Skip to main content
Log in

Improved xylose fermentation of Kluyveromyces marxianus at elevated temperature through construction of a xylose isomerase pathway

  • Bioenergy/Biofuels/Biochemicals
  • Published:
Journal of Industrial Microbiology & Biotechnology

An Erratum to this article was published on 04 June 2013

Abstract

To improve the xylose fermentation ability of Kluyveromyces marxianus, a xylose assimilation pathway through xylose isomerase was constructed. The genes encoding xylose reductase (KmXyl1) and xylitol dehydrogenase (KmXyl2) were disrupted in K. marxianus YHJ010 and the resultant strain was named YRL002. A codon-optimized xylose isomerase gene from Orpinomyces was transformed into K. marxianus YRL002 and expressed under GAPDH promoter. The transformant was adapted in the SD medium containing 1 % casamino acid with 2 % xylose as sole carbon source. After 32 times of trans-inoculation, a strain named YRL005, which can grow at a specific growth rate of 0.137/h with xylose as carbon source, was obtained. K. marxianus YRL005 could ferment 30.15 g/l of xylose and produce 11.52 g/l ethanol with a yield of 0.38 g/g, production rate of 0.069 g/l/h at 42 °C, and also could ferment 16.60 g/l xylose to produce 5.21 g/l ethanol with a yield of 0.31 g/g, and production rate of 0.054 g/l h at 45 °C. Co-fermentation with 2 % glucose could not improve the amount and yield of ethanol fermented from xylose obviously, but it could improve the production rate. Furthermore, K. marxianus YRL005 can ferment with the corn cob hydrolysate, which contained 20.04 g/l xylose to produce 8.25 g/l ethanol. It is a good platform to construct thermo-tolerant xylose fermentation yeast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abdel-Banat BM, Nonklang S, Hoshida H, Akada R (2010) Random and targeted gene integrations through the control of non-homologous end joining in the yeast Kluyveromyces marxianus. Yeast 27(1):29–39. doi:10.1002/yea.1729

    PubMed  CAS  Google Scholar 

  2. Banat IMSD, Marchant R (1996) The use of a thermotolerant fermentative Kluyveromyces marxianus IMB3 yeast strain for ethanol production. Acta Biotechnol 16:215–223

    Article  CAS  Google Scholar 

  3. Bertilsson M, Andersson J, Liden G (2008) Modeling simultaneous glucose and xylose uptake in Saccharomyces cerevisiae from kinetics and gene expression of sugar transporters. Bioproc Biosyst Eng 31(4):369–377. doi:10.1007/s00449-007-0169-1

    Article  CAS  Google Scholar 

  4. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  5. Brat D, Boles E, Wiedemann B (2009) Functional expression of a bacterial xylose isomerase in Saccharomyces cerevisiae. Appl Environ Microbiol 75(8):2304–2311

    Article  PubMed  CAS  Google Scholar 

  6. Dahn KM, Davis BP, Pittman PE, Kenealy WR, Jeffries TW (1996) Increased xylose reductase activity in the xylose-fermenting yeast Pichia stipitis by overexpression of XYL1. Appl Biochem Biotech 57–8:267–276

    Article  Google Scholar 

  7. Ding X, Xia L (2006) Effect of aeration rate on production of xylitol from corncob hemicellulose hydrolysate. Appl Biochem Biotechnol 133(3):263–270

    Article  PubMed  CAS  Google Scholar 

  8. Dische Z, Borenfreund E (1951) A new spectrophotometric method for the detection and determination of keto sugars and trioses. J Biol Chem 192(2):583–587

    PubMed  CAS  Google Scholar 

  9. Dmytruk OV, Voronovsky AY, Abbas CA, Dmytruk KV, Ishchuk OP, Sibirny AA (2008) Overexpression of bacterial xylose isomerase and yeast host xylulokinase improves xylose alcoholic fermentation in the thermotolerant yeast Hansenula polymorpha. FEMS Yeast Res 8(1):165–173

    Article  PubMed  CAS  Google Scholar 

  10. Faga BA, Wilkins MR, Banat IM (2010) Ethanol production through simultaneous saccharification and fermentation of switchgrass using Saccharomyces cerevisiae D(5)A and thermotolerant Kluyveromyces marxianus IMB strains. Bioresour Technol 101(7):2273–2279. doi:10.1016/j.biortech.2009.11.001

    Article  PubMed  CAS  Google Scholar 

  11. Ha SJ, Kim SR, Choi JH, Park MS, Jin YS (2011) Xylitol does not inhibit xylose fermentation by engineered Saccharomyces cerevisiae expressing xylA as severely as it inhibits xylose isomerase reaction in vitro. Appl Microbiol Biotechnol 92(1):77–84. doi:10.1007/s00253-011-3345-9

    Article  PubMed  CAS  Google Scholar 

  12. Hahn-Hagerdal B, Karhumaa K, Fonseca C, Spencer-Martins I, Gorwa-Grauslund MF (2007) Towards industrial pentose-fermenting yeast strains. Appl Microbiol Biotechnol 74(5):937–953. doi:10.1007/s00253-006-0827-2

    Article  PubMed  Google Scholar 

  13. Hasunuma T, Kondo A (2012) Consolidated bioprocessing and simultaneous saccharification and fermentation of lignocellulose to ethanol with thermotolerant yeast strains. Process Biochem 47(9):1287–1294. doi:10.1016/j.procbio.2012.05.004

    Article  CAS  Google Scholar 

  14. Hong J, Wang Y, Kumagai H, Tamaki H (2007) Construction of thermotolerant yeast expressing thermostable cellulase genes. J Biotechnol 130(2):114–123. doi:10.1016/j.jbiotec.2007.03.008

    Article  PubMed  CAS  Google Scholar 

  15. Iablochkova EN, Bolotnikova OI, Mikhailova NP, Nemova NN, Ginak AI (2003) The activity of xylose reductase and xylitol dehydrogenase in yeasts. Mikrobiologiia 72(4):466–469

    PubMed  CAS  Google Scholar 

  16. Jeppsson M, Bengtsson O, Franke K, Lee H, Hahn-Hagerdal B, Gorwa-Grauslund MF (2006) The expression of a Pichia stipitis xylose reductase mutant with higher K(M) for NADPH increases ethanol production from xylose in recombinant Saccharomyces cerevisiae. Biotechnol Bioeng 93(4):665–673. doi:10.1002/bit.20737

    Article  PubMed  CAS  Google Scholar 

  17. Jin YS, Alper H, Yang YT, Stephanopoulos G (2005) Improvement of xylose uptake and ethanol production in recombinant Saccharomyces cerevisiae through an inverse metabolic engineering approach. Appl Environ Microbiol 71(12):8249–8256. doi:10.1128/AEM.71.12.8249-8256.2005

    Article  PubMed  CAS  Google Scholar 

  18. Karhumaa K, Fromanger R, Hahn-Hagerdal B, Gorwa-Grauslund MF (2007) High activity of xylose reductase and xylitol dehydrogenase improves xylose fermentation by recombinant Saccharomyces cerevisiae. Appl Microbiol Biotechnol 73(5):1039–1046. doi:10.1007/s00253-006-0575-3

    Article  PubMed  CAS  Google Scholar 

  19. Katahira S, Ito M, Takema H, Fujita Y, Tanino T, Tanaka T, Fukuda H, Kondo A (2008) Improvement of ethanol productivity during xylose and glucose co-fermentation by xylose-assimilating S. cerevisiae via expression of glucose transporter Sut1. Enzyme Microb Technol 43:115–119

    Article  CAS  Google Scholar 

  20. Kuhad RC, Gupta R, Khasa YP, Singh A, Zhang YHP (2011) Bioethanol production from pentose sugars: current status and future prospects. Renew Sust Energ Rev 15(9):4950–4962. doi:10.1016/j.rser.2011.07.058

    Article  CAS  Google Scholar 

  21. Kuyper M, Hartog MM, Toirkens MJ, Almering MJ, Winkler AA, van Dijken JP, Pronk JT (2005) Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation. FEMS Yeast Res 5(4–5):399–409. doi:10.1016/j.femsyr.2004.09.010

    Article  PubMed  CAS  Google Scholar 

  22. Latif F, Rajoka MI (2001) Production of ethanol and xylitol from corn cobs by yeasts. Bioresour Technol 77(1):57–63

    Article  PubMed  CAS  Google Scholar 

  23. Lin Y, Tanaka S (2006) Ethanol fermentation from biomass resources: current state and prospects. Appl Microbiol Biotechnol 69(6):627–642. doi:10.1007/s00253-005-0229-x

    Article  PubMed  CAS  Google Scholar 

  24. Lulu L, Ling Z, Dongmei W, Xiaolian G, Hisanori T, Hidehiko K, Jiong H (2013) Identification of a xylitol dehydrogenase gene from Kluyveromyces marxianus NBRC1777. Mol Biotechnol 53(2):159–169. doi:10.1007/s12033-012-9508-9

    Article  PubMed  Google Scholar 

  25. Madhavan ATS, Srivastava A, Fukuda H, Bisaria VS, Kondo A (2009) Alcoholic fermentation of xylose and mixed sugars using recombinant Saccharomyces cerevisiae engineered for xylose utilization. Appl Microbiol Biotechnol 82:1037–1047

    Article  PubMed  CAS  Google Scholar 

  26. Margaritis A, Bajpai P (1982) Direct fermentation of d-xylose to ethanol by Kluyveromyces marxianus strains. Appl Environ Microbiol 44(5):1039–1041

    PubMed  CAS  Google Scholar 

  27. Matsumoto T, Takahashi S, Ueda M, Tanaka A, Fukuda H, Kondo A (2002) Preparation of high-activity yeast whole-cell biocatalysts by optimization of intracellular production of recombinant Rhizopus oryzae lipase. J Mol Cata B-Enzym 17:143–149

    Article  CAS  Google Scholar 

  28. Nonklang S, Abdel-Banat BM, Cha-aim K, Moonjai N, Hoshida H, Limtong S, Yamada M, Akada R (2008) High-temperature ethanol fermentation and transformation with linear DNA in the thermotolerant yeast Kluyveromyces marxianus DMKU3-1042. Appl Environ Microbiol 74(24):7514–7521. doi:10.1128/AEM.01854-08

    Article  PubMed  CAS  Google Scholar 

  29. Oliva JM, Saez F, Ballesteros I, Gonzalez A, Negro MJ, Manzanares P, Ballesteros M (2003) Effect of lignocellulosic degradation compounds from steam explosion pretreatment on ethanol fermentation by thermotolerant yeast Kluyveromyces marxianus. Appl Biochem Biotechnol 105–108:141–153

    Article  PubMed  Google Scholar 

  30. Parachin NS, Bergdahl B, van Niel EW, Gorwa-Grauslund MF (2011) Kinetic modelling reveals current limitations in the production of ethanol from xylose by recombinant Saccharomyces cerevisiae. Metab Eng 13(5):508–517. doi:10.1016/j.ymben.2011.05.005

    Article  PubMed  CAS  Google Scholar 

  31. Roca C, Haack MB, Olsson L (2004) Engineering of carbon catabolite repression in recombinant xylose fermenting Saccharomyces cerevisiae. Appl Microbiol Biotechnol 63(5):578–583. doi:10.1007/s00253-003-1408-2

    Article  PubMed  CAS  Google Scholar 

  32. Rodrussamee N, Lertwattanasakul N, Hirata K, Suprayogi, Limtong S, Kosaka T, Yamada M (2011) Growth and ethanol fermentation ability on hexose and pentose sugars and glucose effect under various conditions in thermotolerant yeast Kluyveromyces marxianus. Appl Microbiol Biotechnol 90(4):1573–1586. doi:10.1007/s00253-011-3218-2

    Article  PubMed  CAS  Google Scholar 

  33. Rouhollah HIN, Giti E, Sorah A (2007) Mixed sugar fermentation by Pichia stipitis, Saccharomyces cerevisiae, and an isolated xylose-fermenting Kluyveromyces marxianus and their cocultures. Afr J Biotechnol 6:1110–1114

    CAS  Google Scholar 

  34. Saha BC (2003) Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30(5):279–291. doi:10.1007/s10295-003-0049-x

    Article  PubMed  CAS  Google Scholar 

  35. Schmittgen TD, Zakrajsek BA (2000) Effect of experimental treatment on housekeeping gene expression: validation by real-time, quantitative RT-PCR. J Biochem Bioph Meth 46 (1–2):69–81. doi:10.1016/S0165-022x(00)00129-9

    Article  CAS  Google Scholar 

  36. Sherman F (2002) Getting started with yeast. Methods Enzymol 350:3–41

    Article  PubMed  CAS  Google Scholar 

  37. Shi NQ, Cruz J, Sherman F, Jeffries TW (2002) SHAM-sensitive alternative respiration in the xylose-metabolizing yeast Pichia stipitis. Yeast 19(14):1203–1220

    Article  PubMed  CAS  Google Scholar 

  38. Shi NQ, Davis B, Sherman F, Cruz J, Jeffries TW (1999) Disruption of the cytochrome c gene in xylose-utilizing yeast Pichia stipitis leads to higher ethanol production. Yeast 15(11):1021–1030. doi:10.1002/(Sici)1097-0061(199908)15:11<1021:Aid-Yea429>3.0.Co;2-V

    Article  PubMed  CAS  Google Scholar 

  39. Shi NQ, Jeffries TW (1998) Anaerobic growth and improved fermentation of Pichia stipitis bearing a URA1 gene from Saccharomyces cerevisiae. Appl Microbiol Biotechnol 50(3):339–345

    Article  PubMed  CAS  Google Scholar 

  40. Shi R, Chiang VL (2005) Facile means for quantifying microRNA expression by real-time PCR. Biotechniques 39(4):519–525 000112010 [pii]

    Article  PubMed  CAS  Google Scholar 

  41. Tamakawa H, Ikushima S, Yoshida S (2011) Ethanol production from xylose by a recombinant Candida utilis strain expressing protein-engineered xylose reductase and xylitol dehydrogenase. Biosci Biotechnol Biochem 75(10):1994–2000

    Article  PubMed  CAS  Google Scholar 

  42. Tanino T, Hotta A, Ito T, Ishii J, Yamada R, Hasunuma T, Ogino C, Ohmura N, Ohshima T, Kondo A (2010) Construction of a xylose-metabolizing yeast by genome integration of xylose isomerase gene and investigation of the effect of xylitol on fermentation. Appl Microbiol Biotechnol 88(5):1215–1221. doi:10.1007/s00253-010-2870-2

    Article  PubMed  CAS  Google Scholar 

  43. Traff KL, Otero Cordero RR, van Zyl WH, Hahn-Hagerdal B (2001) Deletion of the GRE3 aldose reductase gene and its influence on xylose metabolism in recombinant strains of Saccharomyces cerevisiae expressing the xylA and XKS1 genes. Appl Environ Microbiol 67(12):5668–5674. doi:10.1128/AEM.67.12.5668-5674.2001

    Article  PubMed  CAS  Google Scholar 

  44. van Maris AJ, Winkler AA, Kuyper M, de Laat WT, van Dijken JP, Pronk JT (2007) Development of efficient xylose fermentation in Saccharomyces cerevisiae: xylose isomerase as a key component. Adv Biochem Eng Biotechnol 108:179–204. doi:10.1007/10_2007_057

    PubMed  Google Scholar 

  45. Van Vleet JH, Jeffries TW (2009) Yeast metabolic engineering for hemicellulosic ethanol production. Curr Opin Biotechnol 20(3):300–306. doi:10.1016/j.copbio.2009.06.001

    Article  PubMed  Google Scholar 

  46. Walfridsson M, Bao X, Anderlund M, Lilius G, Bulow L, Hahn-Hagerdal B (1996) Ethanolic fermentation of xylose with Saccharomyces cerevisiae harboring the Thermus thermophilus xylA gene, which expresses an active xylose (glucose) isomerase. Appl Environ Microbiol 62(12):4648–4651

    PubMed  CAS  Google Scholar 

  47. Watanabe S, Abu Saleh A, Pack SP, Annaluru N, Kodaki T, Makino K (2007) Ethanol production from xylose by recombinant Saccharomyces cerevisiae expressing protein-engineered NADH-preferring xylose reductase from Pichia stipitis. Microbiology 153(Pt 9):3044–3054. doi:10.1099/mic.0.2007/007856-0

    Article  PubMed  CAS  Google Scholar 

  48. Wilkins MR, Mueller M, Eichling S, Banat IM (2008) Fermentation of xylose by the thermotolerant yeast strains Kluyveromyces marxianus IMB2, IMB4, and IMB5 under anaerobic conditions. Process Biochem 43(4):346–350

    Google Scholar 

  49. Zhang B, Li L, Zhang J, Gao X, Wang D, Hong J (2013) Improving ethanol and xylitol fermentation at elevated temperature through substitution of xylose reductase in Kluyveromyces marxianus. J Ind Microbiol Biotechnol 40(3–4):305–316. doi:10.1007/s10295-013-1230-5

    Article  PubMed  CAS  Google Scholar 

  50. Zhang B, Zhang L, Wang D, Gao X, Hong J (2011) Identification of a xylose reductase gene in the xylose metabolic pathway of Kluyveromyces marxianus NBRC1777. J Ind Microbiol Biotechnol 38(12):2001–2010. doi:10.1007/s10295-011-0990-z

    Article  PubMed  CAS  Google Scholar 

  51. Zhou H, Cheng JS, Wang BL, Fink GR, Stephanopoulos G (2012) Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by Saccharomyces cerevisiae. Metab Eng 14(6):611–622. doi:10.1016/j.ymben.2012.07.011

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Professor Tamaki Hisanori from Kagoshima University and Kumagai Hidehiko from Ishikawa Prefectural University for providing us K. marxianus YHJ 010 and plasmids. This work was supported by a grant-in-aid from the National High Technology Research and Development Program (2012AA02A708), the National Basic Research Program of China (2011CBA00801), the National Natural Science Foundation of China (31070028), and the Scientific Research Foundation for Returned Overseas Chinese Scholars, State Education Ministry (WF2070000010).

Conflict of interest

The authors have no conflict of interest to report.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dongmei Wang or Jiong Hong.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 42 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, R., Li, L., Zhang, B. et al. Improved xylose fermentation of Kluyveromyces marxianus at elevated temperature through construction of a xylose isomerase pathway. J Ind Microbiol Biotechnol 40, 841–854 (2013). https://doi.org/10.1007/s10295-013-1282-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-013-1282-6

Keyword

Navigation