Skip to main content

Advertisement

Log in

Biotransformation of lignocellulosic biomass to xylitol: an overview

  • Review Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Lignocellulosic biomass (LCB) stands out as an abundant, inexpensive, and promising renewable source of energy that can be used to produce fuels and value-added products. LCB comprises of majorly 3 components: cellulose, hemicellulose, and lignin. These three components can be further transformed into commercially viable and sustainable products like ethanol, xylitol, acetic acid, glutamic acid, glucuronic acid, succinic acid, and vanillin and thus can contribute significantly towards developing cost-effective integrated biorefineries. Among these, xylitol has been a tremendously increasing area of interest. With having no petrochemical alternative, xylitol turns out to be one of the highest valued products which may be produced by utilizing lignocellulosic biomass. Its large-scale production is still carried out through chemical route by dehydrogenation of xylose under high pressure and temperature. Biotechnological route is the potential substitute for chemical route as it involves milder process conditions and can utilize both industrial and agricultural wastes thereby reducing the overall production cost. However, biological scheme has not been adopted yet at the industrial scale. This review focusses on the recent advances in production of xylitol using yeasts. Special emphasis is given on pretreatment and detoxification methods, critical growth parameters, various fermentation strategies, metabolic engineering, and product recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Maguire A, Rugg-Gunn AJ (2003) Xylitol and caries prevention - is it a magic bullet? Br Dent J 194:429–436. https://doi.org/10.1038/sj.bdj.4810022

    Article  Google Scholar 

  2. Edelstein S, Smith K, Worthington A et al (2008) Comparisons of six new artificial sweetener gradation ratios with sucrose in conventional-method cupcakes resulting in best percentage substitution ratios. J Culin Sci Technol 5:61–74. https://doi.org/10.1300/J385v05n04_05

    Article  Google Scholar 

  3. Elamin K, Sjöström J, Jansson H, Swenson J (2012) Calorimetric and relaxation properties of xylitol-water mixtures. J Chem Phys 136(10):104508. https://doi.org/10.1063/1.3692609

    Article  Google Scholar 

  4. Chen X, Jiang ZH, Chen S, Qin W (2010) Microbial and bioconversion production of D-xylitol and its detection and application. Int J Biol Sci 6:834–844. https://doi.org/10.7150/ijbs.6.834

    Article  Google Scholar 

  5. Ritter AV, Bader JD, Leo MC et al (2013) Tooth-surface-specific effects of xylitol: randomized trial results. J Dent Res 92:512–517. https://doi.org/10.1177/0022034513487211

    Article  Google Scholar 

  6. Uittamo J, Nieminen MT, Kaihovaara P et al (2011) Xylitol inhibits carcinogenic acetaldehyde production by Candida species. Int J Cancer 129:2038–2041. https://doi.org/10.1002/ijc.25844

    Article  Google Scholar 

  7. Werpy T, Petersen G (2004) Top value added chemicals from biomass Volume I. Us Nrel Medium: ED; Size: 76 pp. pages. https://doi.org/10.2172/15008859

  8. Ravella SR, Gallagher J, Fish S, Prakasham RS (2012) Overview on commercial production of xylitol, economic analysis and market trends BT - D-Xylitol: fermentative production, application and commercialization. In: da Silva SS, Chandel AK (eds) Springer. Berlin Heidelberg, Berlin, Heidelberg, pp 291–306

    Google Scholar 

  9. Salgado JM, Converti A, Domínguez JM (2012) Fermentation strategies explored for xylitol production. D-Xylitol 161–191

  10. Venkateswar Rao L, Goli JK, Gentela J, Koti S (2016) Bioconversion of lignocellulosic biomass to xylitol: an overview. Bioresour Technol 213:299–310. https://doi.org/10.1016/j.biortech.2016.04.092

    Article  Google Scholar 

  11. Dasgupta D, Bandhu S, Adhikari DK, Ghosh D (2017) Challenges and prospects of xylitol production with whole cell bio-catalysis: a review. Microbiol Res 197:9–21. https://doi.org/10.1016/j.micres.2016.12.012

    Article  Google Scholar 

  12. Winkelhausen E, Jovanovic-Malinovska R, Velickova E, Kuzmanova S (2007) Sensory and microbiological quality of a baked product containing xylitol as an alternative sweetener. Int J Food Prop 10:639–649. https://doi.org/10.1080/10942910601098031

    Article  Google Scholar 

  13. Fisker HO, Nissen V (2006) Effect of gum base and bulk sweetener on release of specific compounds from fruit flavoured chewing gum. Dev Food Sci 43:429–432. https://doi.org/10.1016/S0167-4501(06)80101-9

    Article  Google Scholar 

  14. Sokmen A, Gunes G (2006) Influence of some bulk sweeteners on rheological properties of chocolate. LWT - Food Sci Technol 39:1053–1058. https://doi.org/10.1016/j.lwt.2006.03.002

    Article  Google Scholar 

  15. Lee SH, Choi BK, Kim YJ (2012) The cariogenic characters of xylitol-resistant and xylitol-sensitive Streptococcus mutans in biofilm formation with salivary bacteria. Arch Oral Biol 57:697–703. https://doi.org/10.1016/j.archoralbio.2011.12.001

    Article  Google Scholar 

  16. Tapiainen T, Sormunen R, Kaijalainen T et al (2004) Ultrastructure of Streptococcus pneumoniae after exposure to xylitol. J Antimicrob Chemother 54:225–228. https://doi.org/10.1093/jac/dkh302

    Article  Google Scholar 

  17. Akiyama H, Oono T, Huh WK et al (2002) Actions of farnesol and xylitol against Staphylococcus aureus. Chemotherapy 48:122–128. https://doi.org/10.1159/000064916

    Article  Google Scholar 

  18. Ammons MCB, Ward LS, Dowd S, James GA (2011) Combined treatment of Pseudomonas aeruginosa biofilm with lactoferrin and xylitol inhibits the ability of bacteria to respond to damage resulting from lactoferrin iron chelation. Int J Antimicrob Agents 37:316–323. https://doi.org/10.1016/j.ijantimicag.2010.12.019

    Article  Google Scholar 

  19. Imazato S, Ikebe K, Nokubi T et al (2006) Prevalence of root caries in a selected population of older adults in Japan. J Oral Rehabil 33:137–143. https://doi.org/10.1111/j.1365-2842.2006.01547.x

    Article  Google Scholar 

  20. Wang R, Li L, Zhang B et al (2013) Improved xylose fermentation of Kluyveromyces marxianus at elevated temperature through construction of a xylose isomerase pathway. J Ind Microbiol Biotechnol 40:841–854. https://doi.org/10.1007/s10295-013-1282-6

    Article  Google Scholar 

  21. Islam MS (2011) Effects of xylitol as a sugar substitute on diabetes-related parameters in nondiabetic rats. J Med Food 14:505–511. https://doi.org/10.1089/jmf.2010.0015

    Article  Google Scholar 

  22. Danhauer JL, Kelly A, Johnson CE (2011) Is mother-child transmission a possible vehicle for xylitol prophylaxis in acute otitis media? Int J Audiol 50:661–672. https://doi.org/10.3109/14992027.2011.590824

    Article  Google Scholar 

  23. Mattila PT, Kangasmaa H, Knuuttila MLE (2005) The effect of a simultaneous dietary administration of xylitol and ethanol on bone resorption. Metabolism 54:548–551. https://doi.org/10.1016/j.metabol.2004.11.011

    Article  Google Scholar 

  24. Mohamad NL, Mustapa Kamal SM, Mokhtar MN (2015) Xylitol biological production: a review of recent studies. Food Rev Int 31:74–89. https://doi.org/10.1080/87559129.2014.961077

    Article  Google Scholar 

  25. Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48:3713–3729. https://doi.org/10.1021/ie801542g

    Article  Google Scholar 

  26. Wei J, Yuan Q, Wang T, Wang L (2010) Purification and crystallization of xylitol from fermentation broth of corncob hydrolysates. Front Chem Eng China 4:57–64. https://doi.org/10.1007/s11705-009-0295-1

    Article  Google Scholar 

  27. Jaffe GM, Szkrybalo W, Weinert PH (1974) Process for producing xylose. Pat US 408

  28. Delgado Arcaño Y, Valmaña García OD, Mandelli D et al (2020) Xylitol: a review on the progress and challenges of its production by chemical route. Catal Today 344:2–14. https://doi.org/10.1016/j.cattod.2018.07.060

    Article  Google Scholar 

  29. Hou-Rui Z (2012) Key drivers influencing the large scale production of xylitol. In: D-Xylitol. Springer, pp 267–289

  30. Felipe Hernández-Pérez A, de Arruda PV, Sene L et al (2019) Xylitol bioproduction: state-of-the-art, industrial paradigm shift, and opportunities for integrated biorefineries. Crit Rev Biotechnol 39:924–943. https://doi.org/10.1080/07388551.2019.1640658

    Article  Google Scholar 

  31. Rafiqul ISM, Mimi Sakinah AM (2012) A perspective: bioproduction of xylitol by enzyme technology and future prospects. Int Food Res J 19:405–408

    Google Scholar 

  32. Chandel AK, Garlapati VK, Singh AK et al (2018) The path forward for lignocellulose biorefineries: bottlenecks, solutions, and perspective on commercialization. Bioresour Technol 264:370–381. https://doi.org/10.1016/j.biortech.2018.06.004

    Article  Google Scholar 

  33. Unrean P, Ketsub N (2018) Integrated lignocellulosic bioprocess for co-production of ethanol and xylitol from sugarcane bagasse. Ind Crops Prod 123:238–246. https://doi.org/10.1016/j.indcrop.2018.06.071

    Article  Google Scholar 

  34. Ping Y, Ling HZ, Song G, Ge JP (2013) Xylitol production from non-detoxified corncob hemicellulose acid hydrolysate by Candida tropicalis. Biochem Eng J 75:86–91. https://doi.org/10.1016/j.bej.2013.03.022

    Article  Google Scholar 

  35. López-Linares JC, Romero I, Cara C et al (2018) Xylitol production by Debaryomyces hansenii and Candida guilliermondii from rapeseed straw hemicellulosic hydrolysate. Bioresour Technol 247:736–743. https://doi.org/10.1016/j.biortech.2017.09.139

    Article  Google Scholar 

  36. Hernández-Pérez AF, de Arruda PV, de Almeida Felipe MdG (2016) Sugarcane straw as a feedstock for xylitol production by Candida guilliermondii FTI 20037. Brazilian J Microbiol 47:489–496. https://doi.org/10.1016/j.bjm.2016.01.019

    Article  Google Scholar 

  37. Sene L, Arruda PV, Oliveira SMM, Felipe MGA (2011) Evaluation of sorghum straw hemicellulosic hydrolysate for biotechnological production of xylitol by Candida guilliermondii. Brazilian J Microbiol 42:1141–1146. https://doi.org/10.1590/S1517-83822011000300036

    Article  Google Scholar 

  38. Zahed O, Jouzani GS, Abbasalizadeh S et al (2016) Continuous co-production of ethanol and xylitol from rice straw hydrolysate in a membrane bioreactor. Folia Microbiol (Praha) 61:179–189. https://doi.org/10.1007/s12223-015-0420-0

    Article  Google Scholar 

  39. Camargo D, Sene L (2014) Production of ethanol from the hemicellulosic fraction of sunflower meal biomass. Biomass Convers Biorefinery 4:87–93. https://doi.org/10.1007/s13399-013-0096-0

    Article  Google Scholar 

  40. Vallejos ME, Chade M, Mereles EB et al (2016) Strategies of detoxification and fermentation for biotechnological production of xylitol from sugarcane bagasse. Ind Crops Prod 91:161–169. https://doi.org/10.1016/j.indcrop.2016.07.007

    Article  Google Scholar 

  41. Carvalheiro F, Duarte LC, Lopes S et al (2005) Evaluation of the detoxification of brewery’s spent grain hydrolysate for xylitol production by Debaryomyces hansenii CCMI 941. Process Biochem 40:1215–1223. https://doi.org/10.1016/j.procbio.2004.04.015

    Article  Google Scholar 

  42. Kumar AK, Sharma S (2017) Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. Bioresour Bioprocess 4(1):7. https://doi.org/10.1186/s40643-017-0137-9

    Article  Google Scholar 

  43. Solarte-Toro JC, Romero-García JM, Martínez-Patiño JC et al (2019) Acid pretreatment of lignocellulosic biomass for energy vectors production: a review focused on operational conditions and techno-economic assessment for bioethanol production. Renew Sustain Energy Rev 107:587–601. https://doi.org/10.1016/j.rser.2019.02.024

    Article  Google Scholar 

  44. Gírio FM, Carvalheiro F, Duarte LC, Bogel-Łukasik R (2012) Deconstruction of the hemicellulose fraction from lignocellulosic materials into simple sugars. D-xylitol 3–37

  45. Fang C, Thomsen MH, Frankær CG, et al (2019) Factors affecting seawater-based pretreatment of lignocellulosic date palm residues. In: Biorefinery. Springer, pp 695–713

  46. Da Silva SS, Chandel AK (2012) D-Xylitol: Fermentative production, application and commercialization

  47. Santucci BS, Maziero P, Rabelo SC et al (2015) Autohydrolysis of hemicelluloses from sugarcane bagasse during hydrothermal pretreatment: a kinetic assessment. BioEnergy Res 8:1778–1787

    Article  Google Scholar 

  48. Koo B, Park J, Gonzalez R et al (2019) Two-stage autohydrolysis and mechanical treatment to maximize sugar recovery from sweet sorghum bagasse. Bioresour Technol 276:140–145. https://doi.org/10.1016/j.biortech.2018.12.112

    Article  Google Scholar 

  49. Carvalheiro F, Duarte LC, Gírio FM (2008) Hemicellulose biorefineries: a review on biomass pretreatments. J Sci Ind Res (India) 67:849–864

    Google Scholar 

  50. Akhtar N, Gupta K, Goyal D, Goyal A (2016) Recent advances in pretreatment technologies for efficient hydrolysis of lignocellulosic biomass. Environ Prog Sustain Energy 35:489–511

    Article  Google Scholar 

  51. Liu ZH, Chen HZ (2015) Xylose production from corn stover biomass by steam explosion combined with enzymatic digestibility. Bioresour Technol 193:345–356. https://doi.org/10.1016/j.biortech.2015.06.114

    Article  Google Scholar 

  52. Kumar V, Yadav SK, Kumar J, Ahluwalia V (2020) A critical review on current strategies and trends employed for removal of inhibitors and toxic materials generated during biomass pretreatment. Bioresour Technol 299:122633. https://doi.org/10.1016/j.biortech.2019.122633

    Article  Google Scholar 

  53. Kumar V, Binod P, Sindhu R et al (2018) Bioconversion of pentose sugars to value added chemicals and fuels: recent trends, challenges and possibilities. Bioresour Technol 269:443–451. https://doi.org/10.1016/j.biortech.2018.08.042

    Article  Google Scholar 

  54. Jönsson LJ, Alriksson B, Nilvebrant N-O (2013) Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnol Biofuels 6:1–10

    Article  Google Scholar 

  55. Lima LHA, De Almeida Felipe MDG, Vitolo M, Torres FAG (2004) Effect of acetic acid present in bagasse hydrolysate on the activities of xylose reductase and xylitol dehydrogenase in Candida guilliermondii. Appl Microbiol Biotechnol 65:734–738. https://doi.org/10.1007/s00253-004-1612-8

    Article  Google Scholar 

  56. Kamal SMM, Mohamad NL, Abdullah AGL, Abdullah N (2011) Detoxification of sago trunk hydrolysate using activated charcoal for xylitol production. Procedia Food Sci 1:908–913. https://doi.org/10.1016/j.profoo.2011.09.137

    Article  Google Scholar 

  57. Kumar V, Sandhu PP, Ahluwalia V et al (2019) Improved upstream processing for detoxification and recovery of xylitol produced from corncob. Bioresour Technol 291:121931. https://doi.org/10.1016/j.biortech.2019.121931

    Article  Google Scholar 

  58. Mussatto SI, Roberto IC (2004) Optimal experimental condition for hemicellulosic hydrolyzate treatment with activated charcoal for xylitol production. Biotechnol Prog 20:134–139. https://doi.org/10.1021/bp034207i

    Article  Google Scholar 

  59. Kumar V, Krishania M, Preet Sandhu P et al (2018) Efficient detoxification of corn cob hydrolysate with ion-exchange resins for enhanced xylitol production by Candida tropicalis MTCC 6192. Bioresour Technol 251:416–419. https://doi.org/10.1016/j.biortech.2017.11.039

    Article  Google Scholar 

  60. Mishra A, Ghosh S (2019) Bioethanol production from various lignocellulosic feedstocks by a novel “fractional hydrolysis” technique with different inorganic acids and co-culture fermentation. Fuel 236:544–553. https://doi.org/10.1016/j.fuel.2018.09.024

    Article  Google Scholar 

  61. Jiang X, He P, Qi X et al (2016) High-efficient xylitol production by evolved Candida maltosa adapted to corncob hemicellulosic hydrolysate. J Chem Technol Biotechnol 91:2994–2999. https://doi.org/10.1002/jctb.4924

    Article  Google Scholar 

  62. Pereira RS, Mussatto SI, Roberto IC (2011) Inhibitory action of toxic compounds present in lignocellulosic hydrolysates on xylose to xylitol bioconversion by Candida guilliermondii. J Ind Microbiol Biotechnol 38:71–78. https://doi.org/10.1007/s10295-010-0830-6

    Article  Google Scholar 

  63. Perna MSC, Bastos RG, Ceccato-Antonini SR (2018) Single and combined effects of acetic acid, furfural, and sugars on the growth of the pentose-fermenting yeast Meyerozyma guilliermondii. 3 Biotech 8(2):119. https://doi.org/10.1007/s13205-018-1143-0

    Article  Google Scholar 

  64. Yewale T, Panchwagh S, Rajagopalan S et al (2016) Enhanced xylitol production using immobilized Candida tropicalis with non-detoxified corn cob hemicellulosic hydrolysate. 3 Biotech 6:1–10. https://doi.org/10.1007/s13205-016-0388-8

    Article  Google Scholar 

  65. Rafiqul ISM, Sakinah AMM (2013) Processes for the production of xylitol—a review. Food Rev Int 29:127–156. https://doi.org/10.1080/87559129.2012.714434

    Article  Google Scholar 

  66. Rangaswamy S, Agblevor FA (2002) Screening of facultative anaerobic bacteria utilizing D-xylose for xylitol production. Appl Microbiol Biotechnol 60:88–93. https://doi.org/10.1007/s00253-002-1067-8

    Article  Google Scholar 

  67. Dashtban M, Kepka G, Seiboth B, Qin W (2013) Xylitol production by genetically engineered trichoderma reesei strains using barley straw as feedstock. Appl Biochem Biotechnol 169:554–569. https://doi.org/10.1007/s12010-012-0008-y

    Article  Google Scholar 

  68. Berghäll S, Hilditch S, Penttilä M, Richard P (2007) Identification in the mould Hypocrea jecorina of a gene encoding an NADP+: D-xylose dehydrogenase. FEMS Microbiol Lett 277:249–253. https://doi.org/10.1111/j.1574-6968.2007.00969.x

    Article  Google Scholar 

  69. Sampaio FC, Da Silveira WB, Chaves-Alves VM et al (2003) Screening of filamentous fungi for production of xylitol from d-xylose. Brazilian J Microbiol 34:325–328. https://doi.org/10.1590/s1517-83822003000400007

    Article  Google Scholar 

  70. Yablochkova EN, Bolotnikova OI, Mikhailova NP et al (2003) The activity of xylose reductase and xylitol dehydrogenase in yeasts. Microbiology 72:414–417. https://doi.org/10.1023/A:1025032404238

    Article  Google Scholar 

  71. Misra S, Raghuwanshi S, Gupta P et al (2012) Fermentation behavior of osmophilic yeast Candida tropicalis isolated from the nectar of Hibiscus rosa sinensis flowers for xylitol production. Antonie Van Leeuwenhoek Int J Gen Mol Microbiol 101:393–402. https://doi.org/10.1007/s10482-011-9646-2

    Article  Google Scholar 

  72. Morais Junior WG, Pacheco TF, Trichez D et al (2019) Xylitol production on sugarcane biomass hydrolysate by newly identified Candida tropicalis JA2 strain. Yeast 36:349–361. https://doi.org/10.1002/yea.3394

    Article  Google Scholar 

  73. de Albuquerque TL, Gomes SDL, Marques JE et al (2015) Xylitol production from cashew apple bagasse by Kluyveromyces marxianus CCA510. Catal Today 255:33–40. https://doi.org/10.1016/j.cattod.2014.10.054

    Article  Google Scholar 

  74. Rodrussamee N, Lertwattanasakul N, Hirata K et al (2011) Growth and ethanol fermentation ability on hexose and pentose sugars and glucose effect under various conditions in thermotolerant yeast Kluyveromyces marxianus. Appl Microbiol Biotechnol 90:1573–1586. https://doi.org/10.1007/s00253-011-3218-2

    Article  Google Scholar 

  75. Wilkins MR, Mueller M, Eichling S, Banat IM (2008) Fermentation of xylose by the thermotolerant yeast strains Kluyveromyces marxianus IMB2, IMB4, and IMB5 under anaerobic conditions. Process Biochem 43:346–350

    Article  Google Scholar 

  76. da Silveira FA, Fernandes TAR, Bragança CRS et al (2020) Isolation of xylose-assimilating yeasts and optimization of xylitol production by a new Meyerozyma guilliermondii strain. Int Microbiol 23:325–334. https://doi.org/10.1007/s10123-019-00105-0

    Article  Google Scholar 

  77. Hedayati Rad F, Sharifan A (2019) Evaluation and statistical optimization of process variables for xylitol production by Candida kefyr. Food Heal 2:31–36

    Google Scholar 

  78. Misra S, Raghuwanshi S, Saxena RK (2013) Evaluation of corncob hemicellulosic hydrolysate for xylitol production by adapted strain of Candida tropicalis. Carbohydr Polym 92:1596–1601. https://doi.org/10.1016/j.carbpol.2012.11.033

    Article  Google Scholar 

  79. Jia H, Shao T, Zhong C et al (2016) Evaluation of xylitol production using corncob hemicellulosic hydrolysate by combining tetrabutylammonium hydroxide extraction with dilute acid hydrolysis. Carbohydr Polym 151:676–683. https://doi.org/10.1016/j.carbpol.2016.06.013

    Article  Google Scholar 

  80. Abdul Manaf SF, Md Jahim J, Harun S, Luthfi AAI (2018) Fractionation of oil palm fronds (OPF) hemicellulose using dilute nitric acid for fermentative production of xylitol. Ind Crops Prod 115:6–15. https://doi.org/10.1016/j.indcrop.2018.01.067

    Article  Google Scholar 

  81. Srivani K, Pydi Setty Y (2012) Parametric optimization of xylitol production from xylose by fermentation. Asia-Pacific J Chem Eng 7:S280–S284

    Article  Google Scholar 

  82. Tamburini E, Bianchini E, Bruni A, Forlani G (2010) Cosubstrate effect on xylose reductase and xylitol dehydrogenase activity levels, and its consequence on xylitol production by Candida tropicalis. Enzyme Microb Technol 46:352–359. https://doi.org/10.1016/j.enzmictec.2010.01.001

    Article  Google Scholar 

  83. Arruda PV, Felipe MGA (2009) Role of glycerol addition on xylose-to-xylitol bioconversion by Candida guilliermondii. Curr Microbiol 58:274–278. https://doi.org/10.1007/s00284-008-9321-7

    Article  Google Scholar 

  84. Hernández-Pérez AF, Costa IAL, Silva DDV et al (2016) Biochemical conversion of sugarcane straw hemicellulosic hydrolyzate supplemented with co-substrates for xylitol production. Bioresour Technol 200:1085–1088. https://doi.org/10.1016/j.biortech.2015.11.036

    Article  Google Scholar 

  85. Pappu SMJ, Gummadi SN (2018) Effect of cosubstrate on xylitol production by Debaryomyces nepalensis NCYC 3413: a cybernetic modelling approach. Process Biochem 69:12–21. https://doi.org/10.1016/j.procbio.2018.03.023

    Article  Google Scholar 

  86. Raj K, Krishnan C (2020) Improved co-production of ethanol and xylitol from low-temperature aqueous ammonia pretreated sugarcane bagasse using two-stage high solids enzymatic hydrolysis and Candida tropicalis. Renew Energy 153:392–403. https://doi.org/10.1016/j.renene.2020.02.042

    Article  Google Scholar 

  87. Bustos Vázquez G, Pérez-Rodríguez N, Salgado JM et al (2017) Optimization of salts supplementation on xylitol production by Debaryomyces hansenii using a synthetic medium or corncob hemicellulosic hydrolyzates and further scaled up. Ind Eng Chem Res 56:6579–6589. https://doi.org/10.1021/acs.iecr.7b01120

    Article  Google Scholar 

  88. Martínez-Corona R, Penagos CC, del Carmen Chávez-Parga M et al (2016) Analysis of the effect of agitation and aeration on xylitol production by fermentation in bioreactor with Kluyveromyces marxianus using hydrolized tamarind seed as substrate. Int J Curr Microbiol Appl Sci 5:479–499. https://doi.org/10.20546/ijcmas.2016.506.055

    Article  Google Scholar 

  89. Zhang J, Geng A, Yao C et al (2012) Xylitol production from d-xylose and horticultural waste hemicellulosic hydrolysate by a new isolate of Candida athensensis SB18. Bioresour Technol 105:134–141. https://doi.org/10.1016/j.biortech.2011.11.119

    Article  Google Scholar 

  90. Prabhu AA, Bosakornranut E, Amraoui Y et al (2020) Enhanced xylitol production using non-detoxified xylose rich pre-hydrolysate from sugarcane bagasse by newly isolated Pichia fermentans. Biotechnol Biofuels 13:1–15

    Article  Google Scholar 

  91. Mano JS, Sathyanarayana P (2016) Multi response optimization for enhanced xylitol production by Debaryomyces nepalensis in bioreactor. 3 Biotech 6:1–10. https://doi.org/10.1007/s13205-016-0467-x

    Article  Google Scholar 

  92. Pérez-Bibbins B, De Souza Oliveira RP, Torrado A et al (2014) Study of the potential of the air lift bioreactor for xylitol production in fed-batch cultures by Debaryomyces hansenii immobilized in alginate beads. Appl Microbiol Biotechnol 98:151–161. https://doi.org/10.1007/s00253-013-5280-4

    Article  Google Scholar 

  93. Branco RF, Santos JC, Murakami LY et al (2007) Xylitol production in a bubble column bioreactor: influence of the aeration rate and immobilized system concentration. Process Biochem 42:258–262

    Article  Google Scholar 

  94. Silva CJSM, Mussatto SI, Roberto IC (2006) Study of xylitol production by Candida guilliermondii on a bench bioreactor. J Food Eng 75:115–119

    Article  Google Scholar 

  95. Kwon SG, Park SW, Oh DK (2006) Increase of xylitol productivity by cell-recycle fermentation of Candida tropicalis using submerged membrane bioreactor. J Biosci Bioeng 101:13–18. https://doi.org/10.1263/jbb.101.13

    Article  Google Scholar 

  96. Santos JC, Converti A, de Carvalho W et al (2005) Influence of aeration rate and carrier concentration on xylitol production from sugarcane bagasse hydrolyzate in immobilized-cell fluidized bed reactor. Process Biochem 40:113–118

    Article  Google Scholar 

  97. Mussatto SI, Roberto IC (2003) Xylitol production from high xylose concentration: evaluation of the fermentation in bioreactor under different stirring rates. J Appl Microbiol 95:331–337

    Article  Google Scholar 

  98. Faria LFF, Pereira N, Nobrega R (2002) Xylitol production from D-xylose in a membrane bioreactor. Desalination 149:231–236. https://doi.org/10.1016/S0011-9164(02)00766-X

    Article  Google Scholar 

  99. Dasgupta D, Kurmi AK, Adhikari DK, Ghosh D (2020) Xylitol production from lignocellulosic pentosans using Kluyveromyces marxianus: kinetic modelling of yeast growth and fermentation. Biofuels 11:309–319

    Google Scholar 

  100. Vaz de Arruda P, dos Santos JC, de Cássia Lacerda Brambilla Rodrigues R et al (2017) Scale up of xylitol production from sugarcane bagasse hemicellulosic hydrolysate by Candida guilliermondii FTI 20037. J Ind Eng Chem 47:297–302. https://doi.org/10.1016/j.jiec.2016.11.046

    Article  Google Scholar 

  101. Dalli SS, Patel M, Rakshit SK (2017) Development and evaluation of poplar hemicellulose prehydrolysate upstream processes for the enhanced fermentative production of xylitol. Biomass Bioenerg 105:402–410. https://doi.org/10.1016/j.biombioe.2017.08.001

    Article  Google Scholar 

  102. da Silva DDV, de Arruda PV, Vicente FMCF et al (2015) Evaluation of fermentative potential of Kluyveromyces marxianus ATCC 36907 in cellulosic and hemicellulosic sugarcane bagasse hydrolysates on xylitol and ethanol production. Ann Microbiol 65:687–694. https://doi.org/10.1007/s13213-014-0907-y

    Article  Google Scholar 

  103. Li M, Meng X, Diao E, Du F (2012) Xylitol production by Candida tropicalis from corn cob hemicellulose hydrolysate in a two-stage fed-batch fermentation process. J Chem Technol Biotechnol 87:387–392. https://doi.org/10.1002/jctb.2732

    Article  Google Scholar 

  104. Cheng KK, Zhang JA, Ling HZ et al (2009) Optimization of pH and acetic acid concentration for bioconversion of hemicellulose from corncobs to xylitol by Candida tropicalis. Biochem Eng J 43:203–207. https://doi.org/10.1016/j.bej.2008.09.012

    Article  Google Scholar 

  105. Ling H, Cheng K, Ge J, Ping W (2011) Statistical optimization of xylitol production from corncob hemicellulose hydrolysate by Candida tropicalis HDY-02. N Biotechnol 28:673–678. https://doi.org/10.1016/j.nbt.2010.05.004

    Article  Google Scholar 

  106. Xu L, Liu L, Li S et al (2019) Xylitol production by Candida tropicalis 31949 from sugarcane bagasse hydrolysate. Sugar Tech 21:341–347. https://doi.org/10.1007/s12355-018-0650-y

    Article  Google Scholar 

  107. Himabindu K, Gummadi SN (2015) Effect of kLa and fed-batch strategies for enhanced production of xylitol by Debaryomyces nepalensis NCYC 3413. Biotechnol J Int 5:24–36

    Google Scholar 

  108. Sirisansaneeyakul S, Wannawilai S, Chisti Y (2013) Repeated fed-batch production of xylitol by Candida magnoliae TISTR 5663. J Chem Technol Biotechnol 88:1121–1129. https://doi.org/10.1002/jctb.3949

    Article  Google Scholar 

  109. Martínez EA, Silva SS, Felipe MGA (2000) Effect of the oxygen transfer coefficient on xylitol production from sugarcane bagasse hydrolysate by continuous stirred-tank reactor fermentation. Appl Biochem Biotechnol - Part A Enzym Eng Biotechnol 84–86:633–641. https://doi.org/10.1385/abab:84-86:1-9:633

    Article  Google Scholar 

  110. Martínez EA, Silva SS, Almeida E, Silva JB et al (2003) The influence of pH and dilution rate on continuous production of xylitol from sugarcane bagasse hemicellulosic hydrolysate by C. guilliermondii. Process Biochem 38:1677–1683. https://doi.org/10.1016/S0032-9592(02)00244-3

    Article  Google Scholar 

  111. Salgado JM, Rodríguez N, Cortés S, Domínguez JM (2012) Coupling two sizes of CSTR-type bioreactors for sequential lactic acid and xylitol production from hemicellulosic hydrolysates of vineshoot trimmings. N Biotechnol 29:421–427. https://doi.org/10.1016/j.nbt.2011.07.003

    Article  Google Scholar 

  112. Ding X (2011) Fermentation of xylitol using immobilized Candida sp.ZU04 cells in three-phase fluidized-bed bioreactor. 2011 Int Conf Remote Sensing, Environ Transp Eng RSETE 2011 - Proc 7591–7593. https://doi.org/10.1109/RSETE.2011.5966129

  113. Soleimani M, Tabil L (2014) Evaluation of biocomposite-based supports for immobilized-cell xylitol production compared with a free-cell system. Biochem Eng J 82:166–173. https://doi.org/10.1016/j.bej.2013.11.011

    Article  Google Scholar 

  114. Choi J-H, Moon K-H, Ryu Y-W, Seo J-H (2000) Production of xylitol in cell recycle fermentations of Candida tropicalis. Biotechnol Lett 22:1625–1628

    Article  Google Scholar 

  115. Cunha MAA, Rodrigues RCB, Santos JC et al (2007) Repeated-batch xylitol bioproduction using yeast cells entrapped in polyvinyl alcohol-hydrogel. Curr Microbiol 54:91–96. https://doi.org/10.1007/s00284-005-0465-4

    Article  Google Scholar 

  116. Jain H, Mulay S (2014) A review on different modes and methods for yielding a pentose sugar: Xylitol. Int J Food Sci Nutr 65:135–143. https://doi.org/10.3109/09637486.2013.845651

    Article  Google Scholar 

  117. Ko BS, Rhee CH, Kim JH (2006) Enhancement of xylitol productivity and yield using a xylitol dehydrogenase gene-disrupted mutant of Candida tropicalis under fully aerobic conditions. Biotechnol Lett 28:1159–1162. https://doi.org/10.1007/s10529-006-9068-9

    Article  Google Scholar 

  118. Pal S, Choudhary V, Kumar A et al (2013) Studies on xylitol production by metabolic pathway engineered Debaryomyces hansenii. Bioresour Technol 147:449–455. https://doi.org/10.1016/j.biortech.2013.08.065

    Article  Google Scholar 

  119. Pal S, Mondal AK, Sahoo DK (2016) Molecular strategies for enhancing microbial production of xylitol. Process Biochem 51:809–819. https://doi.org/10.1016/j.procbio.2016.03.017

    Article  Google Scholar 

  120. Jeon WY, Yoon BH, Ko BS et al (2012) Xylitol production is increased by expression of codon-optimized Neurospora crassa xylose reductase gene in Candida tropicalis. Bioprocess Biosyst Eng 35:191–198. https://doi.org/10.1007/s00449-011-0618-8

    Article  Google Scholar 

  121. Oh EJ, Ha SJ, Rin Kim S et al (2013) Enhanced xylitol production through simultaneous co-utilization of cellobiose and xylose by engineered Saccharomyces cerevisiae. Metab Eng 15:226–234. https://doi.org/10.1016/j.ymben.2012.09.003

    Article  Google Scholar 

  122. Govinden R, Pillay B, Van Zyl WH, Pillay D (2001) Xylitol production by recombinant Saccharomyces cerevisiae expressing the Pichia stipitis and Candida shehatae XYL1 genes. Appl Microbiol Biotechnol 55:76–80. https://doi.org/10.1007/s002530000455

    Article  Google Scholar 

  123. Kwon DH, Kim MD, Lee TH et al (2006) Elevation of glucose 6-phosphate dehydrogenase activity increases xylitol production in recombinant Saccharomyces cerevisiae. J Mol Catal B Enzym 43:86–89. https://doi.org/10.1016/j.molcatb.2006.06.014

    Article  Google Scholar 

  124. Ahmad I, Shim WY, Kim J-H (2013) Enhancement of xylitol production in glycerol kinase disrupted Candida tropicalis by co-expression of three genes involved in glycerol metabolic pathway. Bioprocess Biosyst Eng 36:1279–1284

    Article  Google Scholar 

  125. Jeon WY, Shim WY, Lee SH et al (2013) Effect of heterologous xylose transporter expression in Candida tropicalis on xylitol production rate. Bioprocess Biosyst Eng 36:809–817

    Article  Google Scholar 

  126. Zhang J, Zhang B, Wang D et al (2015) Improving xylitol production at elevated temperature with engineered Kluyveromyces marxianus through over-expressing transporters. Bioresour Technol 175:642–645. https://doi.org/10.1016/j.biortech.2014.10.150

    Article  Google Scholar 

  127. Martínez EA, de Almeida e Silva JB, Giulietti M, Solenzal AIN (2007) Downstream process for xylitol produced from fermented hydrolysate. Enzyme Microb Technol 40:1193–1198. https://doi.org/10.1016/j.enzmictec.2006.09.003

    Article  Google Scholar 

  128. Martínez EA, Canettieri EV, Bispo JAC et al (2015) Strategies for xylitol purification and crystallization: a review. Sep Sci Technol 50:2087–2098. https://doi.org/10.1080/01496395.2015.1009115

    Article  Google Scholar 

  129. Sampaio FC, Passos FML, Passos FJV et al (2006) Xylitol crystallization from culture media fermented by yeasts. Chem Eng Process Process Intensif 45:1041–1046. https://doi.org/10.1016/j.cep.2006.03.012

    Article  Google Scholar 

  130. Kresnowati M, Regina D, Bella C et al (2019) Combined ultrafiltration and electrodeionization techniques for microbial xylitol purification. Food Bioprod Process 114:245–252

    Article  Google Scholar 

Download references

Acknowledgements

Authors gratefully acknowledge the constant support provided by Indian Institute of Technology Roorkee (IITR) and Ministry of Human Resource and Development (MHRD).

Funding

The financial assistance for this work was provided by Indian Institute of Technology Roorkee (IITR) and Ministry of Human Resource and Development (MHRD).

Author information

Authors and Affiliations

Authors

Contributions

VJ drafted manuscript. VJ and SG revised and modified the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Sanjoy Ghosh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain, V., Ghosh, S. Biotransformation of lignocellulosic biomass to xylitol: an overview. Biomass Conv. Bioref. 13, 9643–9661 (2023). https://doi.org/10.1007/s13399-021-01904-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-021-01904-0

Keywords

Navigation