Skip to main content

Advertisement

Log in

Thermal performance of novel form-stable disodium hydrogen phosphate dodecahydrate-based composite phase change materials for building thermal energy storage

  • Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

A Correction to this article was published on 03 August 2023

This article has been updated

Abstract

Inorganic hydrated salt phase change materials (PCMs) have received great attention due to their capabilities to reduce building energy consumption and improve building thermal comfort. In this work, a modified PCM (DHPD-STP) with a low supercooling degree was first prepared by using disodium hydrogen phosphate dodecahydrate (Na2HPO4·12H2O, DHPD) as the matrix and sodium thiosulfate pentahydrate (Na2S2O3·5H2O, STP) as a nucleating agent. Then expanded graphite (EG) was added to DHPD-STP to afford a novel form-stable composite phase change material (CPCM). The novel CPCM obtained had a phase transition temperature (34.74 °C) appropriate for building thermal management, an excellent phase change enthalpy (184.39 J/g), and an extremely low supercooling degree (1.1 °C). The addition of EG greatly improved the form stability and cycle stability of the CPCM. Even after 200 cycles, the CPCM prepared still had a high enthalpy of phase changes (164.54 J/g). More importantly, the use of CPCM-loaded roofs effectively mitigated the variation of room temperature and improved indoor thermal comfort. The above results demonstrate the great potential of the CPCM prepared for passive building thermal management.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Change history

References

  1. Qiu W, Hao Q, Annamareddy SHK et al (2022) Electric vehicle revolution and implications: ion battery and energy. Eng Sci 20:100–109. https://doi.org/10.30919/es8d772

  2. Bland A, Khzouz M, Statheros T, Gkanas EI (2017) PCMs for Residential building applications: a short review focused on disadvantages and proposals for future development. Buildings 7:78. https://doi.org/10.3390/buildings7030078

    Article  Google Scholar 

  3. Shen R, Lian P, Cao Y et al (2022) All lignin-based sponge encapsulated phase change composites with enhanced solar-thermal conversion capability and satisfactory shape stability for thermal energy storage. J Energy Storage 54:105338. https://doi.org/10.1016/j.est.2022.105338

    Article  Google Scholar 

  4. Liu Y, Xie M, Gao X et al (2018) Experimental exploration of incorporating form-stable hydrate salt phase change materials into cement mortar for thermal energy storage. Appl Therm Eng 140:112–119. https://doi.org/10.1016/j.applthermaleng.2018.05.042

    Article  CAS  Google Scholar 

  5. Huang X, Chen X, Li A et al (2019) Shape-stabilized phase change materials based on porous supports for thermal energy storage applications. Chem Eng J 356:641–661. https://doi.org/10.1016/j.cej.2018.09.013

    Article  CAS  Google Scholar 

  6. Xi S, Bu Z, Kong G et al (2022) Perspectives on the application of phase change energy storage in building energy efficiency. ES Energy Environ 1–3. https://doi.org/10.30919/esee8c636

  7. Huang D, Wang Z, Sheng X, Chen Y (2023) Bio-based MXene hybrid aerogel/paraffin composite phase change materials with superior photo and electrical responses toward solar thermal energy storage. Sol Energy Mater Sol Cells 251:112124. https://doi.org/10.1016/j.solmat.2022.112124

    Article  CAS  Google Scholar 

  8. Huang J, Luo Y, Weng M et al (2021) Advances and applications of phase change materials (PCMs) and PCMs-based technologies. ES Mater Manuf 13:23–39. https://doi.org/10.30919/esmm5f458

  9. Mahon H, O’Connor D, Friedrich D, Hughes B (2022) A review of thermal energy storage technologies for seasonal loops. Energy 239:122207. https://doi.org/10.1016/j.energy.2021.122207

    Article  CAS  Google Scholar 

  10. Rahjoo M, Goracci G, Martauz P et al (2022) Geopolymer concrete performance study for high-temperature thermal energy storage (TES) applications. Sustainability 14:1937. https://doi.org/10.3390/su14031937

    Article  CAS  Google Scholar 

  11. Zheng M, Peng X, Liu J et al (2021) Preparation and characterization of composite hydrate salt PCM of industrial grade disodium hydrogen phosphate with sodium carbonate. Int J Energy Res 45:7129–7144. https://doi.org/10.1002/er.6299

    Article  CAS  Google Scholar 

  12. Zou T, Xu T, Cui H et al (2021) Super absorbent polymer as support for shape-stabilized composite phase change material containing Na2HPO4·12H2O–K2HPO4·3H2O eutectic hydrated salt. Sol Energy Mater Sol Cells 231:111334. https://doi.org/10.1016/j.solmat.2021.111334

    Article  CAS  Google Scholar 

  13. Liu Z, Chen Z, Yu F (2019) Preparation and characterization of microencapsulated phase change materials containing inorganic hydrated salt with silica shell for thermal energy storage. Sol Energy Mater Sol Cells 200:110004. https://doi.org/10.1016/j.solmat.2019.110004

    Article  CAS  Google Scholar 

  14. Lu L-X, Wang X-L, Li S-L et al (2023) Thermal performance of lonicera rupicola grass as a building insulation composite material. Adv Compos Hybrid Mater 6:1–7. https://doi.org/10.1007/s42114-022-00578-0

    Article  CAS  Google Scholar 

  15. Chen X, Gao H, Tang Z et al (2020) Optimization strategies of composite phase change materials for thermal energy storage, transfer, conversion and utilization. Energy Environ Sci 13:4498–4535. https://doi.org/10.1039/D0EE01355B

    Article  CAS  Google Scholar 

  16. Zhang W, Mazzarello R, Wuttig M, Ma E (2019) Designing crystallization in phase-change materials for universal memory and neuro-inspired computing. Nat Rev Mater 4:150–168. https://doi.org/10.1038/s41578-018-0076-x

    Article  CAS  Google Scholar 

  17. Zhang H, Mai J, Li S et al (2022) Multi-functional phase change materials with anti-liquid leakage, shape memory, switchable optical transparency and thermal energy storage. Adv Compos Hybrid Mater 5:2042–2050. https://doi.org/10.1007/s42114-022-00540-0

    Article  CAS  Google Scholar 

  18. An J, Yang E-H, Duan F et al (2022) Synthesis and characterization of robust SiO2-PCM microcapsules. ES Mater Manuf 15:34–45. https://doi.org/10.30919/esmm5f475

  19. Li D, Yang R, Arıcı M et al (2022) Incorporating phase change materials into glazing units for building applications: current progress and challenges. Appl Therm Eng 210:118374. https://doi.org/10.1016/j.applthermaleng.2022.118374

    Article  Google Scholar 

  20. Lamrani B, Johannes K, Kuznik F (2021) Phase change materials integrated into building walls: an updated review. Renew Sustain Energy Rev 140:110751. https://doi.org/10.1016/j.rser.2021.110751

    Article  Google Scholar 

  21. Hu X, Wu H, Lu X et al (2021) Improving thermal conductivity of ethylene propylene diene monomer/paraffin/expanded graphite shape-stabilized phase change materials with great thermal management potential via green steam explosion. Adv Compos Hybrid Mater 4:478–491. https://doi.org/10.1007/s42114-021-00300-6

    Article  CAS  Google Scholar 

  22. Khadiran T, Hussein MZ, Zainal Z, Rusli R (2016) Advanced energy storage materials for building applications and their thermal performance characterization: a review. Renew Sustain Energy Rev 57:916–928. https://doi.org/10.1016/j.rser.2015.12.081

    Article  CAS  Google Scholar 

  23. Zhang X, Kim Y, Kim D et al (2021) Shape-stabilized phase change material by a synthetic/natural hybrid composite foam with cell-wall pores. ACS Appl Energy Mater 4:416–424. https://doi.org/10.1021/acsaem.0c02341

    Article  CAS  Google Scholar 

  24. Zhang Y, Wang F, Duvigneau J et al (2021) Highly stable and nonflammable hydrated salt-paraffin shape-memory gels for sustainable building technology. ACS Sustain Chem Eng 9:15442–15450. https://doi.org/10.1021/acssuschemeng.1c04586

    Article  CAS  Google Scholar 

  25. Cao Y, Weng M, Mahmoud MHH et al (2022) Flame-retardant and leakage-proof phase change composites based on MXene/polyimide aerogels toward solar thermal energy harvesting. Adv Compos Hybrid Mater 5:1253–1267. https://doi.org/10.1007/s42114-022-00504-4

    Article  CAS  Google Scholar 

  26. Weng M, Liu S, Su J et al (2022) Hydrophobic and antimicrobial polyimide based composite phase change materials with thermal energy storage capacity, applied as multifunctional construction material. Eng Sci 19:301–311. https://doi.org/10.30919/es8e735

  27. Wei D, Weng M, Mahmoud MHH et al (2022) Development of novel biomass hybrid aerogel supported composite phase change materials with improved light-thermal conversion and thermal energy storage capacity. Adv Compos Hybrid Mater 5:1910–1921. https://doi.org/10.1007/s42114-022-00519-x

    Article  CAS  Google Scholar 

  28. Hu X, Wu H, Liu S et al (2022) Fabrication of organic shape-stabilized phase change material and its energy storage applications. Eng Sci 17:1–27. https://doi.org/10.30919/es8d474

  29. Hassan F, Jamil F, Hussain A et al (2022) Recent advancements in latent heat phase change materials and their applications for thermal energy storage and buildings: a state of the art review. Sustain Energy Technol Assess 49:101646. https://doi.org/10.1016/j.seta.2021.101646

    Article  Google Scholar 

  30. Shah KW, Ong PJ, Chua MH et al (2022) Application of phase change materials in building components and the use of nanotechnology for its improvement. Energy Build 262:112018. https://doi.org/10.1016/j.enbuild.2022.112018

    Article  Google Scholar 

  31. Xie Y, Yang Y, Liu Y et al (2021) Paraffin/polyethylene/graphite composite phase change materials with enhanced thermal conductivity and leakage-proof. Adv Compos Hybrid Mater 4:543–551. https://doi.org/10.1007/s42114-021-00249-6

    Article  CAS  Google Scholar 

  32. Wong-Pinto L-S, Milian Y, Ushak S (2020) Progress on use of nanoparticles in salt hydrates as phase change materials. Renew Sustain Energy Rev 122:109727. https://doi.org/10.1016/j.rser.2020.109727

    Article  CAS  Google Scholar 

  33. Junaid MF, ur Rehman Z, Čekon M et al (2021) Inorganic phase change materials in thermal energy storage: a review on perspectives and technological advances in building applications. Energy Build 252:111443. https://doi.org/10.1016/j.enbuild.2021.111443

    Article  Google Scholar 

  34. Mehrali M, ten Elshof JE, Shahi M, Mahmoudi A (2021) Simultaneous solar-thermal energy harvesting and storage via shape stabilized salt hydrate phase change material. Chem Eng J 405:126624. https://doi.org/10.1016/j.cej.2020.126624

    Article  CAS  Google Scholar 

  35. Yu K, Liu Y, Yang Y (2021) Review on form-stable inorganic hydrated salt phase change materials: preparation, characterization and effect on the thermophysical properties. Appl Energy 292:116845. https://doi.org/10.1016/j.apenergy.2021.116845

    Article  CAS  Google Scholar 

  36. Wang H, Zhang Y, Ci E et al (2022) Preparation and characterization of a solar-driven sodium acetate trihydrate composite phase change material with Ti4O7 particles. Sol Energy Mater Sol Cells 238:111591. https://doi.org/10.1016/j.solmat.2022.111591

    Article  CAS  Google Scholar 

  37. Deng Z, Deng Q, Wang L et al (2021) Modifying coconut shell activated carbon for improved purification of benzene from volatile organic waste gas. Adv Compos Hybrid Mater 4:751–760. https://doi.org/10.1007/s42114-021-00273-6

    Article  CAS  Google Scholar 

  38. Zhang S, Cheng B, Jia Z et al (2022) The art of framework construction: hollow-structured materials toward high-efficiency electromagnetic wave absorption. Adv Compos Hybrid Mater 5:1658–1698. https://doi.org/10.1007/s42114-022-00514-2

    Article  Google Scholar 

  39. Cheng H, Xing L, Zuo Y et al (2022) Constructing nickel chain/MXene networks in melamine foam towards phase change materials for thermal energy management and absorption-dominated electromagnetic interference shielding. Adv Compos Hybrid Mater 5:755–765. https://doi.org/10.1007/s42114-022-00487-2

    Article  CAS  Google Scholar 

  40. Xie P, Shi Z, Feng M et al (2022) Recent advances in radio-frequency negative dielectric metamaterials by designing heterogeneous composites. Adv Compos Hybrid Mater 5:679–695. https://doi.org/10.1007/s42114-022-00479-2

    Article  Google Scholar 

  41. Liu C, Cheng Q, Liu X et al (2022) Theoretical prediction and experimental investigation on nanoencapsulated phase change material with improved thermal energy storage performance. Sol Energy Mater Sol Cells 241:111741. https://doi.org/10.1016/j.solmat.2022.111741

    Article  CAS  Google Scholar 

  42. Liu H, Zheng Z, Qian Z et al (2021) Lamellar-structured phase change composites based on biomass-derived carbonaceous sheets and sodium acetate trihydrate for high-efficient solar photothermal energy harvest. Sol Energy Mater Sol Cells 229:111140. https://doi.org/10.1016/j.solmat.2021.111140

    Article  CAS  Google Scholar 

  43. Wang Y, Wang F, Zhao L et al (2022) Shape-stable and fire-resistant hybrid phase change materials with enhanced thermoconductivity for battery cooling. Chem Eng J 431:133983. https://doi.org/10.1016/j.cej.2021.133983

    Article  CAS  Google Scholar 

  44. Shen R, Weng M, Zhang L et al (2022) Biomass-based carbon aerogel/Fe3O4@PEG phase change composites with satisfactory electromagnetic interference shielding and multi-source driven thermal management in thermal energy storage. Compos Part Appl Sci Manuf 163:107248. https://doi.org/10.1016/j.compositesa.2022.107248

    Article  CAS  Google Scholar 

  45. Tang A, Chen W, Shao X et al (2022) Experimental investigation of aluminum nitride/carbon fiber-modified composite phase change materials for battery thermal management. Int J Energy Res n/a: https://doi.org/10.1002/er.8040

    Article  Google Scholar 

  46. Cao Y, Zeng Z, Huang D et al (2022) Multifunctional phase change composites based on biomass/MXene-derived hybrid scaffolds for excellent electromagnetic interference shielding and superior solar/electro-thermal energy storage. Nano Res 15:8524–8535. https://doi.org/10.1007/s12274-022-4626-6

    Article  CAS  Google Scholar 

  47. Zhang Z, Liu M, Ibrahim MM et al (2022) Flexible polystyrene/graphene composites with epsilon-near-zero properties. Adv Compos Hybrid Mater 5:1054–1066. https://doi.org/10.1007/s42114-022-00486-3

    Article  CAS  Google Scholar 

  48. Ma Y, Wang H, Zhang L et al (2022) Flexible phase change composite films with improved thermal conductivity and superb thermal reliability for electronic chip thermal management. Compos Part Appl Sci Manuf 163:107203. https://doi.org/10.1016/j.compositesa.2022.107203

    Article  CAS  Google Scholar 

  49. Zhu H, Hu W, Zhao S et al (2020) Flexible and thermally stable superhydrophobic surface with excellent anti-corrosion behavior. J Mater Sci 55:2215–2225. https://doi.org/10.1007/s10853-019-04050-1

    Article  CAS  Google Scholar 

  50. Wu N, Liu L, Yang Z et al (2021) Design of eutectic hydrated salt composite phase change material with cement for thermal energy regulation of buildings. Materials 14:139. https://doi.org/10.3390/ma14010139

    Article  CAS  Google Scholar 

  51. Mao J, Dong X, Hou P, Lian H (2017) Preparation research of novel composite phase change materials based on sodium acetate trihydrate. Appl Therm Eng 118:817–825. https://doi.org/10.1016/j.applthermaleng.2017.02.102

    Article  CAS  Google Scholar 

  52. Li X, Lei Y, Qin L et al (2021) Mildly-expanded graphite with adjustable interlayer distance as high-performance anode for potassium-ion batteries. Carbon 172:200–206. https://doi.org/10.1016/j.carbon.2020.10.023

    Article  CAS  Google Scholar 

  53. Pan D, Yang G, Abo-Dief HM et al (2022) Vertically aligned silicon carbide nanowires/boron nitride cellulose aerogel networks enhanced thermal conductivity and electromagnetic absorbing of epoxy composites. Nano-Micro Lett 14:118. https://doi.org/10.1007/s40820-022-00863-z

    Article  CAS  Google Scholar 

  54. Cao Y, Li W, Huang D et al (2022) One-step construction of novel phase change composites supported by a biomass/MXene gel network for efficient thermal energy storage. Sol Energy Mater Sol Cells 241:111729. https://doi.org/10.1016/j.solmat.2022.111729

    Article  CAS  Google Scholar 

  55. Liu Z, Pan F, Deng B et al (2021) Self-assembled MoS2/3D worm-like expanded graphite hybrids for high-efficiency microwave absorption. Carbon 174:59–69. https://doi.org/10.1016/j.carbon.2020.12.019

    Article  CAS  Google Scholar 

  56. Wu Y, Wang C, Li J, Li Y (2021) Porous hydroxyapatite foams: excellent carrier of hydrated salt with adjustable pores for thermal energy storage. Ind Eng Chem Res 60:1259–1265. https://doi.org/10.1021/acs.iecr.0c05480

    Article  CAS  Google Scholar 

  57. Chen W, Liang X, Wang S et al (2021) Macro-encapsulated 3D phase change material: Na2S2O3·5H2O-NaOAc·3H2O/carbonized melamine sponge composite as core and SiC modified polyurethane thin-layer as shell. Compos Sci Technol 214:108981. https://doi.org/10.1016/j.compscitech.2021.108981

    Article  CAS  Google Scholar 

  58. Zhang X, Liu Z, Deng B et al (2021) Honeycomb-like NiCo2O4@MnO2 nanosheets array/3D porous expanded graphite hybrids for high-performance microwave absorber with hydrophobic and flame-retardant functions. Chem Eng J 419:129547. https://doi.org/10.1016/j.cej.2021.129547

    Article  CAS  Google Scholar 

  59. Shen Z, Kwon S, Lee HL et al (2021) Enhanced thermal energy storage performance of salt hydrate phase change material: effect of cellulose nanofibril and graphene nanoplatelet. Sol Energy Mater Sol Cells 225:111028. https://doi.org/10.1016/j.solmat.2021.111028

    Article  CAS  Google Scholar 

  60. Fang Y, Ding Y, Tang Y et al (2019) Thermal properties enhancement and application of a novel sodium acetate trihydrate-formamide/expanded graphite shape-stabilized composite phase change material for electric radiant floor heating. Appl Therm Eng 150:1177–1185. https://doi.org/10.1016/j.applthermaleng.2019.01.069

    Article  CAS  Google Scholar 

  61. Fu W, Zou T, Liang X et al (2018) Thermal properties and thermal conductivity enhancement of composite phase change material using sodium acetate trihydrate–urea/expanded graphite for radiant floor heating system. Appl Therm Eng 138:618–626. https://doi.org/10.1016/j.applthermaleng.2018.04.102

    Article  CAS  Google Scholar 

  62. Deng Y, Li J, Deng Y et al (2018) Supercooling suppression and thermal conductivity enhancement of Na 2 HPO 4 ·12H 2 O/expanded vermiculite form-stable composite phase change materials with alumina for heat storage. ACS Sustain Chem Eng 6:6792–6801. https://doi.org/10.1021/acssuschemeng.8b00631

    Article  CAS  Google Scholar 

  63. Li C, Zhang B, Xie B et al (2020) Tailored phase change behavior of Na2SO4·10H2O/expanded graphite composite for thermal energy storage. Energy Convers Manag 208:112586. https://doi.org/10.1016/j.enconman.2020.112586

    Article  CAS  Google Scholar 

  64. Fu W, Zou T, Liang X et al (2019) Preparation and properties of phase change temperature-tuned composite phase change material based on sodium acetate trihydrate–urea/fumed silica for radiant floor heating system. Appl Therm Eng 162:114253. https://doi.org/10.1016/j.applthermaleng.2019.114253

    Article  CAS  Google Scholar 

  65. Yin C, Lan J, Wang X et al (2021) Shape-stable hydrated salts/polyacrylamide phase-change organohydrogels for smart temperature management. ACS Appl Mater Interfaces 13:21810–21821. https://doi.org/10.1021/acsami.1c03996

    Article  CAS  Google Scholar 

  66. Zou H, Meng X, Zhao X, Qiu J (2023) Hofmeister effect-enhanced hydration chemistry of hydrogel for high-efficiency solar-driven interfacial desalination. Adv Mater 35:2207262. https://doi.org/10.1002/adma.202207262

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Peng Lian and Ruihan Yan contributed equally to this work.

Funding

This work was supported by the Scientific and Technological Innovation Strategy Program of Guangdong Province: Guangdong-Hong Kong-Macao Technology Cooperation Funding Scheme (No. 2022A0505030026). Y. Chen acknowledges the support from National Natural Science Foundation of China (No. U20A20299) and Guangdong Special Support Program (No. 2017TX04N371).

Author information

Authors and Affiliations

Authors

Contributions

Peng Lian: methodology, investigation, data curation, writing—original draft, writing—review and editing; Ruihan Yan: validation, investigation, writing—review and editing; Zhiguo Wu: validation, simulation; Zhibin Wang: supervision, project administration, simulation, writing—review and editing; Li Zhang: resources, investigation; Ying Chen: resources, funding acquisition; Xinxin Sheng: review and editing, project administration, supervision, formal analysis, funding acquisition.

Corresponding authors

Correspondence to Zhibin Wang or Xinxin Sheng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: The name of the author "Zhinbin" was corrected. Full information regarding the corrections made can be found in the erratum/correction for this article.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1505 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lian, P., Yan, R., Wu, Z. et al. Thermal performance of novel form-stable disodium hydrogen phosphate dodecahydrate-based composite phase change materials for building thermal energy storage. Adv Compos Hybrid Mater 6, 74 (2023). https://doi.org/10.1007/s42114-023-00655-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-023-00655-y

Keywords

Navigation