 135.
    Wang S, Zhang S, Wang W et al (2015) Efficient targeted mutagenesis in potato by the CRISPR/Cas9 system. Plant Cell Rep 34:1473–1476. https://doi.org/10.1007/s00299-015-1816-7 CrossRefPubMedGoogle Scholar
  136. 136.
    Zhang B, Yang X, Yang C et al (2016) Exploiting the CRISPR/Cas9 system for targeted genome mutagenesis in petunia. Sci Rep 6:20315. https://doi.org/10.1038/srep20315 CrossRefPubMedPubMedCentralGoogle Scholar
  137. 137.
    Braatz J, Harloff HJ, Mascher M et al (2017) CRISPR-Cas9 targeted mutagenesis leads to simultaneous modification of different homoeologous gene copies in polyploid oilseed rape (Brassica napus L.). Plant Physiol 174(2):935–942. https://doi.org/10.1104/pp.17.00426 CrossRefPubMedPubMedCentralGoogle Scholar
  138. 138.
    Jia H, Zhang Y, Orbovi-ç V et al (2017) Genome editing of the disease susceptibility gene CsLOB1 in citrus confers resistance to citrus canker. Plant Biotechnol J 15:817–823. https://doi.org/10.1111/pbi.12677 CrossRefPubMedPubMedCentralGoogle Scholar
  139. 139.
    Ron M, Kajala K, Pauluzzi G et al (2014) Hairy root transformation using Agrobacterium rhizogenes as a tool for exploring cell type-specific gene expression and function using tomato as a model. Plant Physiol 166:455–469. https://doi.org/10.1104/pp.114.239392 CrossRefPubMedPubMedCentralGoogle Scholar
  140. 140.
    Michno JM, Wang X, Liu J et al (2015) CRISPR/Cas mutagenesis of soybean and Medicago truncatula using a new web-tool and a modified Cas9 enzyme. GM Crops Food 6:243–252. https://doi.org/10.1080/21645698.2015.1106063 CrossRefPubMedPubMedCentralGoogle Scholar
  141. 141.
    Kirchner TW, Niehaus M, Debener T et al (2017) Efficient generation of mutations mediated by CRISPR/Cas9 in the hairy root transformation system of Brassica carinata. PLoS One 12:e0185429. https://doi.org/10.1371/journal.pone.0185429 CrossRefPubMedPubMedCentralGoogle Scholar
  142. 142.
    Watanabe K, Kobayashi A, Endo M et al (2017) CRISPR/Cas9-mediated mutagenesis of the dihydroflavonol-4-reductase-B (DFR-B) locus in the Japanese morning glory Ipomoea (Pharbitis) nil. Sci Rep 7:10028. https://doi.org/10.1038/s41598-017-10715-1 CrossRefPubMedPubMedCentralGoogle Scholar
  143. 143.
    Loyola-Vargas VM, Miranda-Ham ML (1995) Root culture as a source of secondary metabolites of economic importance. Rec Advan Phytochem 29:217–248. https://doi.org/10.1007/978-1-4899-1778-2_10 CrossRefGoogle Scholar
  144. 144.
    Flores HE, Vivanco JM, Loyola-Vargas VM (1999) “Radicle” biochemistry: the biology of root-specific metabolism. Trends Plant Sci 4:220–226. https://doi.org/10.1016/S1360-1385(99)01411-9 CrossRefPubMedGoogle Scholar
  145. 145.
    David C, Chilton MD, Tempé J (1984) Conservation of T-DNA in plants renegerated from hairy root cultures. Bio Technol 2:73–76. https://doi.org/10.1038/nbt0184-73 CrossRefGoogle Scholar
  146. 146.
    Hamill JD, Rhodes MJC (1988) A spontaneous, light independent and prolific plant regeneration response from hairy roots of Nicotiana hesperis transformed by Agrobacterium rhizogenes. J Plant Physiol 133:506–509. https://doi.org/10.1016/S0176-1617(88)80046-4 CrossRefGoogle Scholar
  147. 147.
    Jouanin L, Guerche P, Pamboukdjian N et al (1987) Structure of T-DNA in plants regenerated from roots transformed by Agrobacterium rhizogenes strain A4. Mol Gen Genet 206:387–392. https://doi.org/10.1007/BF00428876 CrossRefGoogle Scholar
  148. 148.
    Springer NM, Schmitz RJ (2017) Exploiting induced and natural epigenetic variation for crop improvement. Nat Rev Genet 18:563–575. https://doi.org/10.1038/nrg.2017.45 CrossRefPubMedGoogle Scholar
  149. 149.
    Abudayyeh OO, Gootenberg JS, Essletzbichler P et al (2017) RNA targeting with CRISPR-Cas13. Nature 550:280–284. https://doi.org/10.1038/nature24049 CrossRefPubMedPubMedCentralGoogle Scholar
  150. 150.
    Cox DBT, Gootenberg JS, Abudayyeh OO et al (2017) RNA editing with CRISPR-Cas13. Science 358:1019–1027. https://doi.org/10.1126/science.aaq0180 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Víctor M. Loyola-Vargas
    • 1
  • Randy N. Avilez-Montalvo
    • 1
  1. 1.Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de YucatánMéridaMexico

Personalised recommendations