Skip to main content

From Stress to Embryos: Some of the Problems for Induction and Maturation of Somatic Embryos

  • Protocol
In Vitro Embryogenesis in Higher Plants

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1359))

Abstract

Although somatic embryogenesis has been successfully achieved in numerous plant species, little is known about the mechanism(s) underlying this process. Changes in the balance of growth regulators of the culture medium, osmolarity, or amino acids as well as the genotype and developmental stage of the tissue used as initial explant may have a pivotal influence on the induction of somatic embryogenic cultures. Moreover, different stress agents (ethylene, activated charcoal, cold or heat or electrical shocks), as well as abscisic acid, can also foster the induction or further development of somatic embryos. In the process, cells first return to a stem cell-like status and then either enter their new program or dye when the stress level exceeds cell tolerance. Recalcitrance to differentiation of somatic cells into embryos is frequently observed, and problems such as secondary or recurrent embryogenesis, embryo growth arrest (at the globular stage or during the transition from torpedo to cotyledonary stage), and development of only the aerial part of somatic embryos can appear, interfering with normal germination and conversion of embryos to plants. Some solutions to solve these problems associated to embryogenesis are proposed and two very efficient somatic embryogenesis protocols for two model plant species are detailed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ammirato PV (1983) Embryogenesis. In: Evans DA, Sharp WR, Ammirato PV, Yamada Y (eds) Handbook of plant cell culture: techniques for propagation and breeding, vol 1. MacMillan, New York, pp 82–123

    Google Scholar 

  2. Mordhorst AP, Toonen MAJ, DeVries SC (1997) Plant embryogenesis. Crit Rev Plant Sci 16:535–576

    Article  Google Scholar 

  3. Fehér A, Pasternak TA, Dudits D (2003) Transition of somatic plant cells to embryogenic state. Plant Cell Tiss Org Cult 74:201–228

    Article  Google Scholar 

  4. Pintos B, Manzanera JA, Bueno MA (2010) Oak somatic and gametic embryos maturation is affected by charcoal and specific aminoacids mixture. Ann For Sci 67(2):205. doi:10.1051/forest/2009098

    Article  Google Scholar 

  5. Vieitez AM, Corredoira E, Martínez MT, San-José MC, Sánchez C, Valladares S (2012) Application of biotechnological tools to Quercus improvement. Eur J For Res 131:519–539

    Article  CAS  Google Scholar 

  6. Ochatt SJ (2015) Agroecological impact of an in vitro biotechnology approach of embryo development and seed filling in legumes. Agron Sustain Dev 35(2):535–552

    Article  CAS  Google Scholar 

  7. von Arnold S, Sabala I, Bozhkov P, Dyachok JÂ, Filonova L (2002) Developmental pathways of somatic embryogenesis. Plant Cell Tiss Org Cult 69:233–249

    Article  Google Scholar 

  8. Nehra NS, Becwar MR, Rottmann WH, Pearson L, Chowdhury K, Chang S, Wilde HD, Kodrzycki RJ, Zhang C, Gause KC, Parks DW, Hinchee MA (2005) Forest biotechnology: innovative methods, emerging opportunities. In Vitro Cell Dev Biol-Plant 41:701–717

    Article  CAS  Google Scholar 

  9. Karami O, Aghavaisi B, Pour AM (2009) Molecular aspects of somatic-to-embryogenic transition in plants. J Chem Biol 2:177–190

    Article  PubMed Central  PubMed  Google Scholar 

  10. Stasolla C, Yeung EC (2003) Recent advances in conifer somatic embryogenesis: improving somatic embryo quality. Plant Cell Tiss Org Cult 74:15–35

    Article  CAS  Google Scholar 

  11. Klimaszewska K, Trontin JF, Becwar M, Devillard C, Park YS, Lelu-Walter MA (2007) Recent progress on somatic embryogenesis in four Pinus spp. Tree For Sci Biotechnol 1:11–25

    Google Scholar 

  12. Pijut PM, Beasley RR, Lawson SS, Palla KJ, Stevens ME, Wang Y (2012) In vitro propagation of tropical hardwood tree species. Propag Ornam Plants 12:25–51

    Google Scholar 

  13. Delporte F, Pretova A, du Jardin P, Watillon B (2014) Morpho-histology and genotype dependence of in vitro morphogenesis in mature embryo cultures of wheat. Protoplasma 251:1455–1470

    Article  PubMed Central  PubMed  Google Scholar 

  14. Neelakandan AK, Wang K (2012) Recent progress in the understanding of tissue culture-induced genome level changes in plants and potential applications. Plant Cell Rep 31:597–620

    Article  CAS  PubMed  Google Scholar 

  15. Ochatt SJ, Atif RM, Patat-Ochatt EM, Jacas L, Conreux C (2010) Competence versus recalcitrance for in vitro regeneration. Not Bot Hort Agrobot Cluj 38:102–108

    Google Scholar 

  16. Ochatt S, Jacas L, Patat-Ochatt EM, Djenanne S (2013) Flow cytometric analysis and molecular characterization of Agrobacterium tumefaciens-mediated transformants of Medicago truncatula. Plant Cell Tiss Org Cult 113:237–244

    Article  CAS  Google Scholar 

  17. von Arnold S (2008) Somatic embryogenesis. In: George EF, Hall MA, De Klerk GJ (eds) Plant propagation by tissue culture, 3rd edn. Springer, Dordrecht, pp 335–354

    Google Scholar 

  18. Lo Schiavo F, Pitto L, Giuliano G, Torti G, Nuti Ronchi V, Marazziti D, Vergara R, Orselli S, Terzi M (1989) DNA methylation of embryogenic carrot cell cultures and its variations as caused by mutation, differentiation, hormones and hypomethylating drugs. Theor Appl Genet 77:325–331

    Article  CAS  Google Scholar 

  19. Ochatt S, Muilu R, Ribalta F (2008) Cell morphometry and osmolarity as early indicators of the onset of embryogenesis from cell suspension cultures of grain legumes and model systems. Plant Biosyst 142:480–486

    Article  Google Scholar 

  20. Ochatt S, Pech C, Grewal R, Conreux C, Lulsdorf M, Jacas L (2009) Abiotic stress enhances androgenesis from isolated microspores of some legume species (Fabaceae). J Plant Physiol 166:1314–1328

    Article  CAS  PubMed  Google Scholar 

  21. Namasivayam P (2007) Acquisition of embryogenic competence during somatic embryogenesis. Plant Cell Tiss Org Cult 90:1–8

    Article  CAS  Google Scholar 

  22. Carman JG (1990) Embryogenic cells in plant tissue cultures: occurrence and behaviour. In Vitro Cell Dev Biol 26:746–753

    Article  Google Scholar 

  23. Lelu-Walter MA, Thompson D, Harvengt L, Toribio M, Pâques LE (2013) Somatic embryogenesis in forestry with focus on Europe: state-of-the-art, benefits, challenges and future direction. Tree Genet Genomics 9:883–899

    Article  Google Scholar 

  24. Wilhem E (2000) Somatic embryogenesis in oak (Quercus spp.). In Vitro Cell Dev Biol-Plant 36:349–357

    Article  Google Scholar 

  25. Toribio M, Fernández C, Celestino C, Martínez MT, San-José MC, Vieitez AM (2004) Somatic embryogenesis in mature Quercus robur trees. Plant Cell Tiss Org Cult 76:283–287

    Article  Google Scholar 

  26. Thomas W, Hoffmann F, Potrykus I, Wenzei G (1976) Protoplast regeneration and stem embryogenesis of haploid androgenic rape. Mol Gen Genet 145:245–247

    Article  Google Scholar 

  27. El Maâtaoui M, Espagnac H, Michaux-Ferrière N (1990) Histology of callogenesis and somatic embryogenesis induced in stem fragments of cork oak (Quercus suber) cultured in vitro. Ann Bot 66:183–190

    Google Scholar 

  28. Fernández-Guijarro B, Celestino C, Toribio M (1995) Influence of external factors on secondary embryogenesis and germination in somatic embryos from leaves of Quercus suber L. Plant Cell Tiss Org Cult 41:99–106

    Article  Google Scholar 

  29. Ochatt S, Mousset-Déclas C, Rancillac M (2000) Fertile pea plants regenerate from protoplasts when calluses have not undergone endoreduplication. Plant Sci 156:177–183

    Article  CAS  PubMed  Google Scholar 

  30. Lee KP, Piskurewicz U, Turecková V, Strnad M, López-Molina L (2010) A seed coat bedding assay shows that RGL2-dependent release of ABA by the endosperm controls embryo growth in Arabidopsis dormant seeds. Proc Natl Acad Sci U S A 107:19108–19113

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Pan MJ, van Staden J (1998) The use of charcoal in in vitro culture. J Plant Growth Regul 26:155–163

    Article  CAS  Google Scholar 

  32. Corredoira E, Ballester A, Vieitez AM (2003) Proliferation, maturation and germination of Castanea sativa Mill. somatic embryos originated from leaf explants. Ann Bot 92:1129–1136

    Article  Google Scholar 

  33. Valladares S, Sánchez C, Martínez MT, Ballester A, Vieitez AM (2006) Plant regeneration through somatic embryogenesis from tissues of mature oak trees: true-to-type conformity of plantlets by RAPD analysis. Plant Cell Rep 25:879–886

    Article  CAS  PubMed  Google Scholar 

  34. Elmaghrabi AM, Ochatt S, Rogers HJ, Francis D (2013) Enhanced tolerance to salinity following cellular acclimation to increasing NaCl levels in Medicago truncatula. Plant Cell Tiss Org Cult 114:61–70

    Article  CAS  Google Scholar 

  35. Ochatt SJ (2013) Plant cell electrophysiology: applications in growth enhancement, somatic hybridization and gene transfer. Biotechnol Adv 31:1237–1246

    Article  CAS  PubMed  Google Scholar 

  36. Grewal RK, Lulsdorf M, Croser J, Ochatt S, Vandenberg A, Warkentin TP (2009) Doubled-haploid production in chickpea (Cicer arietinum L.): role of stress treatments. Plant Cell Rep 28:1289–1299

    Article  CAS  PubMed  Google Scholar 

  37. Ribalta F, Croser J, Ochatt S (2012) Flow cytometry enables identification of sporophytic eliciting stress treatments in gametic cells. J Plant Physiol 169:104–110

    Article  CAS  PubMed  Google Scholar 

  38. Rokhina EV, Lens P, Virkutyte J (2009) Low-frequency ultrasound in biotechnology: state of the art. Trends Biotechnol 27:298–306

    Article  CAS  PubMed  Google Scholar 

  39. Teixeira da Silva JA, Dobránszki J (2014) Sonication and ultrasound: impact on plant growth and development. Plant Cell Tiss Org Cult 117:131–143

    Article  Google Scholar 

  40. Germanà MA (2006) Doubled haploid production in fruit crops. Plant Cell Tiss Org Cult 86:131–146

    Article  Google Scholar 

  41. Elhiti M, Stasolla C (2011) The use of zygotic embryos as explants for in vitro propagation: an overview. In: Thorpe TA, Yeung EC (eds) Plant embryo culture, vol 710, Methods in molecular biology. Springer-Humana Press, Berlin, pp 229–255

    Chapter  Google Scholar 

  42. Potters G, Pasternak TP, Guisez Y, Jansen MA (2009) Different stresses, similar morphogenic responses: integrating a plethora of pathways. Plant Cell Environ 32:158–169

    Article  PubMed  Google Scholar 

  43. Fehér A (2006) Why somatic plant cells start to form embryos? In: Mujib A, Šamaj J (eds) Somatic embryogenesis, vol 2, Plant cell monographs. Springer, Berlin, pp 85–101

    Chapter  Google Scholar 

  44. Grafi G, Chalifa-Caspi V, Nagar T, Plaschkes I, Barak S, Ransbotyn V (2011) Plant response to stress meets dedifferentiation. Planta 233:433–438

    Article  CAS  PubMed  Google Scholar 

  45. Potters G, Pasternak TP, Guisez Y, Palme KJ, Jansen MAK (2007) Stress-induced morphogenic responses: growing out of trouble? Trends Plant Sci 12:98–105

    Article  CAS  PubMed  Google Scholar 

  46. Ochatt SJ (2008) Flow cytometry in plant breeding. Cytometry 73A:581–598

    Article  CAS  Google Scholar 

  47. Salajova T, Salaj J (2005) Somatic embryogenesis in Pinus nigra: embryogenic tissue initiation, maturation and regeneration ability of established cell lines. Biol Plant 49:333–339

    Article  CAS  Google Scholar 

  48. Atif RM, Patat-Ochatt EM, Svabova L, Ondrej V, Klenoticova H, Jacas L, Griga M, Ochatt SJ (2012) Gene transfer in legumes. In: Lüttge U, Beyschlag W, Francis D, Cushman J (eds) Progress in botany, vol. 74. Springer, Berlin, pp 37–100, Chap. 2

    Google Scholar 

  49. Christou P (2013) Plant genetic engineering and agricultural biotechnology 1983–2013. Trends Biotechnol 31:125–127

    Article  CAS  PubMed  Google Scholar 

  50. George EF, Hall MA, de Klerk GJ (2008) Plant propagation by tissue culture. Vol. 1, The background, 3rd edn. Springer-Verlag, Dordrecht

    Google Scholar 

  51. Vanneste S, Friml J (2009) Auxin: a trigger for change in plant development. Cell 136:1005–1016

    Article  CAS  PubMed  Google Scholar 

  52. Quiroz-Figueroa FR, Rojas-Herrera R, Galaz-Avalos RM, Loyola-Vargas VM (2006) Embryo production through somatic embryogenesis can be used to study cell differentiation in plants. Plant Cell Tiss Org Cult 86:285–301

    Article  Google Scholar 

  53. Vasil IK (2008) A history of plant biotechnology: from the cell theory of Schleiden and Schwann to biotech crops. Plant Cell Rep 27:1423–1440

    Article  CAS  PubMed  Google Scholar 

  54. Gaj MD, Zhang S, Harada JJ, Lemaux PG (2005) Leafy cotyledon genes are essential for induction of somatic embryogenesis of Arabidopsis. Planta 222:977–988

    Article  CAS  PubMed  Google Scholar 

  55. Lülsdorf MM, Croser JS, Ochatt SJ (2011) Androgenesis and doubled-haploid production in food legumes. In: Pratap A, Kumar J (eds) Biology and breeding of food legumes. CAB International, Oxford, pp 159–177

    Chapter  Google Scholar 

  56. Catterou M, Dubois F, Smets R, Kichey T, Van Onckelen H, Sangwan-Norreel BS, Sangwan RS (2002) hoc: an Arabidopsis mutant overproducing cytokinins and expressing high in vitro organogenic capacity. Plant J 30:273–287

    Article  CAS  PubMed  Google Scholar 

  57. Chaudhury AM, Letham S, Craig S, Dennis ES (1993) amp1-a mutant with high cytokinin levels and altered embryonic pattern, faster vegetative growth, constitutive photomorphogenesis and precocious flowering. Plant J 4:907–916

    Article  CAS  Google Scholar 

  58. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Plant Physiol 15:473–479

    Article  CAS  Google Scholar 

  59. Hoffmann B, Trinh TH, Leung J, Kondorosi A, Kondorosi E (1997) A new Medicago truncatula line with superior in vitro regeneration, transformation, and symbiotic properties isolated through cell culture selection. Mol Plant Microbe Interact 10:307–315

    Article  CAS  Google Scholar 

  60. Trinh TH, Ratet P, Kondorosi E, Durand P, Kamaté K, Bauer P, Kondorosi A (1998) Rapid and efficient transformation of diploid Medicago truncatula and Medicago sativa ssp. falcata lines improved in somatic embryogenesis. Plant Cell Rep 17:345–355

    Article  CAS  Google Scholar 

  61. Chu CC (1978) The N6 medium and its applications to anther culture of cereals. Proceedings of symposium on plant tissue culture. Science Press, Peking, p 43

    Google Scholar 

  62. Schenk RU, Hildebrandt AC (1972) Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Can J Bot 50:199–204

    Article  CAS  Google Scholar 

  63. FAO, Food and Agriculture Organization of the United Nations (2012) FaoStat. http://faostat3.fao.org/faostat-gateway/go/to/download/Q/QC/E. Accessed 5 Dec 2013

  64. http://www.ucsusa.org/food_and_agriculture/our-failing-food-system/genetic-engineering/biotechnology-and-the-world.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio J. Ochatt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ochatt, S.J., Revilla, M.A. (2016). From Stress to Embryos: Some of the Problems for Induction and Maturation of Somatic Embryos. In: Germana, M., Lambardi, M. (eds) In Vitro Embryogenesis in Higher Plants. Methods in Molecular Biology, vol 1359. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3061-6_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3061-6_31

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3060-9

  • Online ISBN: 978-1-4939-3061-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics