Skip to main content
Log in

Multifunctional phase change composites based on biomass/MXene-derived hybrid scaffolds for excellent electromagnetic interference shielding and superior solar/electro-thermal energy storage

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

With the rapid development of new generations of miniaturized, integrated, and high-power electronic devices, it is particularly important to develop advanced composite materials with efficient thermal management capability and excellent electromagnetic interference (EMI) shielding performance. Herein, an innovative biomass/MXene-derived conductive hybrid scaffold, cellulose nanocrystal (CNC)-konjac glucomannan (KGM)/MXene (CKM), was prepared by freeze-drying and thermal annealing, and then paraffin wax (PW) was encapsulated in CKM using vacuum impregnation method to obtain CNC-KGM/MXene@PW phase change composites (CKMPCCs). The results show that the obtained CKMPCCs possess considerable reusable stabilities, excellent EMI shielding properties, and thermal energy management capacities. Among them, the CKMPCC-6 with 2.3 wt.% MXene exhibits excellent solar-thermal and electro-thermal conversion capabilities. In addition, the EMI shielding effectiveness value is as high as 45.0 dB at 8.2–12.4 GHz and the corresponding melting enthalpy value is 215.7 J/g (relative enthalpy efficiency of 99.9%). In conclusion, the synthesized multifunctional phase change composites provide great potential for integrating outstanding EMI shielding and advanced thermal energy management applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang, Y. L.; Gu, J. W. A perspective for developing polymer-based electromagnetic interference shielding composites. Nano-Micro Lett. 2022, 14, 89.

    Article  Google Scholar 

  2. Ryu, S. H.; Han, Y. K.; Kwon, S. J.; Kim, T.; Jung, B. M.; Lee, S. B.; Park, B. Absorption-dominant, low reflection EMI shielding materials with integrated metal mesh/TPU/CIP composite. Chem. Eng. J. 2022, 428, 131167.

    Article  CAS  Google Scholar 

  3. Qi, F. Q.; Wang, L.; Zhang, Y. L.; Ma, Z. L.; Qiu, H.; Gu, J. W. Robust Ti3C2Tx MXene/starch derived carbon foam composites for superior EMI shielding and thermal insulation. Mater. Today Phys. 2021, 21, 100512.

    Article  CAS  Google Scholar 

  4. Cao, M. S.; Cai, Y. Z.; He, P.; Shu, J. C.; Cao, W. Q.; Yuan, J. 2D MXenes:Electromagnetic property for microwave absorption and electromagnetic interference shielding. Chem. Eng. J. 2019, 359, 1265–1302.

    Article  CAS  Google Scholar 

  5. Ma, Z. L.; Xiang, X. L.; Shao, L.; Zhang, Y. L.; Gu, J. W. Multifunctional wearable silver nanowire decorated leather nanocomposites for joule heating, electromagnetic interference shielding and piezoresistive sensing. Angew. Chem., Int. Ed. 2022, 61, e202200705.

    CAS  Google Scholar 

  6. Lee, S. H.; Yu, S.; Shahzad, F.; Kim, W. N.; Park, C.; Hong, S. M.; Koo, C. M. Density-tunable lightweight polymer composites with dual-functional ability of efficient EMI shielding and heat dissipation. Nanoscale 2017, 9, 13432–13440.

    Article  CAS  Google Scholar 

  7. Han, Y. X.; Ruan, K. P.; Gu, J. W. Janus (BNNS/ANF)−(AgNWs/ANF) thermal conductivity composite films with superior electromagnetic interference shielding and joule heating performances. Nano Res. 2022, 15, 4747–4755.

    Article  CAS  Google Scholar 

  8. Liu, S.; Wu, H.; Du, Y.; Lu, X.; Qu, J. P. Shape-stable composite phase change materials encapsulated by bio-based balsa wood for thermal energy storage. Sol. Energy Mater. Sol. Cells 2021, 230, 111187.

    Article  CAS  Google Scholar 

  9. Du, Y.; Huang, H. W.; Hu, X. P.; Liu, S.; Sheng, X. X.; Li, X. L.; Lu, X.; Qu, J. P. Melamine foam/polyethylene glycol composite phase change material synergistically modified by polydopamine/MXene with enhanced solar-to-thermal conversion. Renewable Energy 2021, 171, 1–10.

    Article  CAS  Google Scholar 

  10. Dashtizadeh, Z.; Abdeali, G.; Bahramian, A. R.; Alvar, M. Z. Enhancement of thermal energy absorption/storage performance of paraffin wax (PW) phase change material by means of chemically synthesized ethylene propylene diene monomer (EPDM) rubber network. J. Energy Storage 2022, 45, 103646.

    Article  Google Scholar 

  11. Wu, H.; Hu, X. P.; Li, X. L.; Sheng, M. J.; Sheng, X. X.; Lu, X.; Qu, J. P. Large-scale fabrication of flexible EPDM/MXene/PW phase change composites with excellent light-to-thermal conversion efficiency via water-assisted melt blending. Compos. Part A 2022, 152, 106713.

    Article  CAS  Google Scholar 

  12. Zhang, S.; Feng, D. L.; Shi, L.; Wang, L.; Jin, Y. G.; Tian, L. M.; Li, Z. Y.; Wang, G. Y.; Zhao, L.; Yan, Y. Y. A review of phase change heat transfer in shape-stabilized phase change materials (ss-PCMs) based on porous supports for thermal energy storage. Renew. Sust. Energ. Rev. 2021, 135, 110127.

    Article  CAS  Google Scholar 

  13. Tao, Z.; Chen, X.; Yang, M.; Xu, X. L.; Sun, Y.; Li, Y. Q.; Wang, J. J.; Wang, G. Three-dimensional RGO@sponge framework/paraffin wax composite shape-stabilized phase change materials for solar-thermal energy conversion and storage. Sol. Energy Mater. Sol. Cells 2020, 215, 110600.

    Article  CAS  Google Scholar 

  14. Chen, G. J.; Su, Y. P.; Jiang, D. Y.; Pan, L. J.; Li, S. An experimental and numerical investigation on a paraffin wax/graphene oxide/carbon nanotubes composite material for solar thermal storage applications. Appl. Energy 2020, 264, 114786.

    Article  CAS  Google Scholar 

  15. Liu, X. J.; Lin, F. K.; Zhang, X. G.; Liu, M. Y.; Sun, Z. H.; Zhang, L. P.; Min, X.; Mi, R. Y.; Huang, Z. H. Paraffin/Ti3C2Tx MXene@Gelatin aerogels composite phase-change materials with high solar-thermal conversion efficiency and enhanced thermal conductivity for thermal energy storage. Energy Fuels 2021, 35, 2805–2814.

    Article  CAS  Google Scholar 

  16. Zhu, G.; Chen, Z. Y.; Wu, B. L.; Lin, N. Dual-enhancement effect of electrostatic adsorption and chemical crosslinking for nanocellulose-based aerogels. Ind. Crops Prod. 2019, 139, 111580.

    Article  CAS  Google Scholar 

  17. Mariano, M.; El Kissi, N.; Dufresne, A. Cellulose nanocrystals and related nanocomposites: Review of some properties and challenges. J. Polym. Sci. Part B:Polym. Phys. 2014, 52, 791–806.

    Article  CAS  Google Scholar 

  18. Su, M. J.; Han, G. J.; Gao, J.; Feng, Y. Z.; He, C. G.; Ma, J. M.; Liu, C. T.; Shen, C. Y. Carbon welding on graphene skeleton for phase change composites with high thermal conductivity for solar-to-heat conversion. Chem. Eng. J. 2022, 427, 131665.

    Article  CAS  Google Scholar 

  19. Liu, Y.; Jia, Z. R.; Zhan, Q. Q.; Dong, Y. H.; Xu, Q. M.; Wu, G. L. Magnetic manganese-based composites with multiple loss mechanisms towards broadband absorption. Nano Res. 2022, 15, 5590–5600.

    Article  CAS  Google Scholar 

  20. Alhabeb, M.; Maleski, K.; Anasori, B.; Lelyukh, P.; Clark, L.; Sin, S.; Gogotsi, Y. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater. 2017, 29, 7633–7644.

    Article  CAS  Google Scholar 

  21. Huang, H. W.; Dong, D. X.; Li, W. J.; Zhang, X. Y.; Zhang, L.; Chen, Y.; Sheng, X. X.; Lu, X. Synergistic effect of MXene on the flame retardancy and thermal degradation of intumescent flame retardant biodegradable poly (lactic acid) composites. Chin. J. Chem. Eng. 2020, 28, 1981–1993.

    Article  CAS  Google Scholar 

  22. Song, P.; Liu, B.; Qiu, H.; Shi, X. T.; Cao, D. P.; Gu, J. W. MXenes for polymer matrix electromagnetic interference shielding composites: A review. Compos. Commun. 2021, 24, 100653.

    Article  Google Scholar 

  23. Liu, H. B.; Fu, R. L.; Su, X. Q.; Wu, B. Y.; Wang, H.; Xu, Y.; Liu, X. H. MXene confined in shape-stabilized phase change material combining enhanced electromagnetic interference shielding and thermal management capability. Compos. Sci. Technol. 2021, 210, 108835.

    Article  CAS  Google Scholar 

  24. Wang, D. B.; Fang, Y. X.; Yu, W.; Wang, L. L.; Xie, H. Q.; Yue, Y. N. Significant solar energy absorption of MXene Ti3C2Tx nanofluids via localized surface plasmon resonance. Sol. Energy Mater. Sol. Cells 2021, 220, 110850.

    Article  CAS  Google Scholar 

  25. Zhang, Y. L.; Ma, Z. L.; Ruan, K. P.; Gu, J. W. Multifunctional Ti3C2Tx−(Fe3O4/polyimide) composite films with Janus structure for outstanding electromagnetic interference shielding and superior visual thermal management. Nano Res. 2022, 15, 5601–5609.

    Article  CAS  Google Scholar 

  26. Sheng, X. X.; Dong, D. X.; Lu, X.; Zhang, L.; Chen, Y. MXene-wrapped bio-based pomelo peel foam/polyethylene glycol composite phase change material with enhanced light-to-thermal conversion efficiency, thermal energy storage capability and thermal conductivity. Compos. Part A 2020, 138, 106067.

    Article  CAS  Google Scholar 

  27. Wang, L.; Ma, Z. L.; Zhang, Y. L.; Chen, L. X.; Cao, D. P.; Gu, J. W. Polymer-based EMI shielding composites with 3D conductive networks: A mini-review. SusMat 2021, 1, 413–431.

    Article  Google Scholar 

  28. Dong, J. W.; Luo, S. L.; Ning, S. P.; Yang, G.; Pan, D.; Ji, Y. X.; Feng, Y. Z.; Su, F. M.; Liu, C. T. MXene-coated wrinkled fabrics for stretchable and multifunctional electromagnetic interference shielding and electro/photo-thermal conversion applications. ACS Appl. Mater. Interfaces 2021, 13, 60478–60488.

    Article  CAS  Google Scholar 

  29. Singh, A. K.; Shishkin, A.; Koppel, T.; Gupta, N. A review of porous lightweight composite materials for electromagnetic interference shielding. Compos. Part B 2018, 149, 188–197.

    Article  CAS  Google Scholar 

  30. Liang, C. B.; Qiu, H.; Song, P.; Shi, X. T.; Kong, J.; Gu, J. W. Ultralight MXene aerogel/wood-derived porous carbon composites with wall-like “mortar/brick” structures for electromagnetic interference shielding. Sci. Bull. 2020, 65, 616–622.

    Article  CAS  Google Scholar 

  31. Lu, Z. Q.; Jia, F. F.; Zhuo, L. H.; Ning, D. D.; Gao, K.; Xie, F. Microporous MXene/aramid nanofibers hybrid aerogel with reversible compression and efficient EMI shielding performance. Compos. Part B 2021, 217, 108853.

    Article  CAS  Google Scholar 

  32. Zhang, Y. L.; Yan, Y.; Qiu, H.; Ma, Z. L.; Ruan, K. P.; Gu, J. W. A mini-review of MXene porous films: Preparation, mechanism and application. J. Mater. Sci. Technol. 2022, 103, 42–49.

    Article  Google Scholar 

  33. Liang, L. Y.; Li, Q. M.; Yan, X.; Feng, Y. Z.; Wang, Y. M.; Zhang, H. B.; Zhou, X. P.; Liu, C. T.; Shen, C. Y.; Xie, X. L. Multifunctional magnetic Ti3C2Tx MXene/graphene aerogel with superior electromagnetic wave absorption performance. ACS Nano 2021, 15, 6622–6632.

    Article  CAS  Google Scholar 

  34. Lu, X.; Zheng, Y. F.; Yang, J. L.; Qu, J. P. Multifunctional paraffin wax/carbon nanotube sponge composites with simultaneous high-efficient thermal management and electromagnetic interference shielding efficiencies for electronic devices. Compos. Part B 2020, 199, 108308.

    Article  CAS  Google Scholar 

  35. Zhou, M.; Wang, J. W.; Zhao, Y.; Wang, G. H.; Gu, W. H.; Ji, G. B. Hierarchically porous wood-derived carbon scaffold embedded phase change materials for integrated thermal energy management, electromagnetic interference shielding and multifunctional application. Carbon 2021, 183, 515–524.

    Article  CAS  Google Scholar 

  36. Lin, P. C.; Xie, J. J.; He, Y. D.; Lu, X.; Li, W. J.; Fang, J.; Yan, S. H.; Zhang, L.; Sheng, X. X.; Chen, Y. MXene aerogel-based phase change materials toward solar energy conversion. Sol. Energy Mater. Sol. Cells 2020, 206, 110229.

    Article  CAS  Google Scholar 

  37. He, X. L.; Li, S. H.; Shen, R. B.; Ma, Y. Q.; Zhang, L.; Sheng, X. X.; Chen, Y.; Xie, D. L.; Huang, J. T. A high-performance waterborne polymeric composite coating with long-term anti-corrosive property based on phosphorylation of chitosan-functionalized Ti3C2Tx MXene. Adv. Compos. Hybrid Mater., in Press, https://doi.org/10.1007/s42114-021-00392-0.

  38. Luo, Y.; Xie, Y. H.; Jiang, H.; Chen, Y.; Zhang, L.; Sheng, X. X.; Xie, D. L.; Wu, H.; Mei, Y. Flame-retardant and form-stable phase change composites based on MXene with high thermostability and thermal conductivity for thermal energy storage. Chem. Eng. J. 2021, 420, 130466.

    Article  CAS  Google Scholar 

  39. Xiong, R.; Hu, K. S.; Grant, A. M.; Ma, R. L.; Xu, W. N.; Lu, C. H.; Zhang, X. X.; Tsukruk, V. V. Ultrarobust transparent cellulose nanocrystal-graphene membranes with high electrical conductivity. Adv. Mater. 2016, 28, 1501–1509.

    Article  CAS  Google Scholar 

  40. Wang, J. L.; Wang, Q.; Wu, Y. T.; Bai, F. T.; Wang, H. Q.; Si, S. R.; Lu, Y. F.; Li, X. S.; Wang, S. F. Preparation of cellulose nanofibers from bagasse by phosphoric acid and hydrogen peroxide enables fibrillation via a swelling, hydrolysis, and oxidation cooperative mechanism. Nanomaterials 2020, 10, 2227.

    Article  CAS  Google Scholar 

  41. Jayaramudu, T.; Ko, H. U.; Kim, H. C.; Kim, J. W.; Kim, J. Swelling behavior of polyacrylamide-cellulose nanocrystal hydrogels: Swelling kinetics, temperature, and pH effects. Materials 2019, 12, 2080.

    Article  CAS  Google Scholar 

  42. Li, X. L.; Sheng, X. X.; Guo, Y. Q.; Lu, X.; Wu, H.; Chen, Y.; Zhang, L.; Gu, J. W. Multifunctional HDPE/CNTs/PW composite phase change materials with excellent thermal and electrical conductivities. J. Mater. Sci. Technol. 2021, 86, 171–179.

    Article  CAS  Google Scholar 

  43. Li, S. H.; Huang, H. W.; Chen, F.; He, X. L.; Ma, Y. Q.; Zhang, L.; Sheng, X. X.; Chen, Y.; Shchukina, E.; Shchukin, D. Reinforced anticorrosion performance of waterborne epoxy coating with ecofriendly L-cysteine modified Ti3C2Tx MXene nanosheets. Prog. Org. Coat. 2021, 161, 106478.

    Article  CAS  Google Scholar 

  44. Yang, J.; Jia, Y. L.; Bing, N. C.; Wang, L. L.; Xie, H. Q.; Yu, W. Reduced graphene oxide and zirconium carbide co-modified melamine sponge/paraffin wax composites as new form-stable phase change materials for photothermal energy conversion and storage. Appl. Therm. Eng. 2019, 163, 114412.

    Article  CAS  Google Scholar 

  45. Sobolčiak, P.; Abdelrazeq, H.; Özerkan, N. G.; Ouederni, M.; Nógellová, Z.; AlMaadeed, M. A.; Karkri, M.; Krupa, I. Heat transfer performance of paraffin wax based phase change materials applicable in building industry. Appl. Therm. Eng. 2016, 107, 1313–1323.

    Article  Google Scholar 

  46. Lv, P. Z.; Liu, C. Z.; Rao, Z. H. Experiment study on the thermal properties of paraffin/kaolin thermal energy storage form-stable phase change materials. Appl. Energy 2016, 182, 475–487.

    Article  CAS  Google Scholar 

  47. Luo, Y.; Xiong, S. Y.; Huang, J. T.; Zhang, F.; Li, C. C.; Min, Y. G.; Peng, R. T.; Liu, Y. D. Preparation, characterization and performance of paraffin/sepiolite composites as novel shape-stabilized phase change materials for thermal energy storage. Sol. Energy Mater. Sol. Cells 2021, 231, 111300.

    Article  CAS  Google Scholar 

  48. Li, L. P.; Wang, G.; Guo, C. G. Influence of intumescent flame retardant on thermal and flame retardancy of eutectic mixed paraffin/polypropylene form-stable phase change materials. Appl. Energy 2016, 162, 428–434.

    Article  CAS  Google Scholar 

  49. Wang, Z. K.; Zhang, X. G.; Xu, Y. F.; Chen, G.; Lin, F. K.; Ding, H. Preparation and thermal properties of shape-stabilized composite phase change materials based on paraffin wax and carbon foam. Polymer 2021, 237, 124361.

    Article  CAS  Google Scholar 

  50. Lu, Y.; Xiao, X. D.; Fu, J.; Huan, C. M.; Qi, S.; Zhan, Y. J.; Zhu, Y. Q.; Xu, G. Novel smart textile with phase change materials encapsulated core-sheath structure fabricated by coaxial electrospinning. Chem. Eng. J. 2019, 355, 532–539.

    Article  CAS  Google Scholar 

  51. Zhang, Y. F.; Li, W.; Huang, J. H.; Cao, M.; Du, G. P. Expanded graphite/paraffin/silicone rubber as high temperature form-stabilized phase change materials for thermal energy storage and thermal interface materials. Materials 2020, 13, 894.

    Article  CAS  Google Scholar 

  52. Zhang, Y. Z.; Zheng, S. L.; Zhu, S. Q.; Ma, J. N.; Sun, Z. M.; Farid, M. Evaluation of paraffin infiltrated in various porous silica matrices as shape-stabilized phase change materials for thermal energy storage. Energy Convers. Manage. 2018, 171, 361–370.

    Article  CAS  Google Scholar 

  53. Huang, S.; Wang, L.; Li, Y. C.; Liang, C. B.; Zhang, J. L. Novel Ti3C2Tx MXene/epoxy intumescent fire-retardant coatings for ancient wooden architectures. J. Appl. Polym. Sci. 2021, 138, 50649.

    Article  CAS  Google Scholar 

  54. Li, X. L.; Sheng, M. J.; Gong, S.; Wu, H.; Chen, X. L.; Lu, X.; Qu, J. P. Flexible and multifunctional phase change composites featuring high-efficiency electromagnetic interference shielding and thermal management for use in electronic devices. Chem. Eng. J. 2022, 430, 132928.

    Article  CAS  Google Scholar 

  55. Yang, G. Y.; Wang, S. Z.; Sun, H. T.; Yao, X. M.; Li, C. B.; Li, Y. J.; Jiang, J. J. Ultralight, conductive Ti3C2Tx MXene/PEDOT: PSS hybrid aerogels for electromagnetic interference shielding dominated by the absorption mechanism. ACS Appl. Mater. Interfaces 2021, 13, 57521–57531.

    Article  CAS  Google Scholar 

  56. Song, P.; Ma, Z. L.; Qiu, H.; Ru, Y. F.; Gu, J. W. High-efficiency electromagnetic interference shielding of RGO@FeNi/epoxy composites with regular honeycomb structures. Nano-Micro Lett. 2022, 14, 51.

    Article  CAS  Google Scholar 

  57. Li, Y. L.; Zhang, D.; Zhou, B.; He, C. G.; Wang, B.; Feng, Y. Z.; Liu, C. T. Synergistically enhancing electromagnetic interference shielding performance and thermal conductivity of polyvinylidene fluoride-based lamellar film with MXene and graphene. Compos. Part A 2022, 157, 106945.

    Article  CAS  Google Scholar 

  58. Liu, S.; Sheng, M. J.; Wu, H.; Shi, X. T.; Lu, X.; Qu, J. P. Biological porous carbon encapsulated polyethylene glycol-based phase change composites for integrated electromagnetic interference shielding and thermal management capabilities. J. Mater. Sci. Technol. 2022, 113, 147–157.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. U20A20299). Y. C. acknowledges the support from Guangdong Special Support Program (No. 2017TX04N371).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinxin Sheng.

Electronic Supplementary Material

12274_2022_4626_MOESM1_ESM.pdf

Multifunctional phase change composites based on biomass/MXene-derived hybrid scaffolds for excellent electromagnetic interference shielding and superior solar/electro-thermal energy storage

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Y., Zeng, Z., Huang, D. et al. Multifunctional phase change composites based on biomass/MXene-derived hybrid scaffolds for excellent electromagnetic interference shielding and superior solar/electro-thermal energy storage. Nano Res. 15, 8524–8535 (2022). https://doi.org/10.1007/s12274-022-4626-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4626-6

Keywords

Navigation