Skip to main content
Log in

Collective flow and hydrodynamics in large and small systems at the LHC

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

In this article, we briefly review the recent progress on collective flow and hydrodynamics in large and small systems at the Large Hadron Collider (LHC), which includes the following topics: extracting the QGP viscosity from the flow data, initial-state fluctuations and final-state correlations at 2.76 A TeV Pb–Pb collisions, correlations, and collective flow in high-energy p–Pb and p–p collisions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. The traditional second-order viscous hydrodynamics works for a near equilibrium system with isotropic momentum distributions. It cannot apply to an anisotropic system at very early time [81,82,83] or a correlated fluctuating system near the QCD critical point [84,85,86,87] where the traditional expansion of the microscopic distribution function fails. For the recent development on anisotropic hydrodynamics or chiral hydrodynamics, please refer to [81,82,83, 88,89,90,91,92,93] and [94,95,96,97,98].

  2. Note that, to obtain a good agreement with the microscopic kinetic theory, a proper resummation of the irreducible moments is essential for the computation of the transport coefficients, especially for a fluid dynamics with heat flow included. Please refer to [99] for details.

  3. The full off-equilibrium distribution includes the contributions from shear stress tensor, bulk pressure and heat flow: \(\delta f=\delta f_{shear}+ \delta f_{bulk}+ \delta f_{heat}.\) For the bulk viscous correction, there are different proposed forms of \(\delta f_{bulk}\) [125, 126], which brings certain amount of uncertainties for some related flow observables. Considering this complicity as well as the negligible heat conductivity, one generally takes this simple form of \(\delta f\) with only shear viscous correction for the viscous hydrodynamics and hybrid model calculations at top RHIC and the LHC energies.

  4. At the LHC and top RHIC energies, the heat conductivity can be neglected due to the almost vanishing net baryon density.

  5. For the related qualitative investigations from hydrodynamics, please refer to [37].

References

  1. T.D. Lee, G.C. Wick, Vacuum stability and vacuum excitation in a spin 0 field theory. Phys. Rev. D 9, 2291–2316 (1974). doi:10.1103/PhysRevD.9.2291

    Article  Google Scholar 

  2. J.C. Collins, M.J. Perry, Superdense matter: neutrons or asymptotically free quarks? Phys. Rev. Lett. 34, 1353 (1975). doi:10.1103/PhysRevLett.34.1353

    Article  Google Scholar 

  3. H.G. Baumgardt, J.U. Schott, Y. Sakamoto et al., Shock waves and MACH cones in fast nucleus–nucleus collisions. Z. Phys. A 273, 359–371 (1975). doi:10.1007/BF01435578

    Article  Google Scholar 

  4. I. Arsene, I.G. Bearden, D. Beavis et al., Quark gluon plasma and color glass condensate at RHIC? The perspective from the BRAHMS experiment. Nucl. Phys. A 757, 1–27 (2005). doi:10.1016/j.nuclphysa.2005.02.130

    Article  Google Scholar 

  5. B.B. Back, M.D. Baker, M. Ballintijin et al., The PHOBOS perspective on discoveries at RHIC. Nucl. Phys. A 757, 28–101 (2005). doi:10.1016/j.nuclphysa.2005.03.084

    Article  Google Scholar 

  6. J. Adams, M.M. Aggarwal, Z. Ahammed et al., Experimental and theoretical challenges in the search for the quark gluon plasma: the STAR Collaboration’s critical assessment of the evidence from RHIC collisions. Nucl. Phys. A 757, 102–183 (2005). doi:10.1016/j.nuclphysa.2005.03.085

    Article  Google Scholar 

  7. K. Adcox, S.S. Adler, S. Afamasiev et al., Formation of dense partonic matter in relativistic nucleus–nucleus collisions at RHIC: experimental evaluation by the PHENIX collaboration. Nucl. Phys. A 757, 184–283 (2005). doi:10.1016/j.nuclphysa.2005.03.086

    Article  Google Scholar 

  8. M. Gyulassy, The QGP discovered at RHIC (2004), arXiv: nucl-th/0403032

  9. B. Muller, J.L. Nagle, Results from the relativistic heavy ion collider. Annu. Rev. Nucl. Part. Sci. 56, 93–135 (2006). doi:10.1146/annurev.nucl.56.080805.140556

    Article  Google Scholar 

  10. P.F. Kolb, U.W. Heinz, Hydrodynamic description of ultrarelativistic heavy ion collisions (2003), arXiv: nucl-th/0305084

  11. B. Alver, B.B. Back, M.D. Baker et al., System size, energy, pseudorapidity, and centrality dependence of elliptic flow. Phys. Rev. Lett. 98, 242302 (2007). doi:10.1103/PhysRevLett.98.242302

    Article  Google Scholar 

  12. M. Miller, R. Snellings, Eccentricity fluctuations and its possible effect on elliptic flow measurements (2003), arXiv: nucl-ex/0312008

  13. B. Alver, B.B. Back, M.D. Baker et al., Importance of correlations and fluctuations on the initial source eccentricity in high-energy nucleus–nucleus collisions. Phys. Rev. C 77, 014906 (2008). doi:10.1103/PhysRevC.77.014906

    Article  Google Scholar 

  14. J.Y. Ollitrault, Anisotropy as a signature of transverse collective flow. Phys. Rev. D 46, 229–245 (1992). doi:10.1103/PhysRevD.46.229

    Article  Google Scholar 

  15. S. Voloshin, Y. Zhang, Flow study in relativistic nuclear collisions by Fourier expansion of azimuthal particle distributions. Z. Phys. C 70, 665–672 (1996). doi:10.1007/s002880050141

    Article  Google Scholar 

  16. S.A. Voloshin, A.M. Poskanzer, R. Snellings, Collective phenomena in non-central nuclear collisions (2008), arXiv: 0809.2949

  17. R. Snellings, Elliptic flow: a brief review. New J. Phys. 13, 055008 (2011). doi:10.1088/1367-2630/13/5/055008

    Article  Google Scholar 

  18. U. Heinz, R. Snellings, Collective flow and viscosity in relativistic heavy-ion collisions. Annu. Rev. Nucl. Part. Sci. 63, 123–151 (2013). doi:10.1146/annurev-nucl-102212-170540

    Article  Google Scholar 

  19. C. Gale, S. Jeon, B. Schenke, Hydrodynamic modeling of heavy-ion collisions. Int. J. Mod. Phys. A 28, 1340011 (2013). doi:10.1142/S0217751X13400113

    Article  Google Scholar 

  20. H.C. Song, Hydrodynamic modelling for relativistic heavy-ion collisions at RHIC and LHC. Pramana 84, 703–715 (2015). doi:10.1007/s12043-015-0971-2

    Article  Google Scholar 

  21. M. Luzum, H. Petersen, Initial state fluctuations and final state correlations in relativistic heavy-ion collisions. J. Phys. G 41, 063102 (2014). doi:10.1088/0954-3899/41/6/063102

    Article  Google Scholar 

  22. J.Y. Jia, Event-shape fluctuations and flow correlations in ultra-relativistic heavy-ion collisions. J. Phys. G 41, 124003 (2014). doi:10.1088/0954-3899/41/12/124003

    Article  Google Scholar 

  23. B.H. Alver, C. Gombeaud, M. Luzum et al., Triangular flow in hydrodynamics and transport theory. Phys. Rev. C 82, 034913 (2010). doi:10.1103/PhysRevC.82.034913

    Article  Google Scholar 

  24. K. Aamodt, B. Abelev, A. Abrahantes et al., Higher harmonic anisotropic flow measurements of charged particles in Pb–Pb collisions at \(\sqrt{s_{NN}} \) = 2.76 TeV. Phys. Rev. Lett. 107, 03230 (2011). doi:10.1103/PhysRevLett.107.032301

    Article  Google Scholar 

  25. F.G. Gardim, F. Grassi, M. Luzum et al., Mapping the hydrodynamic response to the initial geometry in heavy-ion collisions. Phys. Rev. C 85, 024908 (2012). doi:10.1103/PhysRevC.85.024908

    Article  Google Scholar 

  26. G. Aad, H.M. Gray, Z. Marshall, Measurement of the azimuthal anisotropy for charged particle production in \(\sqrt{s_{NN}}=2.76\) TeV lead-lead collisions with the ATLAS detector. Phys. Rev. C 86, 014907 (2012). doi:10.1103/PhysRevC.86.014907

    Article  Google Scholar 

  27. M. Luzum, J.Y. Ollitrault, Extracting the shear viscosity of the quark–gluon plasma from flow in ultra-central heavy-ion collisions. Nucl. Phys. A 904–905, 377c–380c (2013). doi:10.1016/j.nuclphysa.2013.02.028

    Article  Google Scholar 

  28. A. Rizzi, R. Erbacher, Y. Weng, Studies of azimuthal dihadron correlations in ultra-central PbPb collisions at \(\sqrt{s_{NN}} =\) 2.76 TeV. JHEP 02, 088 (2014). doi:10.1007/JHEP02(2014)088

    Google Scholar 

  29. G. Aad, M. Barbero, C.P. Bee, Measurement of the distributions of event-by-event flow harmonics in lead–lead collisions at = 2.76 TeV with the ATLAS detector at the LHC. JHEP 11, 183 (2013). doi:10.1007/JHEP11(2013)183

    Article  Google Scholar 

  30. C. Gale, S.Y. Jeon, B. Schenke et al., Event-by-event anisotropic flow in heavy-ion collisions from combined Yang–Mills and viscous fluid dynamics. Phys. Rev. Lett. 110, 012302 (2013). doi:10.1103/PhysRevLett.110.012302

    Article  Google Scholar 

  31. G. Aad, B. Abbott, J. Abdallah et al., Measurement of event-plane correlations in \(\sqrt{s_{NN}}=2.76\) TeV lead-lead collisions with the ATLAS detector. Phys. Rev. C 90, 024905 (2014). doi:10.1103/PhysRevC.90.024905

    Article  Google Scholar 

  32. Z. Qiu, U. Heinz, Hydrodynamic event-plane correlations in Pb+Pb collisions at \(\sqrt{s}=2.76\)ATeV. Phys. Lett. B 717, 261–265 (2012). doi:10.1016/j.physletb.2012.09.030

    Article  Google Scholar 

  33. G. Aad, B. Abbott, J. Abdallah et al., Measurement of the correlation between flow harmonics of different order in lead–lead collisions at \(\sqrt{s_{NN}} \)= 2.76 TeV with the ATLAS detector. Phys. Rev. C 92, 034903 (2015). doi:10.1103/PhysRevC.92.034903

    Article  Google Scholar 

  34. J. Adam, D. Adamová, M.M. Aggarwal et al., Correlated event-by-event fluctuations of flow harmonics in Pb–Pb collisions at \(\sqrt{s_{\rm NN}}=2.76\) TeV (2016), arXiv: 1604.07663

  35. G. Giacalone, L. Yan, J. Noronha-Hostler et al., Symmetric cumulants and event-plane correlations in Pb + Pb collisions. Phys. Rev. C 94, 014906 (2016). doi:10.1103/PhysRevC.94.014906

    Article  Google Scholar 

  36. X.R. Zhu, Y. Zhou, H.J. Xu et al., Correlations of flow harmonics in 2.76 A TeV Pb–Pb collisions (2016), arXiv: 1608.05305

  37. J. Qian, U. Heinz, Hydrodynamic flow amplitude correlations in event-by-event fluctuating heavy-ion collisions. Phys. Rev. C 94, 024910 (2016). doi:10.1103/PhysRevC.94.024910

    Article  Google Scholar 

  38. U. Heinz, Z. Qiu, C. Shen, Fluctuating flow angles and anisotropic flow measurements. Phys. Rev. C 87, 034913 (2013). doi:10.1103/PhysRevC.87.034913

    Article  Google Scholar 

  39. F.G. Gardim, F. Grassi, M. Luzum et al., Breaking of factorization of two-particle correlations in hydrodynamics. Phys. Rev. C 87, 031901 (2013). doi:10.1103/PhysRevC.87.031901

    Article  Google Scholar 

  40. V. Khachatryan, A.M. Sirunyan, A. Tumasyan et al., Evidence for transverse momentum and pseudorapidity dependent event plane fluctuations in PbPb and pPb collisions. Phys. Rev. C 92, 034911 (2015). doi:10.1103/PhysRevC.92.034911

    Article  Google Scholar 

  41. S. chatrchyan, V. Khachatryan, A.M. Sirunyan, Observation of long-range near-side angular correlations in proton–lead collisions at the LHC. Phys. Lett. B 718, 795–814 (2013). doi:10.1016/j.physletb.2012.11.025

    Article  Google Scholar 

  42. B. Abelev, J. Adam, D. Adamova, et al., Long-range angular correlations on the near and away side in \(p\)–Pb collisions at \(\sqrt{s_{NN}}=5.02\) TeV. Phys. Lett. B 719, 29–41 (2013). doi:10.1016/j.physletb.2013.01.012

    Article  Google Scholar 

  43. G. Aad, T. Abajyan, B. Abbott et al., Measurement with the ATLAS detector of multi-particle azimuthal correlations in p+Pb collisions at \(\sqrt{s_{NN}}=\) 5.02 TeV. Phys. Lett. B 725, 60–78 (2013). doi:10.1016/j.physletb.2013.06.057

    Article  Google Scholar 

  44. V. Khachatryan, A.M. Sirunyan, A. Tumasyan et al., Evidence for collective multiparticle correlations in p–Pb collisions. Phys. Rev. Lett. 115, 012301 (2015). doi:10.1103/PhysRevLett.115.012301

    Article  Google Scholar 

  45. B. Abelev, J. Adam, D. Adamova et al., Long-range angular correlations on the near and away side in \(p\)-Pb collisions at \(\sqrt{s_{NN}}=5.02\) TeV. Phys. Rev. C 90, 054901 (2014). doi:10.1103/PhysRevC.90.054901

    Article  Google Scholar 

  46. V. Khachatryan, A.M. Sirunyan, A. Tumasyan et al., Long-range angular correlations of \({\uppi }\), K and p in p–Pb collisions at \(\sqrt{s_{\rm NN}}\) = 5.02 TeV. Phys. Lett. B 726, 164–177 (2013). doi:10.1016/j.physletb.2013.08.024

    Article  Google Scholar 

  47. V. Khachatryan, A.M. Sirunyan, A. Tumasyan et al., Long-range two-particle correlations of strange hadrons with charged particles in pPb and PbPb collisions at LHC energies. Phys. Lett. B 742, 200–224 (2015). doi:10.1016/j.physletb.2015.01.034

    Article  Google Scholar 

  48. P. Bozek, Collective flow in p–Pb and d–Pd collisions at TeV energies. Phys. Rev. C 85, 014911 (2012). doi:10.1103/PhysRevC.85.014911

    Article  Google Scholar 

  49. P. Bozek, W. Broniowski, Correlations from hydrodynamic flow in p–Pb collisions. Phys. Lett. B 718, 1557–1561 (2013). doi:10.1016/j.physletb.2012.12.051

    Article  Google Scholar 

  50. P. Bozek, W. Broniowski, G. Torrieri, Mass hierarchy in identified particle distributions in proton–lead collisions. Phys. Rev. Lett. 111, 172303 (2013). doi:10.1103/PhysRevLett.111.172303

    Article  Google Scholar 

  51. A. Bzdak, B. Schenke, P. Tribedy et al., Initial state geometry and the role of hydrodynamics in proton–proton, proton–nucleus and deuteron–nucleus collisions. Phys. Rev. C 87, 064906 (2013). doi:10.1103/PhysRevC.87.064906

    Article  Google Scholar 

  52. G.Y. Qin, B. Müller, Elliptic and triangular flow anisotropy in deuteron–gold collisions at \(\sqrt{s_{NN}}=200\) GeV at RHIC and in proton–lead collisions at \(\sqrt{s_{NN}}=5.02\) TeV at the LHC. Phys. Rev. C 89, 044902 (2014). doi:10.1103/PhysRevC.89.044902

    Article  Google Scholar 

  53. K. Werner, M. Bleicher, B. Guiot et al., Evidence for flow from hydrodynamic simulations of \(p\)–Pb collisions at 5.02 TeV from \(\nu _2\) mass splitting. Phys. Rev. Lett. 112, 232301 (2014). doi:10.1103/PhysRevLett.112.232301

    Article  Google Scholar 

  54. B. Schenke, R. Venugopalan, Eccentric protons? Sensitivity of flow to system size and shape in p+p, p+Pb and Pb+Pb collisions. Phys. Rev. Lett. 113, 102301 (2014). doi:10.1103/PhysRevLett.113.102301

    Article  Google Scholar 

  55. S. Chatrchyan, V. Khachatryan, A.M. Sirunyan et al., Observation of long-range near-side angular correlations in proton–proton collisions at the LHC. JHEP 09, 091 (2010). doi:10.1007/JHEP09(2010)091

    Google Scholar 

  56. W. Li, Observation of a ’Ridge’ correlation structure in high multiplicity proton–proton collisions: a brief review. Mod. Phys. Lett. A 27, 1230018 (2012). doi:10.1142/S0217732312300182

    Article  Google Scholar 

  57. G. Aad, B. Abbott, J. Abdallah et al., Observation of long-range elliptic azimuthal anisotropies in \(\sqrt{s}=\)13 and 2.76 TeV \(pp\) collisions with the ATLAS detector. Phys. Rev. Lett. 116, 172301 (2016). doi:10.1103/PhysRevLett.116.172301

    Article  Google Scholar 

  58. V. Khachatryan, A.M. Sirunyan, A. Tumasyan et al., Measurement of long-range near-side two-particle angular correlations in pp collisions at \(\sqrt{s} =\) 13 TeV. Phys. Rev. Lett. 116, 172302 (2016). doi:10.1103/PhysRevLett.116.172302

    Article  Google Scholar 

  59. V. Khachatryan, A.M. Sirunyan, A. Tumasyan et al., Evidence for collectivity in pp collisions at the LHC (2016), arXiv: 1606.06198

  60. K. Dusling, W. Li, B. Schenke, Novel collective phenomena in high-energy proton–proton and proton–nucleus collisions. Int. J. Mod. Phys. E 25, 1630002 (2016). doi:10.1142/S0218301316300022

    Article  Google Scholar 

  61. D.A. Teaney, Viscous hydrodynamics and the quark gluon plasma (2009), arXiv: nucl-th0905.2433

  62. P. Romatschke, New developments in relativistic viscous hydrodynamics. Int. J. Mod. Phys. E 19, 1–53 (2010). doi:10.1142/S0218301310014613

    Article  Google Scholar 

  63. P. Huovinen, Hydrodynamics at RHIC and LHC: what have we learned? Int. J. Mod. Phys. E 22, 1330029 (2013). doi:10.1142/S0218301313300294

    Article  Google Scholar 

  64. P. Romatschke, U. Romatschke, Viscosity information from relativistic nuclear collisions: how perfect is the fluid observed at RHIC? Phys. Rev. Lett. 99, 172301 (2007). doi:10.1103/PhysRevLett.99.172301

    Article  Google Scholar 

  65. M. Luzum, P. Romatschke, Conformal relativistic viscous hydrodynamics: applications to RHIC results at s(NN)**(1/2) = 200-GeV. Phys. Rev. C 78, 034915 (2008). doi:10.1103/PhysRevC.78.034915

    Article  Google Scholar 

  66. H.C. Song, U.W. Heinz, Suppression of elliptic flow in a minimally viscous quark–gluon plasma. Phys. Lett. B 658, 279–283 (2008). doi:10.1016/j.physletb.2007.11.019

    Article  Google Scholar 

  67. H.C. Song, U.W. Heinz, Causal viscous hydrodynamics in 2+1 dimensions for relativistic heavy-ion collisions. Phys. Rev. C 77, 064901 (2008). doi:10.1103/PhysRevC.77.064901

    Article  Google Scholar 

  68. H.C. Song, Causal viscous hydrodynamics for relativistic heavy ion collisions, Ph.D. thesis, Ohio State U, 2009, http://inspirehep.net/record/829461/files/arXiv:0908.3656.pdf, arXiv: 0908.3656

  69. K. Dusling, D. Teaney, Simulating elliptic flow with viscous hydrodynamics. Phys. Rev. C 77, 034905 (2008). doi:10.1103/PhysRevC.77.034905

    Article  Google Scholar 

  70. D. Molnar, P. Huovinen, Dissipative effects from transport and viscous hydrodynamics. J. Phys. G 35, 104125 (2008). doi:10.1088/0954-3899/35/10/104125

    Article  Google Scholar 

  71. P. Bozek, Bulk and shear viscosities of matter created in relativistic heavy-ion collisions. Phys. Rev. C 81, 034909 (2010). doi:10.1103/PhysRevC.81.034909

    Article  Google Scholar 

  72. A.K. Chaudhuri, Centrality dependence of elliptic flow and QGP viscosity. J. Phys. G 37, 075011 (2010). doi:10.1088/0954-3899/37/7/075011

    Article  Google Scholar 

  73. B. Schenke, S. Jeon, C. Gale, Elliptic and triangular flow in event-by-event (3+1)D viscous hydrodynamics. Phys. Rev. Lett. 106, 042301 (2011). doi:10.1103/PhysRevLett.106.042301

    Article  Google Scholar 

  74. W. Israel, Nonstationary irreversible thermodynamics: a causal relativistic theory. Ann. Phys. 100, 310–331 (1976). doi:10.1016/0003-4916(76)90064-6

    Article  MathSciNet  Google Scholar 

  75. A. Muronga, D.H. Rischke, Evolution of hot, dissipative quark matter in relativistic nuclear collisions (2004), arXiv: nucl-th/0407114

  76. R. Baier, P. Romatschke, U.A. Wiedemann, Dissipative hydrodynamics and heavy ion collisions. Phys. Rev. C 73, 064903 (2006). doi:10.1103/PhysRevC.73.064903

    Article  Google Scholar 

  77. R. Baier, P. Romatschke, D.T. Son et al., Relativistic viscous hydrodynamics, conformal invariance, and holography. JHEP 04, 100 (2008). doi:10.1088/1126-6708/2008/04/100

    Article  MathSciNet  MATH  Google Scholar 

  78. B. Betz, D. Henkel, D.H. Rischke, From kinetic theory to dissipative fluid dynamics. Prog. Part. Nucl. Phys. 62, 556–561 (2009). doi:10.1016/j.ppnp.2008.12.018

    Article  Google Scholar 

  79. G.S. Denicol, H. Niemi, E. Molnar et al., Derivation of transient relativistic fluid dynamics from the Boltzmann equation. Phys. Rev. D 85, 114047 (2012). doi:10.1103/PhysRevD.85.114047

    Article  Google Scholar 

  80. G.S. Denicol, E. Molnar, H. Niemi et al., Derivation of fluid dynamics from kinetic theory with the 14-moment approximation. Eur. Phys. J. A 48, 170 (2012). doi:10.1140/epja/i2012-12170-x

    Article  Google Scholar 

  81. M. Martinez, M. Strickland, Dissipative dynamics of highly anisotropic systems. Nucl. Phys. A 848, 183–197 (2010). doi:10.1016/j.nuclphysa.2010.08.011

    Article  Google Scholar 

  82. W. Florkowski, R. Ryblewski, Highly-anisotropic and strongly-dissipative hydrodynamics for early stages of relativistic heavy-ion collisions. Phys. Rev. C 83, 034907 (2011). doi:10.1103/PhysRevC.83.034907

    Article  Google Scholar 

  83. S. Jeon, U. Heinz, Introduction to hydrodynamics, in Quark–Gluon Plasma 5, edited by X.-N. Wang (2016) pp. 131–187. doi:10.1142/9789814663717_0003

  84. M.A. Stephanov, Non-Gaussian fluctuations near the QCD critical point. Phys. Rev. Lett. 102, 032301 (2009). doi:10.1103/PhysRevLett.102.032301

    Article  Google Scholar 

  85. M.A. Stephanov, On the sign of kurtosis near the QCD critical point. Phys. Rev. Lett. 107, 052301 (2011). doi:10.1103/PhysRevLett.107.052301

    Article  Google Scholar 

  86. L.J. Jiang, P.F. Li, H.C. Song, Correlated fluctuations near the QCD critical point. Phys. Rev. C 94, 024918 (2016). doi:10.1103/PhysRevC.94.024918

    Article  Google Scholar 

  87. L.J. Jiang, P.F. Li, H.C. Song, Multiplicity fluctuations of net protons on the hydrodynamic freeze-out surface. Nucl. Phys. A 956, 360–364 (2016). doi:10.1016/j.nuclphysa.2016.01.034

    Article  Google Scholar 

  88. M. Martinez, R. Ryblewski, M. Strickland, Boost-invariant (2+1)-dimensional anisotropic hydrodynamics. Phys. Rev. C 85, 064913 (2012). doi:10.1103/PhysRevC.85.064913

    Article  Google Scholar 

  89. W. Florkowski, R. Ryblewski, M. Strickland, Anisotropic hydrodynamics for rapidly expanding systems. Nucl. Phys. A 916, 249–259 (2013). doi:10.1016/j.nuclphysa.2013.08.004

    Article  Google Scholar 

  90. R. Ryblewski, W. Florkowski, Highly-anisotropic hydrodynamics in 3+1 space-time dimensions. Phys. Rev. C 85, 064901 (2012). doi:10.1103/PhysRevC.85.064901

    Article  Google Scholar 

  91. D. Bazow, U.W. Heinz, M. Strickland, Second-order (2+1)-dimensional anisotropic hydrodynamics. Phys. Rev. C 90, 054910 (2014). doi:10.1103/PhysRevC.90.054910

    Article  Google Scholar 

  92. D. Bazow, U.W. Heinz, M. Martinez, Nonconformal viscous anisotropic hydrodynamics. Phys. Rev. C 91, 064903 (2015). doi:10.1103/PhysRevC.91.064903

    Article  Google Scholar 

  93. M. Strickland, Recent progress in anisotropic hydrodynamics 2016, arXiv: 1611.05056 http://inspirehep.net/record/1498322/files/arXiv:1611.05056.pdf

  94. K. Paech, H. Stoecker, A. Dumitru, Hydrodynamics near a chiral critical point. Phys. Rev. C 68, 044907 (2003). doi:10.1103/PhysRevC.68.044907

    Article  Google Scholar 

  95. M. Nahrgang, S. Leupold, C. Herold et al., Nonequilibrium chiral fluid dynamics including dissipation and noise. Phys. Rev. C 84, 024912 (2011). doi:10.1103/PhysRevC.84.024912

    Article  Google Scholar 

  96. M. Nahrgang, S. Leupold, M. Bleicher, Equilibration and relaxation times at the chiral phase transition including reheating. Phys. Lett. B 711, 109–116 (2012). doi:10.1016/j.physletb.2012.03.059

    Article  Google Scholar 

  97. C. Herold, M. Nahrgang, I. Mishustin et al., Chiral fluid dynamics with explicit propagation of the Polyakov loop. Phys. Rev. C 87, 014907 (2013). doi:10.1103/PhysRevC.87.014907

    Article  Google Scholar 

  98. C. Herold, M. Nahrgang, Y. Yan et al., Dynamical net-proton fluctuations near a QCD critical point. Phys. Rev. C 93, 021902 (2016). doi:10.1103/PhysRevC.93.021902

    Article  Google Scholar 

  99. G.S. Denicol, H. Niemi, I. Bouras et al., Solving the heat-flow problem with transient relativistic fluid dynamics. Phys. Rev. D 89, 074005 (2014). doi:10.1103/PhysRevD.89.074005

    Article  Google Scholar 

  100. P. Huovinen, P. Petreczky, QCD equation of state and hadron resonance gas. Nucl. Phys. A 837, 26–53 (2010). doi:10.1016/j.nuclphysa.2010.02.015

    Article  Google Scholar 

  101. C. Shen, U. Heinz, P. Huovinen et al., Systematic parameter study of hadron spectra and elliptic flow from viscous hydrodynamic simulations of Au+Au collisions at \(\sqrt{s_{NN}}=200\) GeV. Phys. Rev. C 82, 054904 (2010). doi:10.1103/PhysRevC.82.054904

    Article  Google Scholar 

  102. P.F. Kolb, J. Sollfrank, U.W. Heinz, Anisotropic transverse flow and the quark hadron phase transition. Phys. Rev. C 62, 054909 (2000). doi:10.1103/PhysRevC.62.054909

    Article  Google Scholar 

  103. D. Kharzeev, M. Nardi, Hadron production in nuclear collisions at RHIC and high density QCD. Phys. Lett. B 507, 121–128 (2001). doi:10.1016/S0370-2693(01)00457-9

    Article  Google Scholar 

  104. M.L. Miller, K. Reygers, S.J. Sanders et al., Glauber modeling in high energy nuclear collisions. Annu. Rev. Nucl. Part. Sci. 57, 205–243 (2007). doi:10.1146/annurev.nucl.57.090506.123020

    Article  Google Scholar 

  105. H.-J. Drescher, Y. Nara, Effects of fluctuations on the initial eccentricity from the color glass condensate in heavy ion collisions. Phys. Rev. C 75, 034905 (2007). doi:10.1103/PhysRevC.75.034905

    Article  Google Scholar 

  106. T. Hirano, Y. Nara, Eccentricity fluctuation effects on elliptic flow in relativistic heavy ion collisions. Phys. Rev. C 79, 064904 (2009). doi:10.1103/PhysRevC.79.064904

    Article  Google Scholar 

  107. R.S. Bhalerao, A. Jaiswal, S. Pal, Collective flow in event-by-event partonic transport plus hydrodynamics hybrid approach. Phys. Rev. C 92, 014903 (2015). doi:10.1103/PhysRevC.92.014903

    Article  Google Scholar 

  108. L.G. Pang, Q. Wang, X.N. Wang, Effects of initial flow velocity fluctuation in event-by-event (3+1)D hydrodynamics. Phys. Rev. C 86, 024911 (2012). doi:10.1103/PhysRevC.86.024911

    Article  Google Scholar 

  109. H.J. Xu, Z.P. Li, H.C. Song, High-order flow harmonics of identified hadrons in 2.76A TeV Pb + Pb collisions. Phys. Rev. C 93, 064905 (2016). doi:10.1103/PhysRevC.93.064905

    Article  Google Scholar 

  110. B. Schenke, P. Tribedy, R. Venugopalan, Event-by-event gluon multiplicity, energy density, and eccentricities in ultrarelativistic heavy-ion collisions. Phys. Rev. C 86, 034908 (2012). doi:10.1103/PhysRevC.86.034908

    Article  Google Scholar 

  111. R. Paatelainen, K.J. Eskola, H. Niemi et al., Fluid dynamics with saturated minijet initial conditions in ultrarelativistic heavy-ion collisions. Phys. Lett. B 731, 126–130 (2014). doi:10.1016/j.physletb.2014.02.018

    Article  Google Scholar 

  112. H. Niemi, K.J. Eskola, R. Paatelainen, Event-by-event fluctuations in a perturbative QCD + saturation + hydrodynamics model: determining QCD matter shear viscosity in ultrarelativistic heavy-ion collisions. Phys. Rev. C 93, 024907 (2016). doi:10.1103/PhysRevC.93.024907

    Article  Google Scholar 

  113. J.S. Moreland, J.E. Bernhard, S.A. Bass, Alternative ansatz to wounded nucleon and binary collision scaling in high-energy nuclear collisions. Phys. Rev. C 92, 011901 (2015). doi:10.1103/PhysRevC.92.011901

    Article  Google Scholar 

  114. J. Liu, C. Shen, U. Heinz, Pre-equilibrium evolution effects on heavy-ion collision observables. Phys. Rev. C 91, 064906 (2015). doi:10.1103/PhysRevC.92.049904

    Article  Google Scholar 

  115. K. Werner, lu Karpenko, T. Pierog, Evidence for hydrodynamic evolution in proton-proton scattering at 900 GeV. Phys. Rev.C 83, 044915 (2011). doi:10.1103/PhysRevC.83.044915

    Article  Google Scholar 

  116. H. Petersen, M. Bleicher, Ideal hydrodynamics and elliptic flow at SPS energies: importance of the initial conditions. Phys. Rev. C 79, 054904 (2009). doi:10.1103/PhysRevC.79.054904

    Article  Google Scholar 

  117. H. Petersen, J. Steinheimer, G. Burau et al., Elliptic flow in an integrated (3+1)d microscopic + macroscopic approach with fluctuating initial conditions. Eur. Phys. J. C 62, 31–36 (2009). doi:10.1140/epjc/s10052-009-0921-6

    Article  Google Scholar 

  118. B. Schenke, S. Schlichting, 3D glasma initial state for relativistic heavy ion collisions. Phys. Rev. C 94, 044907 (2016). doi:10.1103/PhysRevC.94.044907

    Article  Google Scholar 

  119. F. Cooper, G. Frye, Phys. Rev. D 10, 186 (1974)

    Article  Google Scholar 

  120. T. Hirano, M. Gyulassy, Perfect fluidity of the quark gluon plasma core as seen through its dissipative hadronic corona. Nucl. Phys. A 769, 71–94 (2006). doi:10.1016/j.nuclphysa.2006.02.005

    Article  Google Scholar 

  121. H.C. Song, S.A. Bass, U. Heinz, Viscous QCD matter in a hybrid hydrodynamic+Boltzmann approach. Phys. Rev. C 83, 024912 (2011). doi:10.1103/PhysRevC.83.024912

    Article  Google Scholar 

  122. S. Ryu, S. Jeon, C. Gale et al., MUSIC with the UrQMD afterburner. Nucl. Phys. A 904–905, 389c–392c (2013). doi:10.1016/j.nuclphysa.2013.02.031

    Article  Google Scholar 

  123. lu A. Karpenko, M. Bleicher, P. Huovinen, 3+1 dimensional viscous hydrodynamics at high baryon densities. J. Phys. Conf. Ser. 503, 012040 (2014). doi:10.1088/1742-6596/503/1/012040

    Article  Google Scholar 

  124. H.T. Ding, F. Karsch, S. Mukherjee, Thermodynamics of strong-interaction matter from Lattice QCD. Int. J. Mod. Phys. E 24, 1530007 (2015). doi:10.1142/S0218301315300076

    Article  MATH  Google Scholar 

  125. K. Dusling, T. Schäfer, Bulk viscosity, particle spectra and flow in heavy-ion collisions. Phys. Rev. C 85, 044909 (2012). doi:10.1103/PhysRevC.85.044909

    Article  Google Scholar 

  126. J. Noronha-Hostler, G.S. Denicol, J. Noronha et al., Bulk viscosity effects in event-by-event relativistic hydrodynamics. Phys. Rev. C 88, 044916 (2013). doi:10.1103/PhysRevC.88.044916

    Article  Google Scholar 

  127. S.A. Bass, M. Belkacem, M. Bleicher et al., Microscopic models for ultrarelativistic heavy ion collisions. Prog. Part. Nucl. Phys. 41, 255–369 (1998). doi:10.1016/S0146-6410(98)00058-1

    Article  Google Scholar 

  128. M. Bleicher, E. Zabrodin, C. Spieles, Relativistic hadron hadron collisions in the ultrarelativistic quantum molecular dynamics model. J. Phys. G 25, 1859–1896 (1999). doi:10.1088/0954-3899/25/9/308

    Article  Google Scholar 

  129. H.C. Song, S. Bass, U.W. Heinz, Spectra and elliptic flow for identified hadrons in 2.76A TeV Pb + Pb collisions. Phys. Rev. C 89, 034919 (2014). doi:10.1103/PhysRevC.89.034919

    Article  Google Scholar 

  130. U. Heinz, C. Shen, H.C. Song, The viscosity of quark–gluon plasma at RHIC and the LHC. AIP Conf. Proc. 1441, 766–770 (2012). doi:10.1063/1.3700674

    Article  Google Scholar 

  131. H.C. Song, QGP viscosity at RHIC and the LHC—a 2012 status report, A904–905, 114c–121c (2013). doi:10.1016/j.nuclphysa.2013.01.052

  132. P. Bozek, Flow and interferometry in 3+1 dimensional viscous hydrodynamics. Phys. Rev. C 85, 034901 (2012). doi:10.1103/PhysRevC.85.034901

    Article  Google Scholar 

  133. J. Vredevoogd, S. Pratt, Viscous hydrodynamics and relativistic heavy ion collisions. Phys. Rev. C 85, 044908 (2012). doi:10.1103/PhysRevC.85.044908

    Article  Google Scholar 

  134. C. Nonaka, Y. Akamatsu, M. Takamoto, Study of higher harmonics based on (3+1)-d relativistic viscous hydrodynamics. Nucl. Phys. A 904–905, 405c–408c (2013). doi:10.1016/j.nuclphysa.2013.02.035

    Article  Google Scholar 

  135. L. Del Zanna, V. Chandra, G. Inghirami et al., Relativistic viscous hydrodynamics for heavy-ion collisions with ECHO-QGP. Eur. Phys. J. C 73, 2524 (2013). doi:10.1140/epjc/s10052-013-2524-5

    Article  Google Scholar 

  136. lu Karpenko, P. Huovinen, M. Bleicher, A 3+1 dimensional viscous hydrodynamic code for relativistic heavy ion collisions. Comput. Phys. Commun. 185, 3016–3027 (2014). doi:10.1016/j.cpc.2014.07.010

    Article  MATH  Google Scholar 

  137. H. Petersen, G.Y. Qin, S.A. Bass et al., Triangular flow in event-by-event ideal hydrodynamics in Au+Au collisions at \(\sqrt{s_{\rm NN}}=200A\) GeV. Phys. Rev. C 82, 041901 (2010). doi:10.1103/PhysRevC.82.041901

    Article  Google Scholar 

  138. G.Y. Qin, H. Petersen, S.A. Bass et al., Translation of collision geometry fluctuations into momentum anisotropies in relativistic heavy-ion collisions. Phys. Rev. C 82, 064903 (2010). doi:10.1103/PhysRevC.82.064903

    Article  Google Scholar 

  139. H. Holopainen, H. Niemi, K.J. Eskola, Event-by-event hydrodynamics and elliptic flow from fluctuating initial state. Phys. Rev. C 83, 034901 (2011). doi:10.1103/PhysRevC.83.034901

    Article  Google Scholar 

  140. Z. Qiu, U.W. Heinz, Event-by-event shape and flow fluctuations of relativistic heavy-ion collision fireballs. Phys. Rev. C 84, 024911 (2011). doi:10.1103/PhysRevC.84.024911

    Article  Google Scholar 

  141. C. Shen, Z. Qiu, H.C. Song et al., The iEBE-VISHNU code package for relativistic heavy-ion collisions. Comput. Phys. Commun. 199, 61–85 (2016). doi:10.1016/j.cpc.2015.08.039

    Article  MathSciNet  Google Scholar 

  142. D. Bazow, U.W. Heinz, M. Strickland, Massively parallel simulations of relativistic fluid dynamics on graphics processing units with CUDA (2016), arXiv: 1608.06577

  143. A.M. Poskanzer, S.A. Voloshin, Methods for analyzing anisotropic flow in relativistic nuclear collisions. Phys. Rev. C 58, 1671–1678 (1998). doi:10.1103/PhysRevC.58.1671

    Article  Google Scholar 

  144. M. Luzum, J.-Y. Ollitrault, Eliminating experimental bias in anisotropic-flow measurements of high-energy nuclear collisions. Phys. Rev. C 87, 044907 (2013). doi:10.1103/PhysRevC.87.044907

    Article  Google Scholar 

  145. A. Bilandzic, R. Snellings, S. Voloshin, Flow analysis with cumulants: direct calculations. Phys. Rev. C 83, 044913 (2011). doi:10.1103/PhysRevC.83.044913

    Article  Google Scholar 

  146. A. Bilandzic, C.H. Christensen, K. Gulbrandsen et al., Generic framework for anisotropic flow analyses with multiparticle azimuthal correlations. Phys. Rev. C 89, 064904 (2014). doi:10.1103/PhysRevC.89.064904

    Article  Google Scholar 

  147. R.S. Bhalerao, M. Luzum, J.Y. Ollitrault, Determining initial-state fluctuations from flow measurements in heavy-ion collisions. Phys. Rev. C 84, 034910 (2011). doi:10.1103/PhysRevC.84.034910

    Article  Google Scholar 

  148. H.C. Song, S.A. Bass, U. Heinz et al., 200 A GeV Au+Au collisions serve a nearly perfect quark–gluon liquid. Phys. Rev. Lett. 106, 192301 (2011). doi:10.1103/PhysRevLett.106.192301

    Article  Google Scholar 

  149. J.-Y. Ollitrault, A.M. Poskanzer, S.A. Voloshin, Effect of flow fluctuations and nonflow on elliptic flow methods. Phys. Rev. C 80, 014904 (2009). doi:10.1103/PhysRevC.80.014904

    Article  Google Scholar 

  150. B. Abelev, L. Aphecetche, G. Batigne, Elliptic flow of identified hadrons in Pb–Pb collisions at \( \sqrt{s_{\rm NN}}=2.76 \) TeV. JHEP 06, 190 (2015). doi:10.1007/JHEP06(2015)190

    Google Scholar 

  151. N. Mohammadi, Higher harmonic anisotropic flow of identified particles in Pb–Pb collisions with the ALICE detector. Nucl. Phys. A 956, 304–307 (2016). doi:10.1016/j.nuclphysa.2016.03.031

    Article  Google Scholar 

  152. H.C. Song, U.W. Heinz, Extracting the QGP viscosity from RHIC data—a status report from viscous hydrodynamics. J. Phys. G 36, 064033 (2009). doi:10.1088/0954-3899/36/6/064033

    Article  Google Scholar 

  153. H.C. Song, S.A. Bass, U. Heinz et al., Hadron spectra and elliptic flow for 200 A GeV Au+Au collisions from viscous hydrodynamics coupled to a Boltzmann cascade. Phys. Rev. C 83, 054910 (2011). doi:10.1103/PhysRevC.83.054910

    Article  Google Scholar 

  154. H.C. Song, S.A. Bass, U. Heinz, Elliptic flow in 200 A GeV Au+Au collisions and 2.76 A TeV Pb+Pb collisions: insights from viscous hydrodynamics + hadron cascade hybrid model. Phys. Rev. C 83, 054912 (2011). doi:10.1103/PhysRevC.83.054912

    Article  Google Scholar 

  155. X.G. Zhu, F.L. Meng, H.C. Song et al., Hybrid model approach for strange and multistrange hadrons in 2.76A TeV Pb+Pb collisions. Phys. Rev. C 91, 034904 (2015). doi:10.1103/PhysRevC.91.034904

    Article  Google Scholar 

  156. J. Adam, D. Adamová, M.M. Aggarwal, Higher harmonic flow coefficients of identified hadrons in Pb–Pb collisions at \(\sqrt{s_{\rm NN}}\) = 2.76 TeV. JHEP 09, 164 (2016). doi:10.1007/JHEP09(2016)164

    Article  Google Scholar 

  157. G. Torrieri, I. Mishustin, Instability of boost-invariant hydrodynamics with a QCD inspired bulk viscosity. Phys. Rev. C 78, 021901 (2008). doi:10.1103/PhysRevC.78.021901

    Article  Google Scholar 

  158. K. Rajagopal, N. Tripuraneni, Bulk viscosity and cavitation in boost-invariant hydrodynamic expansion. JHEP 03, 018 (2010). doi:10.1007/JHEP03(2010)018

    Article  MATH  Google Scholar 

  159. H.C. Song, U.W. Heinz, Interplay of shear and bulk viscosity in generating flow in heavy-ion collisions. Phys. Rev. C 81, 024905 (2010). doi:10.1103/PhysRevC.81.024905

    Article  Google Scholar 

  160. H.C. Song, U.W. Heinz, Viscous hydrodynamics with bulk viscosity: uncertainties from relaxation time and initial conditions. Nucl. Phys. A 830, 467C–470C (2009). doi:10.1016/j.nuclphysa.2009.10.041

    Article  Google Scholar 

  161. A. Monnai, T. Hirano, Effects of bulk viscosity at freezeout. Phys. Rev. C 80, 054906 (2009). doi:10.1103/PhysRevC.80.054906

    Article  Google Scholar 

  162. G.S. Denicol, T. Kodama, T. Koide et al., Effect of bulk viscosity on elliptic flow near QCD phase transition. Phys. Rev. C 80, 064901 (2009). doi:10.1103/PhysRevC.80.064901

    Article  Google Scholar 

  163. J. Noronha-Hostler, J. Noronha, F. Grassi, Bulk viscosity-driven suppression of shear viscosity effects on the flow harmonics at energies available at the BNL relativistic heavy ion collider. Phys. Rev. C 90, 034907 (2014). doi:10.1103/PhysRevC.90.034907

    Article  Google Scholar 

  164. S. Ryu, J.-F. Paquet, C. Shen et al., Importance of the bulk viscosity of QCD in ultrarelativistic heavy-ion collisions. Phys. Rev. Lett. 115, 132301 (2015). doi:10.1103/PhysRevLett.115.132301

    Article  Google Scholar 

  165. R.A. Soltz, I. Garishvili, M. Cheng et al., Constraining the initial temperature and shear viscosity in a hybrid hydrodynamic model of \(\sqrt{s_{NN}} \)= 200 GeV Au+Au collisions using pion spectra, elliptic flow, and femtoscopic radii. Phys. Rev. C 87, 044901 (2013). doi:10.1103/PhysRevC.87.044901

    Article  Google Scholar 

  166. J.E. Bernhard, P.W. Marcy, C.F. Coleman-Smith et al., Quantifying properties of hot and dense QCD matter through systematic model-to-data comparison. Phys. Rev. C 91, 054910 (2015). doi:10.1103/PhysRevC.91.054910

    Article  Google Scholar 

  167. J.E. Bernhard, J.S. Moreland, S.A. Bass et al., Applying bayesian parameter estimation to relativistic heavy-ion collisions: simultaneous characterization of the initial state and quark–gluon plasma medium. Phys. Rev. C 94, 024907 (2016). doi:10.1103/PhysRevC.94.024907

    Article  Google Scholar 

  168. P. Danielewicz, M. Gyulassy, Dissipative phenomena in quark gluon plasmas. Phys. Rev. D 31, 53–62 (1985). doi:10.1103/PhysRevD.31.53

    Article  Google Scholar 

  169. G. Policastro, D.T. Son, A.O. Starinets, The shear viscosity of strongly coupled N = 4 supersymmetric Yang–Mills plasma. Phys. Rev. Lett. 87, 081601 (2001). doi:10.1103/PhysRevLett.87.081601

    Article  Google Scholar 

  170. P. Kovtun, D.T. Son, A.O. Starinets, Viscosity in strongly interacting quantum field theories from black hole physics. Phys. Rev. Lett. 94, 111601 (2005). doi:10.1103/PhysRevLett.94.111601

    Article  Google Scholar 

  171. B. Abelev, J. Adam, D. Adamova, Centrality dependence of \(\pi \), K, p production in Pb–Pb collisions at \(\sqrt{s_{NN}}\) = 2.76 TeV. Phys. Rev. C 88, 044910 (2013). doi:10.1103/PhysRevC.88.044910

    Article  Google Scholar 

  172. J. Auvinen, J.E. Bernhard, S.A. Bass, Systematic extraction of QGP properties (2016), http://inspirehep.net/record/1489219/files/arXiv:1610.00590.pdf. arXiv: 1610.00590

  173. B. Alver, G. Roland, Collision geometry fluctuations and triangular flow in heavy-ion collisions. Phys. Rev. C 81, 054905 (2010). doi:10.1103/PhysRevC.82.039903

    Article  Google Scholar 

  174. A. Adare, S. Afanasiev, C. Aidala et al., Measurements of higher-order flow harmonics in Au+Au collisions at \(\sqrt{s_{NN}} = 200\) GeV. Phys. Rev. Lett. 107, 252301 (2011). doi:10.1103/PhysRevLett.107.252301

    Article  Google Scholar 

  175. L. Adamczyk, J.K. Adkins, G. Agakishiev et al., Third harmonic flow of charged particles in Au+Au collisions at \(\sqrt{s_{NN}} = 200\) GeV. Phys. Rev. C 88, 014904 (2013). doi:10.1103/PhysRevC.88.014904

    Article  Google Scholar 

  176. A. Adare, C. Aidala, N.N. Ajitanand et al., Harmonic decomposition of two-particle angular correlations in Pb–Pb collisions at \(\sqrt{s_{NN}}=\) 2.76 TeV. Phys. Lett. B 708, 249–264 (2012). doi:10.1016/j.physletb.2012.01.060

    Article  Google Scholar 

  177. Y. Zhou, Searches for \(p_{\rm T}\) dependent fluctuations of flow angle and magnitude in Pb–Pb and p–Pb collisions. Nucl. Phys. A 931, 949–953 (2014). doi:10.1016/j.nuclphysa.2014.08.068

    Article  Google Scholar 

  178. S.A. Voloshin, A.M. Poskanzer, A.H. Tang et al., Elliptic flow in the Gaussian model of eccentricity fluctuations. Phys. Lett. B 659, 537–541 (2008). doi:10.1016/j.physletb.2007.11.043

    Article  Google Scholar 

  179. W. Broniowski, P. Bozek, M. Rybczynski, Fluctuating initial conditions in heavy-ion collisions from the Glauber approach. Phys. Rev. C 76, 054905 (2007). doi:10.1103/PhysRevC.76.054905

    Article  Google Scholar 

  180. L. Yan, J.Y. Ollitrault, A.M. Poskanzer, Eccentricity distributions in nucleus–nucleus collisions. Phys. Rev. C 90, 024903 (2014). doi:10.1103/PhysRevC.90.024903

    Article  Google Scholar 

  181. Y. Zhou, K. Xiao, Z. Feng et al., Anisotropic distributions in a multiphase transport model. Phys. Rev. C 93, 034909 (2016). doi:10.1103/PhysRevC.93.034909

    Article  Google Scholar 

  182. D. Teaney, L. Yan, Event-plane correlations and hydrodynamic simulations of heavy ion collisions. Phys. Rev. C 90, 024902 (2014). doi:10.1103/PhysRevC.90.024902

    Article  Google Scholar 

  183. L.G. Pang, G.Y. Qin, V. Roy et al., Longitudinal decorrelation of anisotropic flows in heavy-ion collisions at the CERN large hadron collider. Phys. Rev. C 91, 044904 (2015). doi:10.1103/PhysRevC.91.044904

    Article  Google Scholar 

  184. L.G. Pang, H. Petersen, G.Y. Qin et al., Decorrelation of anisotropic flow along the longitudinal direction. Eur. Phys. J. A 52, 97 (2016). doi:10.1140/epja/i2016-16097-x

    Article  Google Scholar 

  185. K. Xiao, L. Yi, F. Liu et al., Factorization of event-plane correlations over transverse momentum in relativistic heavy ion collisions in a multiphase transport model. Phys. Rev. C 94, 024905 (2016). doi:10.1103/PhysRevC.94.024905

    Article  Google Scholar 

  186. G.-L. Ma, Z.-W. Lin, Predictions for \(\sqrt{s_{NN}}=5.02\) TeV Pb+Pb collisions from a multi-phase transport model. Phys. Rev. C 93, 054911 (2016). doi:10.1103/PhysRevC.93.054911

    Article  Google Scholar 

  187. Y. Zhou, Review of anisotropic flow correlations in ultrarelativistic heavy-ion collisions. Adv. High Energy Phys. 2016, 9365637 (2016). doi:10.1155/2016/9365637

    Article  Google Scholar 

  188. R.S. Bhalerao, J.Y. Ollitrault, S. Pal, Event-plane correlators. Phys. Rev. C 88, 024909 (2013). doi:10.1103/PhysRevC.88.024909

    Article  Google Scholar 

  189. J. Schukraft, A. Timmins, S.A. Voloshin, Ultra-relativistic nuclear collisions: event shape engineering. Phys. Lett. B 719, 394–398 (2013). doi:10.1016/j.physletb.2013.01.045

    Article  Google Scholar 

  190. D. Teaney, L. Yan, Non linearities in the harmonic spectrum of heavy ion collisions with ideal and viscous hydrodynamics. Phys. Rev. C 86, 044908 (2012). doi:10.1103/PhysRevC.86.044908

    Article  Google Scholar 

  191. D. Teaney, L. Yan, Non-linear flow response and reaction plane correlations. Nucl. Phys. A 904–905, 365c–368c (2013). doi:10.1016/j.nuclphysa.2013.02.025

    Article  Google Scholar 

  192. R.S. Bhalerao, J.-Y. Ollitrault, S. Pal, Characterizing flow fluctuations with moments. Phys. Lett. B 742, 94–98 (2015). doi:10.1016/j.physletb.2015.01.019

    Article  Google Scholar 

  193. L. Yan, J.Y. Ollitrault, \(\nu _{4}, \nu _{5}, \nu _{6}, \nu _{7}\): nonlinear hydrodynamic response versus LHC data. Phys. Lett. B 744, 82–87 (2015). doi:10.1016/j.physletb.2015.03.040

    Article  Google Scholar 

  194. Y. Zhou (for the ALICE Collaboration), in Quark Matter (2017)

  195. S. Tuo (for the CMS Collaboration), in Quark Matter (2017)

  196. W. Adam, T. Bergauer, M. Dragicevic et al., Multiplicity and transverse momentum dependence of two- and four-particle correlations in pPb and PbPb collisions. Phys. Lett. B 724, 213–240 (2013). doi:10.1016/j.physletb.2013.06.028

    Article  Google Scholar 

  197. K. Dusling, R. Venugopalan, Azimuthal collimation of long range rapidity correlations by strong color fields in high multiplicity hadron-hadron collisions. Phys. Rev. Lett. 108, 262001 (2012). doi:10.1103/PhysRevLett.108.262001

    Article  Google Scholar 

  198. K. Dusling, R. Venugopalan, Evidence for BFKL and saturation dynamics from dihadron spectra at the LHC. Phys. Rev. D 87, 051502 (2013). doi:10.1103/PhysRevD.87.051502

    Article  Google Scholar 

  199. K. Dusling, R. Venugopalan, Explanation of systematics of CMS p+Pb high multiplicity di-hadron data at \(\sqrt{s}_{\rm NN} = 5.02\) TeV. Phys. Rev. D 87, 054014 (2013). doi:10.1103/PhysRevD.87.054014

    Article  Google Scholar 

  200. K. Dusling, R. Venugopalan, Comparison of the color glass condensate to dihadron correlations in proton–proton and proton–nucleus collisions. Phys. Rev. D 87, 094034 (2013). doi:10.1103/PhysRevD.87.094034

    Article  Google Scholar 

  201. K. Dusling, R. Venugopalan, Azimuthal anisotropy from color glass condensates in proton–nucleus collisions. Nucl. Phys. A 931, 283–287 (2014). doi:10.1016/j.nuclphysa.2014.09.024

    Article  Google Scholar 

  202. A. Kovner, M. Lublinsky, Angular and long range rapidity correlations in particle production at high energy. Int. J. Mod. Phys. E 22, 1330001 (2013). doi:10.1142/S0218301313300014

    Article  Google Scholar 

  203. A. Dumitru, A.V. Giannini, Initial state angular asymmetries in high energy p+A collisions: spontaneous breaking of rotational symmetry by a color electric field and C-odd fluctuations. Nucl. Phys. A 933, 212–228 (2015). doi:10.1016/j.nuclphysa.2014.10.037

    Article  Google Scholar 

  204. A. Dumitru, V. Skokov, Anisotropy of the semiclassical gluon field of a large nucleus at high energy. Phys. Rev. D 91, 074006 (2015). doi:10.1103/PhysRevD.91.074006

    Article  Google Scholar 

  205. J. Noronha, A. Dumitru, Azimuthal asymmetries in high-energy collisions of protons with holographic shockwaves. Phys. Rev. D 89, 094008 (2014). doi:10.1103/PhysRevD.89.094008

    Article  Google Scholar 

  206. A. Bzdak, G.L. Ma, Elliptic and triangular flow in \(p\)+Pb and peripheral Pb+Pb collisions from parton scatterings. Phys. Rev. Lett. 113, 252301 (2014). doi:10.1103/PhysRevLett.113.252301

    Article  Google Scholar 

  207. G.L. Ma, A. Bzdak, Long-range azimuthal correlations in proton–proton and proton–nucleus collisions from the incoherent scattering of partons. Phys. Lett. B 739, 209–213 (2014). doi:10.1016/j.physletb.2014.10.066

    Article  Google Scholar 

  208. P. Bozek, A. Bzdak, G.L. Ma, Rapidity dependence of elliptic and triangular flow in proton–nucleus collisions from collective dynamics. Phys. Lett. B 748, 301–305 (2015). doi:10.1016/j.physletb.2015.06.007

    Article  Google Scholar 

  209. J.D. Orjuela Koop, A. Adare, D. McGlinchey et al., Azimuthal anisotropy relative to the participant plane from a multiphase transport model in central p + Au, d + Au, and \(^{3}\)He + Au collisions at \(\sqrt{s_{NN}}=200\) GeV. Phys. Rev. C 92, 054903 (2015). doi:10.1103/PhysRevC.92.054903

    Article  Google Scholar 

  210. H.L. Li, L. He, Z.W. Lin et al., Origin of the mass splitting of azimuthal anisotropies in a multi-phase transport model (2016), arXiv: 1604.07387

  211. Y. Zhou, X.R. Zhu, P.F. Li et al., Investigation of possible hadronic flow in \(\sqrt{s_{NN}} = 5.02\) TeV \(p-Pb\) collisions. Phys. Rev. C 91, 064908 (2015). doi:10.1103/PhysRevC.91.064908

    Article  Google Scholar 

  212. P.M. Chesler, Colliding shock waves and hydrodynamics in small systems. Phys. Rev. Lett. 115, 241602 (2015). doi:10.1103/PhysRevLett.115.241602

    Article  Google Scholar 

  213. P.M. Chesler, How big are the smallest drops of quark–gluon plasma? JHEP 03, 146 (2016). doi:10.1007/JHEP03(2016)146

    Article  MathSciNet  Google Scholar 

  214. P. Bozek, W. Broniowski, Collective dynamics in high-energy proton–nucleus collisions. Phys. Rev. C 88, 014903 (2013). doi:10.1103/PhysRevC.88.014903

    Article  Google Scholar 

  215. H. Mäntysaari, B. Schenke, Evidence of strong proton shape fluctuations from incoherent diffraction. Phys. Rev. Lett. 117, 052301 (2016). doi:10.1103/PhysRevLett.117.052301

    Article  Google Scholar 

  216. H. Mantysaari, B. Schenke, Revealing proton shape fluctuations with incoherent diffraction at high energy. Phys. Rev. D 94, 034042 (2016). doi:10.1103/PhysRevD.94.034042

    Article  Google Scholar 

  217. A. Adare, C. Aidala, N.N. Ajitanand et al., Quadrupole anisotropy in dihadron azimuthal correlations in central \(d+\)Au collisions at \(\sqrt{s_{NN}} \)  = 200 GeV. Phys. Rev. Lett. 111, 212301 (2013). doi:10.1103/PhysRevLett.111.212301

    Article  Google Scholar 

  218. A. Adare, C. Aidala, N.N. Ajitanand et al., Measurement of long-range angular correlation and quadrupole anisotropy of pions and (anti)protons in central \(d+\)Au collisions at \(\sqrt{s_{NN}} \) = 200 GeV. Phys. Rev. Lett. 114, 192301 (2015). doi:10.1103/PhysRevLett.114.192301

    Article  Google Scholar 

  219. L. Adamczyk, J.K. Adkins, G. Agakishiev et al., Long-range pseudorapidity dihadron correlations in \(d\)+Au collisions at \(\sqrt{s_{\rm NN}}=200\) GeV. Phys. Lett. B 747, 265–271 (2015). doi:10.1016/j.physletb.2015.05.075

    Article  Google Scholar 

  220. A. Adare, S. Afanasiev, C. Aidala et al., Measurements of elliptic and triangular flow in high-multiplicity \(^{3}\)He\(+\)Au collisions at \(\sqrt{s_{NN}}=200\) GeV. Phys. Rev. Lett. 115, 142301 (2015). doi:10.1103/PhysRevLett.115.142301

    Article  Google Scholar 

  221. J.D. Orjuela Koop, R. Belmont, P. Yin et al., Exploring the beam energy dependence of flow-like signatures in small system \(d+\)Au collisions. Phys. Rev. C 93, 044910 (2016). doi:10.1103/PhysRevC.93.044910

    Article  Google Scholar 

  222. P. Bozek, W. Broniowski, Hydrodynamic modeling of \(^3\)He-Au collisions at \(\sqrt{s_{NN}} \) = 200 GeV. Phys. Lett. B 747, 135–138 (2015). doi:10.1016/j.physletb.2015.05.068

    Article  Google Scholar 

  223. P. Romatschke, Light–heavy ion collisions: a window into pre-equilibrium QCD dynamics? Eur. Phys. J. C 75, 305 (2015). doi:10.1140/epjc/s10052-015-3509-3

    Article  Google Scholar 

  224. J. Adam, D. Adamov a, M.M. Aggarwal, Two-pion femtoscopy in p–Pb collisions at \(\sqrt{s_{{\rm NN}}}=5.02\) TeV. Phys. Rev. C 91, 034906 (2015). doi:10.1103/PhysRevC.91.034906

    Article  Google Scholar 

  225. P. Bozek, Femtoscopy analysis of d–Au interactions at \(\sqrt{s}=200\) GeV. Phys. Rev. C 90, 064913 (2014). doi:10.1103/PhysRevC.90.064913

    Article  Google Scholar 

  226. V.M. Shapoval, P. Braun-Munzinger, lu Karpenko, Femtoscopic scales in \(p+p\) and \(p+\)Pb collisions in view of the uncertainty principle. Phys. Lett. B 725, 139–147 (2013). doi:10.1016/j.physletb.2013.07.002

    Article  Google Scholar 

  227. H. Niemi, G.S. Denicol, How large is the Knudsen number reached in fluid dynamical simulations of ultrarelativistic heavy ion collisions? (2014), arXiv: 1404.7327

  228. B. Schenke, S. Schlichting, R. Venugopalan, Azimuthal anisotropies in p\(+\)Pb collisions from classical YangšCMills dynamics. Phys. Lett. B 747, 76–82 (2015). doi:10.1016/j.physletb.2015.05.051

    Article  Google Scholar 

  229. H.L. Li, L. He, Z.W. Lin et al., Origin of the mass splitting of elliptic anisotropy in a multiphase transport model. Phys. Rev. C 93, 051901 (2016). doi:10.1103/PhysRevC.93.051901

    Article  Google Scholar 

  230. H. Petersen, M. Bleicher, S.A. Bass et al., UrQMD v2.3: changes and Comparisons (2008), arXiv: 0805.0567

  231. P. Romatschke, Collective flow without hydrodynamics: simulation results for relativistic ion collisions. Eur. Phys. J. C 75, 429 (2015). doi:10.1140/epjc/s10052-015-3646-8

    Article  Google Scholar 

  232. A. Dumitru, K. Dusling, F. Gelis et al., The Ridge in proton–proton collisions at the LHC. Phys. Lett. B 697, 21–25 (2011). doi:10.1016/j.physletb.2011.01.024

    Article  Google Scholar 

  233. E. Levin, A.H. Rezaeian, The Ridge from the BFKL evolution and beyond. Phys. Rev. D 84, 034031 (2011). doi:10.1103/PhysRevD.84.034031

    Article  Google Scholar 

  234. P. Tribedy, R. Venugopalan, QCD saturation at the LHC: comparisons of models to p + p and A + A data and predictions for p + Pb collisions. Phys. Lett. B 710, 125–133 (2012). doi:10.1016/j.physletb.2012.02.047

    Article  Google Scholar 

  235. P. Bozek, Elliptic flow in proton–proton collisions at \(\sqrt{S} = 7\) TeV. Eur. Phys. J. C 71, 1530 (2011). doi:10.1140/epjc/s10052-010-1530-0

    Article  Google Scholar 

  236. K. Werner, lu Karpenko, T. Pierog, The `Ridge’ in proton–proton scattering at 7 TeV. Phys. Rev. Lett. 106, 122004 (2011). doi:10.1103/PhysRevLett.106.122004

    Article  Google Scholar 

  237. B. Schenke, S. Schlichting, P. Tribedy et al., Mass ordering of spectra from fragmentation of saturated gluon states in high multiplicity proton–proton collisions. Phys. Rev. Lett. 117, 162301 (2016). doi:10.1103/PhysRevLett.117.162301

    Article  Google Scholar 

  238. A. Milov (for the ATLAS Collaboration), in Hard Probe (2016)

  239. K. Gajdosova (for the ALICE Collaboration), in Quark Matter (2017)

  240. M. Zhou (for the ATLAS Collaboration), in Quark Matter (2017)

  241. J. Jia, M. Zhou, A. Trzupek, arXiv:1701.03830 [nucl-th] (2017)

  242. M. Guilbaud (for the CMS Collaboration), in Quark Matter (2017)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huichao Song.

Additional information

This work was supported by the NSFC and the MOST (Nos.11435001, 11675004 and 2015CB856900) and the Danish Council for Independent Research, Natural Sciences, and the Danish National Research Foundation (Danmarks Grundforskningsfond).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, H., Zhou, Y. & Gajdošová, K. Collective flow and hydrodynamics in large and small systems at the LHC. NUCL SCI TECH 28, 99 (2017). https://doi.org/10.1007/s41365-017-0245-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-017-0245-4

Keywords

Navigation