Skip to main content
Log in

A novel Ca2+-activated, thermostabilized polyesterase capable of hydrolyzing polyethylene terephthalate from Saccharomonospora viridis AHK190

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Only two polyethylene glycol terephthalate (PET)-degrading enzymes have been reported, and their mechanism for the biochemical degradation of PET remains unclear. To identify a novel PET-degrading enzyme, a putative cutinase gene (cut190) was cloned from the thermophile Saccharomonospora viridis AHK190 and expressed in Escherichia coli Rosetta-gami B (DE3). Mutational analysis indicated that substitution of Ser226 with Pro and Arg228 with Ser yielded the highest activity and thermostability. The Ca2+ ion enhanced the enzyme activity and thermostability of the wild-type and mutant Cut190. Circular dichroism suggested that the Ca2+ changes the tertiary structure of the Cut190 (S226P/R228S), which has optimal activity at 65–75 °C and pH 6.5–8.0 in the presence of 20 % glycerol. The enzyme was stable over a pH range of 5–9 and at temperatures up to 65 °C for 24 h with 40 % activity remaining after incubation for 1 h at 70 °C. The Cut190 (S226P/R228S) efficiently hydrolyzed various aliphatic and aliphatic-co-aromatic polyester films. Furthermore, the enzyme degraded the PET film above 60 °C. Therefore, Cut190 is the novel-reported PET-degrading enzyme with the potential for industrial applications in polyester degradation, monomer recycling, and PET surface modification. Thus, the Cut190 will be a useful tool to elucidate the molecular mechanisms of the PET degradation, Ca2+ activation, and stabilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Arima J, Uesugi Y, Uraji M, Yatsushiro S, Tsuboi S, Iwabuchi M, Hatanaka T (2006) Modulation of Streptomyces leucine aminopeptidase by calcium. J Biol Chem 281:5885–5894

    Article  CAS  PubMed  Google Scholar 

  • Baker PJ, Poultney C, Liu Z, Gross R, Montclare JK (2012) Identification and comparison of cutinases for synthetic polyester degradation. Appl Microbiol Biotechnol 93:229–240

    Article  PubMed  Google Scholar 

  • Bornscheuer UT (2002) Microbial carboxyl esterases: classification, properties and application in biocatalysis. FEMS Microbiol Rev 26:73–81

    Article  CAS  PubMed  Google Scholar 

  • Calabia BP, Tokiwa Y (2004) Microbial degradation of poly(D-3-hydroxybutyrate) by a new thermophilic Streptomyces isolate. Biotechnol Lett 26:15–19

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Tong X, Woodard RW, Du G, Wu J, Chen J (2008) Identification and characterization of bacterial cutinase. J Biol Chem 283:25854–25862

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chiba T, Nakai T (1985) A synthesis approach to (+)-Thenamycin from methyl (R)-(-)-3-hydroxybutanoate. A new entry to (3R. 4R)-3-[(R)-1-hydroxyethyl]-4-acetoxy-2-azetidinone. Chem Lett 14:651–654

    Article  Google Scholar 

  • Gouda MK, Kleeberg I, van den Heuvel J, Muller RJ, Deckwer WD (2002) Production of a polyester degrading extracellular hydrolase from Thermomonospora fusca. Biotechnol Prog 18:927–934

    Article  CAS  PubMed  Google Scholar 

  • Heumann S, Eberl A, Pobeheim H, Liebminger S, Fischer-Colbrie G, Almansa E, Cavaco-Paulo A, Guebitz GM (2006) New model substrates for enzymes hydrolysing polyethyeneterephthalate and polyamide fibres. J Biochem Biophys Methods 39:89–99

    Article  Google Scholar 

  • Hoang KC, Tseng M, Shu WJ (2007) Degradation of polyethylene succinate (PES) by a new thermophilic Microbispora strain. Biodegradation 18:333–342

    Article  CAS  PubMed  Google Scholar 

  • Hu X, Osaki S, Hayashi M, Kaku M, Katuen S, Kobayashi H, Kawai F (2008) Degradation of a terephthalate-containing polyester by thermophilic actinomycetes and Bacillus species derived from composts. J Polym Environ 16:103–108

    Article  CAS  Google Scholar 

  • Hu X, Thumarat U, Zhang X, Tang M, Kawai F (2010) Diversity of polyester-degrading bacteria in compost and molecular analysis of a thermoactive esterase from Thermobifida alba AHK119. Appl Microbiol Biotechnol 87:71–779

    CAS  Google Scholar 

  • Inaba S, Fukada H, Ikegami T, Oda M (2013) Thermodynamic effects of multiple protein conformations on stability and DNA binding. Arch Biochem Biophys 537:225–232

    Article  CAS  PubMed  Google Scholar 

  • Ishii N, Inoue Y, Tagaya T, Mitomo H, Nagai D, Kasuya K (2008) Isolation and characterization of poly(butylene succinate)-degrading fungi. Polym Degrad Stab 93:883–888

    Article  CAS  Google Scholar 

  • Jaeger KE, Steinbüchel A, Jendrossek D (1995) Substrate specificities of bacterial polyhydroxyalkanoate depolymerases and lipases; bacterial lipases hydrolyze poly(omega-hydroxyalkanoates). Appl Environ Microbiol 61:3113–3118

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kawai F, Nakadai K, Nishioka E, Nakajima H, Ohara H, Masaki K, Iefuji H (2011) Different enantioselectivity of two types of poly(lactic acid) depolymerases toward poly(L-lactic acid) and poly(D-lactic acid). Polym Degrad Stab 96:1342–1348

    Article  CAS  Google Scholar 

  • Kikkawa Y, Fujita H, Abe Y, Doi Y (2004) Effect of water on the surface molecular mobility of poly(lactide) thin films: an atomic force microscopy study. Biomacromolecules 5:1187–1193

    Article  CAS  PubMed  Google Scholar 

  • Kitadokoro K, Thumarat U, Nakamura R, Nishimura K, Karatani H, Suzuki H, Kawai F (2012) Crystal structure of cutinase Est119 from Thermobifida alba AHK119 that can degrade modified polyethylene terephthalate at 1.76 Å resolution. Polym Degrad Stab 97:771–775

    Article  CAS  Google Scholar 

  • Kitamoto HK, Shinozaki Y, Cao XH, Morita T, Konishi M, Tago K, Kajiwara H, Koitabashi M, Yoshida S, Watanabe T, Sameshima-Yamashita Y, Nakajima-Kambe T, Tsushima S (2011) Phyllosphere yeasts rapidly break down biodegradable plastics. AMB Express 1:44. doi:10.1186/2191-0855-1-44

    Article  PubMed Central  PubMed  Google Scholar 

  • Kleeberg I, Welzd K, Vaudenheuvel J, Müller RJ, Deckwer WD (2005) Characterization of a new extracellular hydrolase from Thermobifida fusca degrading aliphatic-aromatic copolyesters. Biomacromolecules 6:262–270

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi R, Hirano N, Kanaya S, Saito I, Haruki M (2010) Enhancement of the enzymatic activity of Esherichia coli acetyl esterase by random mutagenesis. J Mol Catal B Enzym 67:155–161

    Article  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680685

    Article  Google Scholar 

  • Lykidis A, Mavromatis K, Ivanova I, Anderson I, Land M, DiBartolo G, Martinez M, Lapidus A, Lucas S, Copeland A, Richardson P, Wilson DB, Kypides N (2007) Genome sequence and analysis of the soil cellulolytic actinomycete Thermobifida fusca YX. J Bacteriol 189:2477–2486

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Müller RJ, Schrader H, Profe J, Dresler K, Deckwer WD (2005) Enzymatic degradation of poly(ethylene terephthalate): rapid hydrolysis using a hydrolase from Thermobifida fusca. Macromol Rapid Commun 26:1400–1405

    Article  Google Scholar 

  • Nakajima-Kambe T, Ichihashi F, Matsuzoe R, Kato S, Shintani N (2009a) Degradation of aliphatic–aromatic copolyesters by bacteria that can degrade aliphatic polyesters. Polym Degrad Stab 94:1901–1905

    Article  CAS  Google Scholar 

  • Nakajima-Kambe T, Toshima K, Saito C, Takaguchi H, Akutsu-Shigeno Y, Sato M, Miyama K, Nomura N, Uchiyama H (2009b) Rapid monomerization of poly(butylene succinate )-co-(butylene adipate) by Leptothrix sp. J Biosci Bioeng 108:513–516

    Article  CAS  PubMed  Google Scholar 

  • Phithakrotchanakoon C, Rudeekit Y, Tanapongpipat S, Leejakpai T, Aiba S, Noda I, Champreda V (2009) Microbial degradation and physico-chemical alteration of polyhydroxyalkanoates by a thermophilic Streptomyces sp. Biologia 64:246–251

    Article  CAS  Google Scholar 

  • Pio TF, Macedo GA (2009) Cutinases: properties and industrial applications. Adv Appl Microbiol 66:77–95

    Article  CAS  PubMed  Google Scholar 

  • Ronkvist Å, Xie W, Lu W, Gross RA (2009) Cutinase-catalyzed hydrolysis of poly(ethylene terephthalate). Macromolecules 42:5128–5138

    Article  CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Shinozaki Y, Kikkawa Y, Sato S, Fukuoka T, Watanabe T, Yoshida S, Nakajima-Kambe T, Kitamoto HK (2013) Enzymatic degradation of polyester films by a cutinase-like enzyme from Pseudozyma antarctica: surface plasmon resonance and atomic force microscopy study. Appl Microbiol Biotechnol 97:8591–8598

    Article  CAS  PubMed  Google Scholar 

  • Silva C, Da S, Silva N, Matama T, Araujo R, Martins M, Chen S, Chen J, Wu J, Casal M, Cavaco-Paulo A (2011) Engineered Thermobifida fusca cutinase with increased activity on polyester substrates. Biotechnol J 6:1–10

    Article  Google Scholar 

  • Sinsereekul N, Wangkam T, Thamchaipenet A, Srikhirin T, Eurwilaichitr L, Champreda V (2010) Recombinant expression of BTA hydrolase in Streptomyces rimosus and catalytic analysis on polyesters by surface plasmon resonance. Appl Microbiol Biotechnol 86:1775–1784

    Article  CAS  PubMed  Google Scholar 

  • Sulaiman S, Yamato S, Kanaya E, Kim J-J, Koga Y, Takano K, Kanaya S (2012) Isolation of a novel cutinase homolog with polyethylene terephthalate-degrading activity from leaf-branch compost by using a metagenomic approach. Appl Environ Microbiol 78:1556–1562

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thumarat U, Nakamura R, Kawabata T, Suzuki H, Kawai F (2012) Biochemical and genetic analysis of a cutinase-type polyesterase from a thermophilic Thermobifida alba AHK119. Appl Microbiol Biotechnol 95:419–430

    Article  CAS  PubMed  Google Scholar 

  • Tokiwa Y, Calabia BP (2007) Biodegradability and biodegradation of polyesters. J Polym Environ 15:259–267

    Article  CAS  Google Scholar 

  • Tokiwa Y, Calabia BP, Ugwu C, Aiba S (2009) Biodegradability of plastics. Int J Mol Sci 10:3722–3742

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Verommen MA, Nierstrasz VA, Veer M, Warmoeskerken MM (2005) Enzymatic surface modification of poly(ethylene terephthalate). J Biotechnol 120:376–386

    Article  Google Scholar 

  • Vieille C, Zeikus GJ (2001) Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol Mol Biol Rev 65:1–43

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zimmermann W, Billig S (2011) Enzymes for the biofunctionalization of poly(ethylene terephthalate). Adv Biochem Eng Biotechnol 125:97–120

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by funding for F. K. from the Institute for Fermentation, Osaka (Japan). We thank Mr. M. Ono (Showa Denko K. K.) for kindly providing agricultural PBSA and PBS films. We acknowledge Mr. Y. Iijima, Mr. T. Matsunami, Mr. T. Takeda, and Ms. M. Nakajima for their technical assistance during this work. Dr. T. Kawabata (Inst. Protein Res., Osaka Univ.) was helpful in the structural analysis of Cut190 via 3D modeling. We are grateful to Dr. A. Sugiyama (Research Institute for Sustainable Humanosphere, Kyoto Univ.) for the LC-IT-TOF-MS analysis. We are also grateful to Dr. H. Nakajima, Center for Fiber and Textile Science, Kyoto Institute of Technology, for his valuable discussion and advice with regard to the whole polymer properties. American Journal Experts (www.aje.com) edited the manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fusako Kawai.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 122 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kawai, F., Oda, M., Tamashiro, T. et al. A novel Ca2+-activated, thermostabilized polyesterase capable of hydrolyzing polyethylene terephthalate from Saccharomonospora viridis AHK190. Appl Microbiol Biotechnol 98, 10053–10064 (2014). https://doi.org/10.1007/s00253-014-5860-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-5860-y

Keywords

Navigation