Skip to main content

Advertisement

Log in

Development of novel biomass hybrid aerogel supported composite phase change materials with improved light-thermal conversion and thermal energy storage capacity

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Phase change materials (PCMs) have shown great application potential in sustainable energy utilization. The green preparation and efficient application are both focus of PCMs in research. In this paper, without any carbonized process under high temperature, bio-based sodium alginate (SA) and different content of ZrP nanosheets modified by PDA were used to prepare intrinsic framework materials (SA@ZrP) with sensitive lighting absorbance. Polyethylene glycol (PEG)/SA@ZrP with shape stability was fabricated via the vacuum impregnation method. Among them, CPCM5 (SA:PDA@ZrP = 50:50) exhibited excellent thermal storage and cycling stability. Compared with CPCM0 (SA:PDA@ZrP = 100:0), the melting enthalpy (159.8 J/g) and freezing enthalpy (159.3 J/g) of CPCM5 increased 16.8% and 15.4%, respectively. After 100 thermal cycles, there was no significant difference in the latent heat during meting (159.02 J/g) and freezing (157.36 J/g) process. Superior light-thermal performance of CPCM5 also performed during photothermal conversion. Therefore, with the environmentally friendly and low-cost prepared process while excellent thermal properties, PEG/SA@ZrP shows widen application prospects in the photothermal storage and conversion field.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Tan B, Huang Z, Yin Z et al (2016) Preparation and thermal properties of shape-stabilized composite phase change materials based on polyethylene glycol and porous carbon prepared from potato. RSC Adv 6:15821–15830. https://doi.org/10.1039/C5RA25685B

    Article  CAS  Google Scholar 

  2. Anisur MR, Mahfuz MH, Kibria MA et al (2013) Curbing global warming with phase change materials for energy storage. Renew Sustain Energy Rev 18:23–30. https://doi.org/10.1016/j.rser.2012.10.014

    Article  Google Scholar 

  3. Omer AM (2008) Energy, environment and sustainable development. Renew Sustain Energy Rev 12:2265–2300. https://doi.org/10.1016/j.rser.2007.05.001

    Article  CAS  Google Scholar 

  4. Wei D, Wu C, Jiang G et al (2021) Lignin-assisted construction of well-defined 3D graphene aerogel/PEG form-stable phase change composites towards efficient solar thermal energy storage. Sol Energy Mater Sol Cells 224:111013. https://doi.org/10.1016/j.solmat.2021.111013

    Article  CAS  Google Scholar 

  5. Hu X, Zhu C, Wu H et al (2022) Large-scale preparation of flexible phase change composites with synergistically enhanced thermally conductive network for efficient low-grade thermal energy recovery and utilization. Compos A Appl Sci Manuf 154:106770. https://doi.org/10.1016/j.compositesa.2021.106770

    Article  CAS  Google Scholar 

  6. Huang J, Lyu S, Han H et al (2022) Enhanced looping biomass/vapour gasification utilizing waste heat from molten copper slags. Energy. https://doi.org/10.1016/j.energy.2022.123962

    Article  Google Scholar 

  7. Pan D, Yang G, Abo-Dief HM et al (2022) Vertically aligned silicon carbide nanowires/boron nitride cellulose aerogel networks enhanced thermal conductivity and electromagnetic absorbing of epoxy composites. Nano-Micro Lett 14:118. https://doi.org/10.1007/s40820-022-00863-z

    Article  CAS  Google Scholar 

  8. Barra PHA, de Carvalho WC, Menezes TS et al (2021) A review on wind power smoothing using high-power energy storage systems. Renew Sustain Energy Rev 137:110455. https://doi.org/10.1016/j.rser.2020.110455

    Article  Google Scholar 

  9. Gupta B, Bhalavi J, Sharma S, Bisen A (2021) Phase change materials in solar energy applications: a review. Materials Today: Proceedings 46:5550–5554. https://doi.org/10.1016/j.matpr.2020.09.343

    Article  CAS  Google Scholar 

  10. Li Y, Liu Y, Hu B et al (2020) Numerical investigation of a novel approach to coupling compressed air energy storage in aquifers with geothermal energy. Appl Energy 279:115781. https://doi.org/10.1016/j.apenergy.2020.115781

    Article  Google Scholar 

  11. Hu X, Huang H, Hu Y et al (2021) Novel bio-based composite phase change materials with reduced graphene oxide-functionalized spent coffee grounds for efficient solar-to-thermal energy storage. Sol Energy Mater Sol Cells 219:110790. https://doi.org/10.1016/j.solmat.2020.110790

    Article  CAS  Google Scholar 

  12. Liu C, Xu D, Weng J et al (2020) Phase change materials application in battery thermal management system: a review. Materials 13:4622. https://doi.org/10.3390/ma13204622

    Article  CAS  Google Scholar 

  13. Bao X, Yang H, Xu X et al (2020) Development of a stable inorganic phase change material for thermal energy storage in buildings. Sol Energy Mater Sol Cells 208:110420. https://doi.org/10.1016/j.solmat.2020.110420

    Article  CAS  Google Scholar 

  14. Singh P, Sharma RK, Ansu AK, Goyal R (2020) Study on thermal properties of organic phase change materials for energy storage. Materials Today: Proceedings 28:2353–2357. https://doi.org/10.1016/j.matpr.2020.04.640

    Article  CAS  Google Scholar 

  15. Alva G, Lin Y, Liu L, Fang G (2017) Synthesis, characterization and applications of microencapsulated phase change materials in thermal energy storage: a review. Energy and Buildings 144:276–294. https://doi.org/10.1016/j.enbuild.2017.03.063

    Article  Google Scholar 

  16. Wijesena RN, Tissera ND, Rathnayaka VWSG et al (2020) Shape-stabilization of polyethylene glycol phase change materials with chitin nanofibers for applications in “smart” windows. Carbohyd Polym 237:116132. https://doi.org/10.1016/j.carbpol.2020.116132

    Article  CAS  Google Scholar 

  17. Liu S, Sheng M, Wu H et al (2022) Biological porous carbon encapsulated polyethylene glycol-based phase change composites for integrated electromagnetic interference shielding and thermal management capabilities. J Mater Sci Technol 113:147–157. https://doi.org/10.1016/j.jmst.2021.11.008

    Article  Google Scholar 

  18. Tao Z, Chen X, Yang M et al (2020) Three-dimensional rGO@sponge framework/paraffin wax composite shape-stabilized phase change materials for solar-thermal energy conversion and storage. Sol Energy Mater Sol Cells 215:110600. https://doi.org/10.1016/j.solmat.2020.110600

    Article  CAS  Google Scholar 

  19. Graham M, Shchukina E, De Castro PF, Shchukin D (2016) Nanocapsules containing salt hydrate phase change materials for thermal energy storage. J Mater Chem A 4:16906–16912. https://doi.org/10.1039/C6TA06189C

    Article  CAS  Google Scholar 

  20. Wan X, Zhang H, Chen C et al (2020) Synthesis and characterization of phase change materials microcapsules with paraffin core/cross-linked hybrid polymer shell for thermal energy storage. J Energy Storage 32:101897. https://doi.org/10.1016/j.est.2020.101897

    Article  Google Scholar 

  21. Wang T, Wang S, Geng L, Fang Y (2016) Enhancement on thermal properties of paraffin/calcium carbonate phase change microcapsules with carbon network. Appl Energy 179:601–608. https://doi.org/10.1016/j.apenergy.2016.07.026

    Article  CAS  Google Scholar 

  22. Huang J, Wu B, Lyu S et al (2021) Improving the thermal energy storage capability of diatom-based biomass/polyethylene glycol composites phase change materials by artificial culture methods. Sol Energy Mater Sol Cells 219:110797. https://doi.org/10.1016/j.solmat.2020.110797

    Article  CAS  Google Scholar 

  23. Wei X, Jin X, Zhang N et al (2021) Constructing cellulose nanocrystal/graphene nanoplatelet networks in phase change materials toward intelligent thermal management. Carbohyd Polym 253:117290. https://doi.org/10.1016/j.carbpol.2020.117290

    Article  CAS  Google Scholar 

  24. He L, Mo S, Lin P et al (2020) D-mannitol@silica/graphene oxide nanoencapsulated phase change material with high phase change properties and thermal reliability. Appl Energy 268:115020. https://doi.org/10.1016/j.apenergy.2020.115020

    Article  CAS  Google Scholar 

  25. Ma Y, Huang H, Zhou H et al (2021) Superior anti-corrosion and self-healing bi-functional polymer composite coatings with polydopamine modified mesoporous silica/graphene oxide. J Mater Sci Technol 95:95–104. https://doi.org/10.1016/j.jmst.2021.04.019

    Article  CAS  Google Scholar 

  26. Yang Z, Deng Y, Li J (2019) Preparation of porous carbonized woods impregnated with lauric acid as shape-stable composite phase change materials. Appl Therm Eng 150:967–976. https://doi.org/10.1016/j.applthermaleng.2019.01.063

    Article  CAS  Google Scholar 

  27. Sheng X, Dong D, Lu X et al (2020) MXene-wrapped bio-based pomelo peel foam/polyethylene glycol composite phase change material with enhanced light-to-thermal conversion efficiency, thermal energy storage capability and thermal conductivity. Compos A Appl Sci Manuf 138:106067. https://doi.org/10.1016/j.compositesa.2020.106067

    Article  CAS  Google Scholar 

  28. Gong S, Sheng X, Li X et al (2022) A multifunctional flexible composite film with excellent multi-source driven thermal management, electromagnetic interference shielding, and fire safety performance, inspired by a “brick–mortar” sandwich structure. Adv Funct Materials. https://doi.org/10.1002/adfm.202200570

    Article  Google Scholar 

  29. Benchakar M, Loupias L, Garnero C et al (2020) One MAX phase, different MXenes: a guideline to understand the crucial role of etching conditions on Ti3C2Tx surface chemistry. Appl Surf Sci 530:147209. https://doi.org/10.1016/j.apsusc.2020.147209

    Article  CAS  Google Scholar 

  30. Zhao Y, Min X, Huang Z et al (2018) Honeycomb-like structured biological porous carbon encapsulating PEG: a shape-stable phase change material with enhanced thermal conductivity for thermal energy storage. Energy and Buildings 158:1049–1062. https://doi.org/10.1016/j.enbuild.2017.10.078

    Article  Google Scholar 

  31. Hayashi A, Fukui H, Nakayama H, Tsuhako M (2020) Adsorption of gaseous aromatic compounds by linear quaternary ammonium-modified γ-zirconium phosphate. Appl Clay Sci 187:105480. https://doi.org/10.1016/j.clay.2020.105480

    Article  CAS  Google Scholar 

  32. Sheng X, Mo R, Ma Y et al (2019) Waterborne epoxy resin/polydopamine modified zirconium phosphate nanocomposite for anticorrosive coating. Ind Eng Chem Res 58:16571–16580. https://doi.org/10.1021/acs.iecr.9b02557

    Article  CAS  Google Scholar 

  33. Bermúdez RA, Arce R, Colón JL (2005) Photolysis of 1-pyrenemethylamine ion-exchanged into a zirconium phosphate framework. J Photochem Photobiol, A 175:201–206. https://doi.org/10.1016/j.jphotochem.2005.05.002

    Article  CAS  Google Scholar 

  34. Martı´ AA, Paralitici G, Maldonado L, Colón JL (2007) Photophysical characterization of methyl viologen ion-exchanged within a zirconium phosphate framework. Inorg Chim Acta 360:1535–1542. https://doi.org/10.1016/j.ica.2006.08.052

    Article  CAS  Google Scholar 

  35. Luo Y, Xie D, Chen Y et al (2019) Synergistic effect of ammonium polyphosphate and α-zirconium phosphate in flame-retardant poly(vinyl alcohol) aerogels. Polym Degrad Stab 170:109019. https://doi.org/10.1016/j.polymdegradstab.2019.109019

    Article  CAS  Google Scholar 

  36. Yang J, Qi G-Q, Tang L-S et al (2016) Novel photodriven composite phase change materials with bioinspired modification of BN for solar-thermal energy conversion and storage. J Mater Chem A 4:9625–9634. https://doi.org/10.1039/C6TA03733J

    Article  CAS  Google Scholar 

  37. Wang X, Zhang J, Wang Y et al (2016) Multi-responsive photothermal-chemotherapy with drug-loaded melanin-like nanoparticles for synergetic tumor ablation. Biomaterials 81:114–124. https://doi.org/10.1016/j.biomaterials.2015.11.037

    Article  CAS  Google Scholar 

  38. Liu F, He X, Lei Z et al (2015) Facile Preparation of doxorubicin-loaded upconversion@polydopamine nanoplatforms for simultaneous in vivo multimodality imaging and chemophotothermal synergistic therapy. Adv Healthcare Mater 4:559–568. https://doi.org/10.1002/adhm.201400676

    Article  CAS  Google Scholar 

  39. Xie Y, Li W, Huang H et al (2020) Bio-based radish@PDA/PEG sandwich composite with high efficiency solar thermal energy storage. ACS Sustainable Chem Eng 8:8448–8457. https://doi.org/10.1021/acssuschemeng.0c02959

    Article  CAS  Google Scholar 

  40. Liang C, Song P, Gu H et al (2017) Nanopolydopamine coupled fluorescent nanozinc oxide reinforced epoxy nanocomposites. Compos A Appl Sci Manuf 102:126–136. https://doi.org/10.1016/j.compositesa.2017.07.030

    Article  CAS  Google Scholar 

  41. Cheng W, Nie J, Xu L et al (2017) pH-Sensitive delivery vehicle based on folic acid-conjugated polydopamine-modified mesoporous silica nanoparticles for targeted cancer therapy. ACS Appl Mater Interfaces 9:18462–18473. https://doi.org/10.1021/acsami.7b02457

    Article  CAS  Google Scholar 

  42. Wang X, Wang C, Wang X et al (2017) A polydopamine nanoparticle-knotted poly(ethylene glycol) hydrogel for on-demand drug delivery and chemo-photothermal therapy. Chem Mater 29:1370–1376. https://doi.org/10.1021/acs.chemmater.6b05192

    Article  CAS  Google Scholar 

  43. Gao X, Guo C, Hao J et al (2020) Adsorption of heavy metal ions by sodium alginate based adsorbent-a review and new perspectives. Int J Biol Macromol 164:4423–4434. https://doi.org/10.1016/j.ijbiomac.2020.09.046

    Article  CAS  Google Scholar 

  44. Hu H, Martin JC, Xiao M et al (2011) Immobilization of ionic liquids in layered compounds via mechanochemical intercalation. J Phys Chem C 115:5509–5514. https://doi.org/10.1021/jp111646d

    Article  CAS  Google Scholar 

  45. Li W, Zhai D, Gu Y et al (2022) 3D zirconium phosphate/polyvinyl alcohol composite aerogels for form-stable phase change materials with brilliant thermal energy storage capability. Sol Energy Mater Sol Cells 239:111681. https://doi.org/10.1016/j.solmat.2022.111681

    Article  CAS  Google Scholar 

  46. Ml L, Hw H, Rb M et al (2021) Single-step exfoliation, acidification and covalent functionalization of α-zirconium phosphate for enhanced anticorrosion of waterborne epoxy coatings. Surfaces and Interfaces 23:100887. https://doi.org/10.1016/j.surfin.2020.100887

    Article  CAS  Google Scholar 

  47. Fang Y, Liu S, Li X et al (2022) Biomass porous potatoes/MXene encapsulated PEG-based PCMs with improved photo-to-thermal conversion capability. Sol Energy Mater Sol Cells 237:111559. https://doi.org/10.1016/j.solmat.2021.111559

    Article  CAS  Google Scholar 

  48. Zangmeister RA, Morris TA, Tarlov MJ (2013) Characterization of polydopamine thin films deposited at short times by autoxidation of dopamine. Langmuir 29:8619–8628. https://doi.org/10.1021/la400587j

    Article  CAS  Google Scholar 

  49. Tian Y, Liu Y, Zhang L et al (2020) Preparation and characterization of gelatin-sodium alginate/paraffin phase change microcapsules. Colloids Surf, A 586:124216. https://doi.org/10.1016/j.colsurfa.2019.124216

    Article  CAS  Google Scholar 

  50. Chen C, Liu W, Wang H, Peng K (2015) Synthesis and performances of novel solid–solid phase change materials with hexahydroxy compounds for thermal energy storage. Appl Energy 152:198–206. https://doi.org/10.1016/j.apenergy.2014.12.004

    Article  CAS  Google Scholar 

  51. Zhang H-C, Kang B, Sheng X, Lu X (2019) Novel bio-based pomelo peel flour/polyethylene glycol composite phase change material for thermal energy storage. Polymers 11:2043. https://doi.org/10.3390/polym11122043

    Article  CAS  Google Scholar 

  52. Li Y, Liu R, Huang Y (2008) Synthesis and phase transition of cellulose- graft -poly(ethylene glycol) copolymers. J Appl Polym Sci 110:1797–1803. https://doi.org/10.1002/app.28541

    Article  CAS  Google Scholar 

  53. Chen Y, Cui Z, Ding H et al (2018) Cost-effective biochar produced from agricultural residues and its application for preparation of high performance form-stable phase change material via simple method. IJMS 19:3055. https://doi.org/10.3390/ijms19103055

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 52003111) and the Science and Technology Planning Project of Guangdong Province (No. 2016A010103038); the work was also financially supported by the special funds of key disciplines construction from Guangdong and Zhongshan cooperating; J. H. acknowledges the support from the Opening Project of Key Laboratory of Polymer Processing Engineering (South China University of Technology), Ministry of Education, (Grant No. KFKT2001). The authors acknowledge the financial support of Taif University Researchers Supporting Project number (TURSP-2020/158), Taif University, Taif, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jintao Huang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, D., Weng, M., Mahmoud, M.H.H. et al. Development of novel biomass hybrid aerogel supported composite phase change materials with improved light-thermal conversion and thermal energy storage capacity. Adv Compos Hybrid Mater 5, 1910–1921 (2022). https://doi.org/10.1007/s42114-022-00519-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-022-00519-x

Keywords

Navigation