Skip to main content

Advertisement

Log in

Electromagnetic field effects on nucleon transverse momentum for heavy ion collisions around 100 A MeV

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

With taking electromagnetic field into account for the transport model of Boltzmann-Uehling-Uhlenbeck, electromagnetic effects are studied for \(^{208}{\hbox{Pb}}\,+\,^{208}{\hbox{Pb}}\) collisions around 100A MeV. Electromagnetic field evolution during the collisions was estimated. It was found that the electric field has an obvious effect on the transverse momentum (\(p_{\text{T}}\)) spectra of nucleons during heavy ion collisions, and leads to different minimum position for the peak of \(p_{\text{T}}\) spectra of nucleons versus beam energy when the electric field is switched on. For the magnetic field, it affects the z-axis direction distributions of nucleons for central heavy ion collisions at lower energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J. Rafelski, B. Müller, Magnetic splitting of Quasimolecular electronic states in strong fields. Phys. Rev. Lett. 36, 517 (1976). https://doi.org/10.1103/PhysRevLett.36.517

    Article  Google Scholar 

  2. K.G. Libbrecht, S.E. Koonin, Coulomb distortion of pion spectra from heavy-Ion collisions. Phys. Rev. Lett. 43, 1581 (1979). https://doi.org/10.1103/PhysRevLett.43.1581

    Article  Google Scholar 

  3. M. Gyulassy, S.K. Kauffmann, Coulomb effects in relativistic nuclear collisions. Nucl. Phys. A 362, 503 (1981). https://doi.org/10.1016/0375-9474(81)90507-8

    Article  Google Scholar 

  4. N. Auerbach, Coulomb effects in nuclear structure. Phys. Rep. 98, 273 (1983). https://doi.org/10.1016/0370-1573(83)90008-X

    Article  Google Scholar 

  5. J.J. Molitoris, J.B. Hoffer, H. Kruse et al., Microscopic calculations of collective flow probing the short-range nature of the nuclear force. Phys. Rev. Lett. 53, 899 (1984). https://doi.org/10.1103/PhysRevLett.53.899

    Article  Google Scholar 

  6. S. Pratt, Coherence and Coulomb effects on pion interferometry. Phys. Rev. D 33, 72 (1986). https://doi.org/10.1103/PhysRevD.33.72

    Article  Google Scholar 

  7. C.A. Bertulani, G. Baur, Electromagnetic processes in relativistic heavy ion collisions. Phys. Rep. 163, 299 (1988). https://doi.org/10.1016/0370-1573(88)90142-1

    Article  Google Scholar 

  8. Y.M. Zheng, C.M. Ko, B.A. Li et al., Elliptic flow in heavy-ion collisions near the balance energy. Phys. Rev. Lett. 83, 2534 (1999). https://doi.org/10.1103/PhysRevLett.83.2534

    Article  Google Scholar 

  9. L. Ou, B.A. Li, Magnetic effects in heavy-ion collisions at intermediate energies. Phys. Rev. C 84, 064605 (2011). https://doi.org/10.1103/PhysRevC.84.064605

    Article  Google Scholar 

  10. V. Skokov, A.Y. Illarionov, V. Toneev, Estimate of the magnetic field strength in heavy-ion collisions. Int. J. Mod. Phys. A 24, 5925 (2009). https://doi.org/10.1142/S0217751X09047570

    Article  Google Scholar 

  11. M. Asakawa, A. Majumder, B. Müller, Electric charge separation in strong transient magnetic fields. Phys. Rev. C 81, 064912 (2010). https://doi.org/10.1103/PhysRevC.81.064912

    Article  Google Scholar 

  12. A. Bzdak, V. Skokov, Event-by-event fluctuations of magnetic and electric fields in heavy ion collisions. Phys. Lett. B 710, 171 (2012). https://doi.org/10.1016/j.physletb.2012.02.065

    Article  Google Scholar 

  13. W.T. Deng, X.G. Huang, Event-by-event generation of electromagnetic fields in heavy-ion collisions. Phys. Rev. C 85, 044907 (2012). https://doi.org/10.1103/PhysRevC.85.044907

    Article  Google Scholar 

  14. K. Hattori, X.G. Huang, Novel quantum phenomena induced by strong magnetic fields in heavy-ion collisions. Nucl. Sci. Tech. 28, 26 (2017). https://doi.org/10.1007/s41365-016-0178-3

    Article  Google Scholar 

  15. D.E. Kharzeev, L.D. McLerran, H.J. Warringa, The effects of topological charge change in heavy ion collisions: event by event P and CP violation. Nucl. Phys. A 803, 227 (2008). https://doi.org/10.1016/j.nuclphysa.2008.02.298

    Article  Google Scholar 

  16. B.I. Abelev, M.M. Aggarwal, Z. Ahammed et al., (STAR Collaboration), Azimuthal charged-particle correlations and possible local strong parity violation. Phys. Rev. Lett. 103, 251601 (2009). https://doi.org/10.1103/PhysRevLett.103.251601

    Article  Google Scholar 

  17. B.I. Abelev, M.M. Aggarwal, Z. Ahammed et al., (STAR Collaboration), Observation of charge-dependent azimuthal correlations and possible local strong parity violation in heavy-ion collisions. Phys. Rev. C 81, 054908 (2010). https://doi.org/10.1103/PhysRevC.81.054908

    Article  Google Scholar 

  18. L. Adamczyk, J.K. Adkins, G. Agakishiev et al., (STAR Collaboration), Beam-energy dependence of charge separation along the magnetic field in \(Au+Au\) collisions at RHIC. Phys. Rev. Lett. 113, 052302 (2014). https://doi.org/10.1103/PhysRevLett.113.052302

    Article  Google Scholar 

  19. L. Adamczyk, J.K. Adkins, G. Agakishiev et al., (STAR Collaboration), Observation of charge asymmetry dependence of pion elliptic flow and the possible chiral magnetic wave in heavy-ion collisions. Phys. Rev. Lett. 114, 252302 (2015). https://doi.org/10.1103/PhysRevLett.114.252302

    Article  Google Scholar 

  20. G.L. Ma, X.G. Huang, Possible observables for the chiral electric separation effect in \(Cu+ Au\) collisions. Phys. Rev. C 91, 054901 (2015). https://doi.org/10.1103/PhysRevC.91.054901

    Article  Google Scholar 

  21. Q.Y. Shou, G.L. Ma, Y.G. Ma, Charge separation with fluctuating domains in relativistic heavy-ion collisions. Phys. Rev. C 90, 047901 (2014). https://doi.org/10.1103/PhysRevC.90.047901

    Article  Google Scholar 

  22. C. Peng, G.X. Peng, C.J. Xia et al., Magnetized strange quark matter in the equivparticle model with both confinement and perturbative interactions. Nucl. Sci. Tech. 27, 98 (2016). https://doi.org/10.1007/s41365-016-0095-5

    Article  Google Scholar 

  23. M. Ruggieri, G.X. Peng, Chiral phase transition of quark matter in the background of parallel electric and magnetic fields. Nucl. Sci. Tech. 27, 130 (2016). https://doi.org/10.1007/s41365-016-0139-x

    Article  Google Scholar 

  24. S.S. Cui, G.X. Peng, Z.Y. Lu et al., Properties of color-flavor locked strange quark matter in an external strong magnetic field. Nucl. Sci. Tech. 26, 040503 (2015). https://doi.org/10.13538/j.1001-8042/nst.26.040503

    Google Scholar 

  25. L. Adamczyk et al., (STAR Collaboration), Global \(\Lambda \) hyperon polarization in nuclear collisions. Nature 548, 62 (2017). https://doi.org/10.1038/nature23004

    Article  Google Scholar 

  26. Z.T. Liang, X.N. Wang, Globally polarized quark-gluon plasma in noncentral \(A + A\) collisions. Phys. Rev. Lett. 94, 102301 (2005). https://doi.org/10.1103/PhysRevLett.94.102301

    Article  Google Scholar 

  27. G.F. Bertsch, H. Kruse, S. Das, Gupta, Boltzmann equation for heavy ion collisions. Phys. Rev. C 29, 673 (1984). https://doi.org/10.1103/PhysRevC.29.673

    Article  Google Scholar 

  28. H. Kruse, B.V. Jacak, H. Stöcker, Microscopic theory of pion production and sidewards flow in heavy-ion collisions. Phys. Rev. Lett. 54, 289 (1985). https://doi.org/10.1103/PhysRevLett.54.289

    Article  Google Scholar 

  29. C.Y. Wong, H.H.K. Tang, Extended time-dependent Hartree–Fock approximation with particle collisions. Phys. Rev. Lett. 40, 1070 (1978). https://doi.org/10.1103/PhysRevLett.40.1070

    Article  Google Scholar 

  30. W. Bauer, G.F. Bertsch, W. Cassing et al., Energetic photons from intermediate energy proton-and heavy-ion-induced reactions. Phys. Rev. C 34, 2127 (1986). https://doi.org/10.1103/PhysRevC.34.2127

    Article  Google Scholar 

  31. G.F. Bertsch, S. Das, Gupta, A guide to microscopic models for intermediate energy heavy ion collisions. Phys. Rep. 160, 189 (1988). https://doi.org/10.1016/0370-1573(88)90170-6

    Article  Google Scholar 

  32. J. Cugnon, T. Mizutani, J. Vandermeulen, Equilibration in relativistic nuclear collisions. A Monte Carlo calculation. Nucl. Phys. A 352, 505 (1981). https://doi.org/10.1016/0375-9474(81)90427-9

    Article  Google Scholar 

  33. V. Voronyuk, V.D. Toneev, W. Cassing et al., Electromagnetic field evolution in relativistic heavy-ion collisions. Phys. Rev. C 83, 054911 (2011). https://doi.org/10.1103/PhysRevC.83.054911

    Article  Google Scholar 

  34. A.D. Sooda, R.K. Puri, J. Aichelin, Study of balance energy in central collisions for heavier nuclei. Phys. Lett. B 594, 260 (2004). https://doi.org/10.1016/j.physletb.2004.05.053

    Article  Google Scholar 

  35. Y.X. Zhang, Z.X. Li, Elliptic flow and system size dependence of transition energies at intermediate energies. Phys. Rev. C 74, 014602 (2006). https://doi.org/10.1103/PhysRevC.74.014602

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Gang Ma.

Additional information

Dedicated to Joseph B. Natowitz in honour of his 80th birthday.

This work was supported by the National Natural Science Foundation of China (Nos. 11421505, 11305239, and 11220101005), the Major State Basic Research Development Program in China (No. 2014CB845401), the Key Research Program of Frontier Sciences of CAS (No. QYZDJSSW-SLH002), and the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB16).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, XG., Ma, YG. Electromagnetic field effects on nucleon transverse momentum for heavy ion collisions around 100 A MeV. NUCL SCI TECH 28, 182 (2017). https://doi.org/10.1007/s41365-017-0337-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-017-0337-1

Keywords

Navigation