Skip to main content

Advertisement

Log in

A Novel Layered Double Hydroxide and Dodecyl Alcohol Assisted PCM Composite with High Latent Heat Storage Capacity and Thermal Conductivity

  • Published:
Journal of Thermal Science Aims and scope Submit manuscript

Abstract

Dodecyl alcohol (DDA) is a promising solid-liquid phase change material (PCM) due to its favorable latent heat storage (LHS) characteristics. However, the leakage issue of PCM in a melted state during the heating period and low thermal conductivity restricts its utilization potential in thermal energy storage (TES) practices. Within the same context, the present work aims to overcome the leakage issue and improve the thermal conductivity of the DDA. With this in mind, a novel leak-proof layered double hydroxide (LDH)/DDA composite PCM is proposed through a solution-based impregnation method. The leak-proof impregnation ratio of the DDA impregnated within the cavities of the synthesized Al/Fe-LDH was determined to be 60%. Detailed morphological, physicochemical, and thermal properties of the fabricated composite were studied by scanning electron microscopy (SEM), Fourier transforms infrared (FTIR) spectroscopy, X-ray diffraction (XRD) spectroscopy, differential scanning calorimetry (DSC), thermalgravimetric analysis (TGA), and thermal cycling study. The results show that the LDH/DDA composite has a suitable phase change temperature (about 20°C) for passive solar thermal management of building envelopes. This composite PCM showed high LHS enthalpy (about 136 J/g), good thermal stability, and cycling LHS reliability. It also showed nearly 152% higher thermal conductivity compared to that of pure DDA, ultimately reducing the melting and solidification time of the pure DDA by 44.9% and 45.5%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kee S.Y., Munusamy Y., Ong K.S., Review of solar water heaters incorporating solid-liquid organic phase change materials as thermal storage. Applied Thermal Engineering, 2018, 131: 455–471.

    Article  CAS  Google Scholar 

  2. Samylingam I., Kadirgama K, Aslfattahi N., Samylingam L., Ramasamy D., Harun W.S.W., Samykano M., Saidu R., Review on thermal energy storage and eutectic nitrate salt melting point. IOP Conference Series: Materials Science and Engineering, 2021, 1078: 012034.

    Article  CAS  Google Scholar 

  3. Su W., Darkwa J., Kokogiannakis G., Review of solid-liquid phase change materials and their encapsulation technologies. Renewable and Sustainable Energy Reviews, 2015, 48: 373–391.

    Article  CAS  Google Scholar 

  4. Lv P., Liu C., Rao Z., Review on clay mineral-based form-stable phase change materials: preparation, characterization and applications. Renewable and Sustainable Energy Reviews, 2017, 68: 707–726.

    Article  CAS  Google Scholar 

  5. Huang X., Chen X., Li A., Atinafu D., Gao H., Dong W., Wang G., Shape-stabilized phase change materials based on porous supports for thermal energy storage applications. Chemical Engineering Journal, 2019, 356: 641–661.

    Article  CAS  Google Scholar 

  6. Drissi S., Ling T.-C., Mo K.H., Eddhahak A., A review of microencapsulated and composite phase change materials: Alteration of strength and thermal properties of cement-based materials, Renewable and Sustainable Energy Reviews, 2019, 110: 467–484.

    Article  CAS  Google Scholar 

  7. Li C., Yu H., Song Y., Wang M., Liu Z., A n-octadecane/hierarchically porous TiO2 formstable PCM for thermal energy storage. Renewable Energy, 2020, 145: 1465–1473.

    Article  CAS  Google Scholar 

  8. Yuan P., Zhang P., Liang T., Zhai S., Yang D., Effects of functionalization on energy storage properties and thermal conductivity of graphene/n-octadecane composite phase change materials. Journal of Materials Science, 2019, 54: 1488–1501.

    Article  ADS  CAS  Google Scholar 

  9. Liu Z., Chen Z., Yu F., Enhanced thermal conductivity of microencapsulated phase change materials based on graphene oxide and carbon nanotube hybrid filler. Solar Energy Materials & Solar Cells, 2019, 192: 72–80.

    Article  CAS  Google Scholar 

  10. Li W.-W., Cheng W.-L., Xie B., Liu N., Zhang L.-S., Thermal sensitive flexible phase change materials with high thermal conductivity for thermal energy storage. Energy Conversion and Management, 2017, 149: 1–12.

    Article  CAS  Google Scholar 

  11. Samimi F., Babapoor A., Azizi M., Karimi G., Thermal management analysis of a Li-ion battery cell using phase change material loaded with carbon fibers. Energy, 2016, 96: 355–371.

    Article  CAS  Google Scholar 

  12. Chen X., Gao H., Tang Z., Wang G., Metal-organic framework-based phase change materials for thermal energy storage. Cell Reports Physical Science, 2020, 1: 100218.

    Article  CAS  Google Scholar 

  13. Rives V., Ulibarri M.A., Layered double hydroxides (LDH) intercalated with metal coordination compounds and oxometalates. Coordination Chemistry Reviews, 1999, 181: 61–120.

    Article  CAS  Google Scholar 

  14. Wang D.-Y., Das A., Leuteritz A., Mahaling R.N., Jehnichen D., Wagenknecht U., Heinrich G., Structural characteristics and flammability of fire retarding EPDM/layered double hydroxide (LDH) nanocomposites. RSC Advances, 2012, 2: 3927–3933.

    Article  ADS  CAS  Google Scholar 

  15. Cao L., Guo J., Tian J., Xu Y., Hu M., Wang M., Fan J., Preparation of Ca/Al-Layered Double Hydroxide and the influence of their structure on early strength of cement. Construction and Building Materials, 2018, 184: 203–214.

    Article  CAS  Google Scholar 

  16. Xu S., Chen Z., Zhang B., Yu J., Zhang F., Evans D.G., Facile preparation of pure CaAllayered double hydroxides and their application as a hardening accelerator in concrete, Chemical Engineering Journal, 2009, 155 (3): 881–885.

    Article  CAS  Google Scholar 

  17. Guan X., Li H., Luo S., Liu X., Zhang J., Influence of LiAl-layered double hydroxides with 3D micro-nano structures on the properties of calcium sulphoaluminate cement clinker. Cement and Concrete Composites, 2016, 70: 15–23.

    Article  CAS  Google Scholar 

  18. Ezoddin M., Adlnasab L., Afshari Kaveh A.A., Karimi M.A., Mahjoob B., Development of air-assisted dispersive micro-solidphase extraction-based supramolecular solvent-mediated Fe3O4@Cu−Fe−LDH for the determination of tramadol in biological samples. Biomedical Chromatography, 2019, 33(9): 4572–4582.

    Article  Google Scholar 

  19. Laipan M., Yu J., Zhu R., Zhu J., Smith A.T., He H., O’Hare D., Sun L., Functionalized layered double hydroxides for innovative applications. Materials Horizons, 2020, 7: 715–745.

    Article  CAS  Google Scholar 

  20. Zhu S., Ji T., Yang B., Yang Z., Preparation and characterization of PEG/surface modified layered double hydroxides as a new shape-stabilized phase change material. RSC Advances, 2019, 9: 23435–23443.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang P., Kang M., Hu Y., Influence of layered zinc hydroxide nitrate on thermal properties of paraffin/intumescent flame retardant as a phase change material. Journal of Thermal Analysis and Calorimetry, 2013, 112: 1199–1205.

    Article  CAS  Google Scholar 

  22. Zhao P.-P., Deng C., Zhao Z.-Y., Huang S.-C., Lu P., Wang Y.-Z., Nanoflake-constructed supramolecular hierarchical porous microspheres for fire-safety and highly efficient thermal energy storage. ACS Applied Materials & Interfaces, 2020, 12: 28700–28710.

    Article  CAS  Google Scholar 

  23. Zhu S., Ji T., Niud D., Yang Z., Investigation of PEG/mixed metal oxides as a new form-stable phase change material for thermoregulation and improved UV aging resistance of bitumen. RSC Advances, 2020, 10: 44903–44911.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhu S., Ji T., Yang B., Yang Z., Preparation and characterization of PEG/surface-modified layered double hydroxides as a new shape-stabilized phase change material. RSC Advances, 2019, 9: 23435–23443.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. El-Reesh G.Y.A., Farghali A.A., Taha M., Mahmoud R.K., Novel synthesis of Ni/Fe layered double hydroxides using urea and glycerol and their enhanced adsorption behavior for Cr(VI) removal. Scientific Reports, 2020, 10: 587.

    Article  ADS  Google Scholar 

  26. Bouree F., Baudour J.L., Elbadraoui E., Musso J., Laurent C., Rousset A., Crystal and magnetic structure of piezoelectric, ferrimagnetic and magnetoelectric aluminium iron oxide FeAlO3 from neutron powder diffraction. Acta Crystallographica, 1996, B52: 217–222.

    Article  ADS  CAS  Google Scholar 

  27. Coates J., Interpretation of infrared spectra, a practical approach, ed., Meyers R.A., Encyclopedia of Analytical Chemistry, John Wiley & Sons Ltd., 2000.

  28. Cheng Q.Q., Cao Y., Yang L., Zhang P.P., Wang K., Wang H.J., Synthesis and photocatalytic activity of titania microspheres with hierarchical structures. Materials Research Bulletin, 2011, 46(3): 372–377.

    Article  CAS  Google Scholar 

  29. Nor H.M., Ebdon J.R., Ozonolysis of natural rubber in chloroform solution Part 1. A study by GPC and FTIR spectroscopy. Polymer, 2000, 41(7): 2359–2365.

    Article  CAS  Google Scholar 

  30. Sahoo N.G., Bao H., Pan Y., Pal M., Kakran M., Kuo H., Cheng F., Li L., Tan L.P., Functionalized carbon nanomaterials as nanocarriers for loading and delivery of poorly water soluble anticancer drug: a comparative study, Chemical Communications. The Royal Society of Chemistry, 2011, 47: 5235–5237.

    CAS  Google Scholar 

  31. Cárdenas-Ramírez C., Jaramillo F., Fernández A.G., Cabeza L.F., Gómez M.A., Influence of thermal treatments on the absorption and thermal properties of a clay mineral support used for shape-stabilization of fatty acids. Journal of Energy Storage, 2021, 36: 102427.

    Article  Google Scholar 

  32. Li M., Zhou D., Jiang Y., Preparation and thermal storage performance of phase change ceramsite sand and thermal storage light-weight concrete. Renewable Energy, 2021, 175: 143–152.

    Article  CAS  Google Scholar 

  33. Wen R., Huang Z., Huang Y., Zhang X., Min X., Fang M., Liu Y., Wu X., Synthesis and characterization of lauric acid/expanded vermiculite as form-stabilized thermal energy storage materials. Energy and Buildings, 2016, 116(15): 677–683.

    Article  Google Scholar 

  34. Ahmet S., Ali K., Preparation, thermal properties and thermal reliability of capric acid/expanded perlite composite for thermal energy storage. Materials Chemistry and Physics, 2008, 109: 459–464.

    Article  Google Scholar 

  35. Memon S.A., Lo T.Y., Shi X., Barbhuiya S., Cui H., Preparation, characterization and thermal properties of Lauryl alcohol/Kaolin as novel form-stable composite phase change material for thermal energy storage in buildings. Applied Thermal Engineering, 2013, 59: 336–347.

    Article  Google Scholar 

  36. Shi J., Li M., Lightweight mortar with paraffin/expanded vermiculite-diatomite composite phase change materials: Development, characterization and year-round thermoregulation performance. Solar Energy, 2021, 220: 331–334.

    Article  ADS  CAS  Google Scholar 

  37. Wen R., Zhang X., Huang Y., Yin Z., Huang Z., Fang M., Liu Y., Wu X., Preparation and properties of fatty acid eutectics/expanded perlite and expanded vermiculite shape-stabilized materials for thermal energy storage in buildings. Energy and Buildings, 2017, 139: 197–204.

    Article  Google Scholar 

  38. Sari A., Al-Ahmed A., Bicer A., Al-Sulaiman F.A., Hekimouglu G., Investigation of thermal properties and enhanced energy storage/release performance of silica fume/myristic acid composite doped with carbon nanotubes. Renewable Energy, 2019, 140: 779–788.

    Article  CAS  Google Scholar 

  39. Shen Q., Ouyang J., Zhang Y., Yang H., Lauric acid/modified sepiolite composite as a form-stable phase change material for thermal energy storage. Applied Clay Science, 2017, 146: 14–22.

    Article  CAS  Google Scholar 

  40. Khadiran T., Hussein M.Z., Zainal Z., Rusli R., Shape-stabilised n-octadecane/activated carbon nanocomposite phase change material for thermal energy storage. Journal of the Taiwan Institute of Chemical Engineers, 2015, 55: 189–197.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

AL-AHMED Amir, SARI Ahmet, KHAN Firoz, AL-RASHEIDI Masoud, A. ALSULAIMAN Fahad thankfully acknowledge the excellent research facility of the IRC-REPS, KFUPM.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Amir Al-Ahmed or Firoz Khan.

Ethics declarations

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Ahmed, A., Sari, A., Khan, F. et al. A Novel Layered Double Hydroxide and Dodecyl Alcohol Assisted PCM Composite with High Latent Heat Storage Capacity and Thermal Conductivity. J. Therm. Sci. 33, 537–547 (2024). https://doi.org/10.1007/s11630-022-1651-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11630-022-1651-4

Keywords

Navigation