Skip to main content
Log in

Microbial degradation of aliphatic and aliphatic-aromatic co-polyesters

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Biodegradable plastics (BPs) have attracted much attention since more than a decade because they can easily be degraded by microorganisms in the environment. The development of aliphatic-aromatic co-polyesters has combined excellent mechanical properties with biodegradability and an ideal replacement for the conventional nondegradable thermoplastics. The microorganisms degrading these polyesters are widely distributed in various environments. Although various aliphatic, aromatic, and aliphatic-aromatic co-polyester-degrading microorganisms and their enzymes have been studied and characterized, there are still many groups of microorganisms and enzymes with varying properties awaiting various applications. In this review, we have reported some new microorganisms and their enzymes which could degrade various aliphatic, aromatic, as well as aliphatic-aromatic co-polyesters like poly(butylene succinate) (PBS), poly(butylene succinate)-co-(butylene adipate) (PBSA), poly(ε-caprolactone) (PCL), poly(ethylene succinate) (PES), poly(l-lactic acid) (PLA), poly(3-hydroxybutyrate) and poly(3-hydoxybutyrate-co-3-hydroxyvalterate) (PHB/PHBV), poly(ethylene terephthalate) (PET), poly(butylene terephthalate) (PBT), poly(butylene adipate-co-terephthalate (PBAT), poly(butylene succinate-co-terephthalate) (PBST), and poly(butylene succinate/terephthalate/isophthalate)-co-(lactate) (PBSTIL). The mechanism of degradation of aliphatic as well as aliphatic-aromatic co-polyesters has also been discussed. The degradation ability of microorganisms against various polyesters might be useful for the treatment and recycling of biodegradable wastes or bioremediation of the polyester-contaminated environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Acero EH, Ribitsch D, Dellacher A, Zitzenbacher S, Marold A, Steinkellner G, Gruber K, Schwab H, Guebitz GM (2013) Surface engineering of a cutinase from Thermobifida cellulosilytica for improved polyester hydrolysis. Biotechnol Bioeng 110:2581–2590

    Article  CAS  Google Scholar 

  • Akbar S, Hasan F, Nadhman A, Khan S, Shah AA (2013) Purification and characterization of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) degrading enzyme from Streptomyces sp. AF-111. J Poly Environ 21:1109–1116

    Google Scholar 

  • Akutsu-Shigeno Y, Teeraphatpornchai T, Teamtisong K, Nomura N, Uchiyama H, Nakahara T, Nakajima-Kambe T (2003) Cloning and sequencing of a poly(DL-lactic acid) depolymerase gene from Paenibacillus amylolyticus strain TB-13 and its functional expression in Escherichia coli. Appl Environ Microbiol 69:2498–2504

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Baker PJ, Poultney C, Liu Z, Gross R, Montclare JK (2012) Identification and comparison of cutinases for synthetic polyester degradation. Appl Microbiol Biotechnol 93:229–240

    Article  PubMed  CAS  Google Scholar 

  • Bornscheuer UT (2002) Microbial carboxyl esterases: classification, properties and application in biocatalysis. FEMS Microbiol Rev 26:73–81

    Article  PubMed  CAS  Google Scholar 

  • Bornscheuer UT, Pohl M (2001) Improved biocatalysts by directed evolution and rational protein design. Curr Opin Chem Biol 5:137–143

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Tan L, Chen L, Yang Y, Wang X (2008) Study on biodegradable aromatic/aliphatic copolyesters. Braz J Chem Eng 25:321–335

    Article  CAS  Google Scholar 

  • Eberl A, Heumann S, Kotek R, Kaufmann F, Mitsche S, Cavaco-Paulo A, Gubitz GM (2008) Enzymatic hydrolysis of PTT polymers and oligomers. J Biotechnol 135:45–51

    Article  PubMed  CAS  Google Scholar 

  • Ghanem NB, Mabrouk ME, Sabry SA, El-Badan DE (2005) Degradation of polyesters by a novel marine Nocardiopsis aegyptia sp. nov.: application of Plackett-Burman experimental design for the improvement of PHB depolymerase activity. J Gen Appl Microbiol 51:151–158

    Article  PubMed  CAS  Google Scholar 

  • Göpferich A (1996) Mechanisms of polymer degradation and erosion. Biomaterials 17:103–114

    Article  PubMed  Google Scholar 

  • Gross RA, Kalra B (2002) Biodegradable polymers for the environment. Science 297:803–807

    Article  PubMed  CAS  Google Scholar 

  • Hasirci V, Lewandrowski K, Gresser JD, Wise DL, Trantolo DJ (2001) Versatility of biodegradable biopolymers: degradability and an in vivo application. J Biotechnol 86:135–150

    Article  PubMed  CAS  Google Scholar 

  • Herzog K, Mueller RJ, Deckwer WD (2006) Mechanism and kinetics of the enzymatic hydrolysis of polyester nanoparticles by lipases. Polym Degrad Stab 91:2486–2498

    Article  CAS  Google Scholar 

  • Honda N, Taniguchi I, Miyamoto M, Kimura Y (2003) Reaction mechanism of enzymatic degradation of poly(butylene succinate-co-terephthalate) (PBST) with a lipase originated from Pseudomonas cepacia. Macromol Biosci 3:189–197

    Article  CAS  Google Scholar 

  • Hu X, Thumarat U, Zhang X, Tang M, Kawai F (2010) Diversity of polyester-degrading bacteria in compost and molecular analysis of a thermoactive esterase from Thermobifida alba AHK119. Appl Microbiol Biotechnol 87:771–779

    Article  PubMed  CAS  Google Scholar 

  • Jendrossek D, Handrick R (2002) Microbial degradation of polyhydroxyalkanoates. Annu Rev Microbiol 56:403–432

    Article  PubMed  CAS  Google Scholar 

  • Jendrossek D, Muller B, Schlegel HG (1993) Cloning and characterization of the poly(hydroxyalkanoic acid)-depolymerase gene locus, phaZ1, of Pseudomonas lemoignei and its gene product. Eur J Biochem 218:701–710

    Article  PubMed  CAS  Google Scholar 

  • Jendrossek D, Schirmer A, Schlegel HG (1996) Biodegradation of polyhydroxyalkanoic acids. Appl Microbiol Biotechnol 46:451–463

    Article  PubMed  CAS  Google Scholar 

  • Kasuya K, Ishii N, Inoue Y, Yazawa K, Tagaya T, Yotsumoto T, Kazahaya J, Nagai D (2009) Characterization of a mesophilic aliphatic-aromatic copolyester-degrading fungus. Polym Degrad Stab 94:1190–1196

    Article  CAS  Google Scholar 

  • Kawai F, Nakadai K, Nishioka E, Nakajima H, Ohara H, Masaki K, Iefuji H (2011) Different enantioselectivity of two types of poly(lactic acid) depolymerases toward poly(L-lactic acid) and poly (D-lactic acid). Polym Degrad Stab 96:132–134

    Article  CAS  Google Scholar 

  • Kawai F, Thumarat U, Kitadokoro K, Waku T, Tada T, Tanaka N, Kawabata T (2013) Comparison of polyester-degrading cutinases from genus Thermobifida. Green Polym Chem: Biocatal Mater II(9):111–120, ACS Symposium Series

  • Kijchavengkul T, Auras R, Rubino M, Selke S, Ngouajio M, Fernandez RT (2010) Biodegradation and hydrolysis rate of aliphatic aromatic polyester. Polym Degrad Stab 95:2641–2647

    Article  CAS  Google Scholar 

  • Kleeberg I, Welzel K, VandenHeuvel J, Muller RJ, Deckwer WD (2005) Characterization of a new extracellular hydrolase from Thermobifida fusca degrading aliphatic-aromatic copolyesters. Biomacromolecules 6:262–270

    Article  PubMed  CAS  Google Scholar 

  • Klingbeil B, Kroppenstedt R, Jendrossek D (1996) Taxonomical identification of Streptomyces exfoliatus K10 and characterization of its poly(3-hydroxybutyrate) depolymerase gene. FEMS Microbiol Lett 142:215–221

    Article  PubMed  CAS  Google Scholar 

  • Li F, Wang S, Liu WF, Chen GJ (2008) Purification and characterization of poly(L-lactic acid)-degrading enzymes from Amycolatopsis orientalis ssp. orientalis. FEMS Microbiol Lett 282:52–58

    Article  PubMed  CAS  Google Scholar 

  • Li F, Yu D, Lin X, Liu D, Xia H, Chen S (2012) Biodegradation of poly(e-caprolactone) (PCL) by a new Penicillium oxalicum strain DSYD05-1. World J Microbiol Biotechnol 28:2929–2935

    Article  PubMed  CAS  Google Scholar 

  • Lucas N, Bieniame C, Belloy C, Queneudec M, Silvestre F, Nava-Saucedo JE (2008) Polymer biodegradation: mechanisms and estimation techniques. Chemosphere 73:429–442

    Article  PubMed  CAS  Google Scholar 

  • Mabrouk MM, Sabry SA (2001) Degradation of poly (3-hydroxybutyrate) and its copolymer poly (3-hydroxybutyrate-co-3-hydroxyvalerate) by a marine Streptomyces sp. SNG9. Microbiol Res 156:323–335

    Google Scholar 

  • Maeda H, Yamagata Y, Abe K, Hasegawa F, Machida M, Ishioka R, Gomi K, Nakajima T (2005) Purification and characterization of a biodegradable plastic-degrading enzyme from Aspergillus oryzae. Appl Microbiol Biotechnol 67:778–788

    Article  PubMed  CAS  Google Scholar 

  • Marten E, Mueller RJ, Deckwer WD (2005) Studies on enzymatic hydrolysis of polyesters. II. Aliphatic-aromatic co-polyesters. Polym Degrad Stab 88:371–381

    Article  CAS  Google Scholar 

  • Masaki K, Kamini NR, Ikeda H, Iefuji H (2005) Cutinase-like enzyme from the yeast Cryptococcus sp. strain S-2 hydrolyzes polylactic acid and other biodegradable plastics. Appl Environ Microbiol 71:7548–7550

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Mergaert J, Webb A, Anderson C, Wouters A, Swings J (1993) Microbial degradation of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrateco-3-hydroxyvalerate) in soils. Appl Environ Microbiol 59:3233–3238

    PubMed Central  PubMed  CAS  Google Scholar 

  • Molitoris HP, Moss ST, deKoning GJM, Jendrossek D (1996) Scanning electron microscopy of polyhydroxyalkanoate degradation by bacteria. Appl Microbiol Biotech 46:570–579

    Article  CAS  Google Scholar 

  • Mueller RJ (2006) Biological degradation of synthetic polyesters-enzymes as potential catalysts for polyester recycling. Proc Biochem 41:2124–2128

    Article  CAS  Google Scholar 

  • Mueller RJ, Witt U, Kleeberg I, Abou-Zeid DM, Marten E, Herzog K, Sieblitz D, Dresler K, Deckwer WD (2007) Mechanism of polyester degradation by enzymes. Polym Prep 48:599–600

    CAS  Google Scholar 

  • Muller B, Jendrossek D (1993) Purification and properties of poly(3-hydroxyvaleric acid) depolymerase from Pseudomonas lemoignei. Appl Microbiol Biotechnol 38:487–492

    Google Scholar 

  • Nadhman A, Hasan F, Shah Z, Hameed A, Shah AA (2012) Production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) depolymerase from Aspergillus sp. NA-25. Appl Biochem Microbiol 48:482–487

    Article  CAS  Google Scholar 

  • Nakajima-Kambe T, Ichihashi F, Matsuzoe R, Kato S, Shintani N (2009a) Degradation of aliphatic-aromatic co-polyesters by bacteria that can degrade aliphatic polyesters. Polym Degrad Stab 94:1901–1905

    Article  CAS  Google Scholar 

  • Nakajima-Kambe T, Toyoshima K, Saito C, Takaguchi H, Akutsu-Shigeno Y, Sato M, Miyama K, Nomura N, Uchiyama H (2009b) Rapid monomerization of poly(butylene succinate)-co-(butylene adipate) by Leptothrix sp. J Biosci Bioeng 108:513–516

    Article  PubMed  CAS  Google Scholar 

  • Narayan R (2001) Drivers for biodegradable/compostable plastics & role of composting waste management & sustainable agriculture. In: ORBIT 2001 Conference. Seville, Spain: Spanish waste club; 2001

  • Ohtaki S, Maeda H, Takahashi T, Yamagata Y, Hasegawa F, Gomi K, Nakajima T, Abe K (2006) Novel hydrophobic surface binding protein, HsbA, produced by Aspergillus oryzae. Appl Environ Microbiol 72:2407–2413

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Rhee J, Ahn D, Kim Y, Oh J (2005) New thermophilic and thermostable esterase with sequence similarity to the hormone-sensitive lipase family, cloned from a metagenomic library. Appl Environ Microbiol 71:817–825

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Russell JR, Huang J, Anand P, Kucera K, Sandoval AG, Dantzler KW, Hickman DS, Jee J, Kimovec FM, Koppstein D, Marks DH, Mittermiller PA, Núñez SJ, Santiago M, Townes MA, Vishnevetsky M, Williams NE, Vargas MPN, Boulanger LA, Slack CB, Strobel SA (2011) Biodegradation of polyester polyurethane by endophytic fungi. Appl Environ Microbiol 77:6076–6084

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Santos M, Gangoiti J, Keul H, Moller M, Serra JL, Llama MJ (2013) Polyester hydrolytic and synthetic activity catalyzed by the medium-chain-length poly(3-hydroxyalkanoate) depolymerase from Streptomyces venezuelae SO1. Appl Microbiol Biotechnol 97:211–222

    Article  PubMed  CAS  Google Scholar 

  • Scharathow R (2009) BIOPLASTICS: the framework for market introduction in Europe, Presented at the 2nd International Science and Technology Conference, “The Future of Biodegradable Packaging”, Warsaw, Poland, Sept 29. COBRO, Warsaw, pp 34–52

    Google Scholar 

  • Schirmer A, Jendrossek D, Schlegel HG (1993) Degradation of poly(3-hydroxyoctanoic acid) [P(3HO)] by bacteria: purification and properties of a P(3HO) depolymerase from Pseudomonas fluorescens GK13. Appl Environ Microbiol 59:1220–1227

    PubMed Central  PubMed  CAS  Google Scholar 

  • Schober U, Thiel C, Jendrossek D (2000) Poly(3-hydroxyvalerate) depolymerase of Pseudomonas lemoigne. Appl Environ Microbiol 66:1385–1392

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Seo HS, Um HJ, Min J, Rhee SK, Cho TJ, Kim YH, Lee J (2007) Pseudozyma jejuensis sp. nov., a novel cutinolytic ustilaginomycetous yeast species that is able to degrade plastic waste. FEMS Yeast Res 7:1035–1045

    Article  PubMed  CAS  Google Scholar 

  • Shah AA, Hasan F, Hameed A, Ahmed S (2007) Isolation and characterization of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) degrading bacteria and purification of PHBV depolymerase from newly isolated Bacillus sp. AF3. Int Biodeterior Biodegrad 60:109–115

    Google Scholar 

  • Shah AA, Hasan F, Hameed A (2010) Degradation of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by a newly isolated Actinomadura sp. AF-555 from soil. Int Biodeterior Biodegrad 64:281–285

    Google Scholar 

  • Shah AA, Eguchi T, Mayumi D, Kato S, Shintani N, Kamini NR, Nakajima-Kambe T (2013a) Purification and properties of novel aliphatic-aromatic co-polyesters degrading enzymes from newly isolated Roseateles depolymerans strain TB-87. Polym Degrad Stab 98:609–618

    Article  CAS  Google Scholar 

  • Shah AA, Eguchi T, Mayumi D, Kato S, Shintani N, Kamini NR, Nakajima-Kambe T (2013b) Degradation of aliphatic and aliphatic-aromatic co-polyesters by depolymerases from Roseateles depolymerans strain TB-87 and analysis of degradation products by LC-MS. Polym Degrad Stab 98:2722–2729, Available online

    Article  CAS  Google Scholar 

  • Shalaby WSW, Park K (1994) Chemical modification of proteins and polysaccharides and its effect on enzyme-catalyzed degradation, in Biomedical polymers. In: Shalaby SW (ed) Designed-to-degrade systems. Hanser Publishers, Munich, chap. 9

    Google Scholar 

  • Shinozaki Y, Morita T, Cao XH, Yoshida S, Koitabashi M, Watanabe T, Suzuki K, Sameshima-Yamashita Y, Nakajima-Kambe T, Fujii T, Kitamoto HK (2013) Biodegradable plastic-degrading enzyme from Pseudozyma antarctica: cloning, sequencing, and characterization. Appl Microbiol Biotechnol 97:2951–2959

    Article  PubMed  CAS  Google Scholar 

  • Song JH, Murphy RJ, Narayan R, Davies GBH (2009) Biodegradable and compostable alternatives to conventional plastics. Philos Trans R Soc Lond B Biol Sci 364:2127–2139

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Tan FT, Cooper DG, Marić M, Nicell JA (2008) Biodegradation of a synthetic co-polyester by aerobic mesophilic microorganisms. Polym Degrad Stab 93:1479–1485

    Article  CAS  Google Scholar 

  • Tribedi P, Sarkar S, Mukherjee K, Sil AK (2012) Isolation of a novel Pseudomonas sp from soil that can efficiently degrade polyethylene succinate. Environ Sci Pollut Res 19:2115–2124

    Article  CAS  Google Scholar 

  • Tseng CL, Chen HJ, Shaw GC (2006) Identification and characterization of the Bacillus thuringiensis phaZ Gene, encoding new intracellular poly-3-hydroxybutyrate depolymerase. J Bacteriol 188:7592–7599

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Upreti MC, Srivastava RB (2003) A potential Aspergillus species for biodegradation of polymeric materials. Curr Sci 84:1399–1402

    CAS  Google Scholar 

  • Williams DF, Zhong SP (1994) Biodeterioration/biodegradation of polymeric medical devices in situ. Int Biodeterior Biodegrad 34:95–130

    Article  CAS  Google Scholar 

  • Witt U, Einig T, Yamamoto M, Kleeberg I, Deckwer WD, Muller RJ (2001) Biodegradation of aliphatic–aromatic copolyesters: evaluation of the final biodegradability and ecotoxicological impact of degradation intermediates. Chemosphere 44:289–299

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiaki Nakajima-Kambe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shah, A.A., Kato, S., Shintani, N. et al. Microbial degradation of aliphatic and aliphatic-aromatic co-polyesters. Appl Microbiol Biotechnol 98, 3437–3447 (2014). https://doi.org/10.1007/s00253-014-5558-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-5558-1

Keywords

Navigation