Skip to main content
Log in

Growth and ethanol fermentation ability on hexose and pentose sugars and glucose effect under various conditions in thermotolerant yeast Kluyveromyces marxianus

  • Bioenergy and Biofuels
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Ethanol fermentation ability of the thermotolerant yeast Kluyveromyces marxianus, which is able to utilize various sugars including glucose, mannose, galactose, xylose, and arabinose, was examined under shaking and static conditions at high temperatures. The yeast was found to produce ethanol from all of these sugars except for arabinose under a shaking condition but only from hexose sugars under a static condition. Growth and sugar utilization rate under a static condition were slower than those under a shaking condition, but maximum ethanol yield was slightly higher. Even at 40°C, a level of ethanol production similar to that at 30°C was observed except for galactose under a static condition. Glucose repression on utilization of other sugars was observed, and it was more evident at elevated temperatures. Consistent results were obtained by the addition of 2-deoxyglucose. The glucose effect was further examined at a transcription level, and it was found that KmGAL1 for galactokinase and KmXYL1 for xylose reductase for galactose and xylose/arabinose utilization, respectively, were repressed by glucose at low and high temperatures, but KmHXK2 for hexokinase was not repressed. We discuss the possible mechanism of glucose repression and the potential for utilization of K. marxianus in high-temperature fermentation with mixed sugars containing glucose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abdel-Banat BM, Hoshida H, Ano A, Nonklang S, Akada R (2010) High-temperature fermentation: how can processes for ethanol production at high temperatures become superior to the traditional process using mesophilic yeast? Appl Microbiol Biotechnol 85(4):861–867

    Article  CAS  Google Scholar 

  • Agbogbo FK, Coward-Kelly G (2008) Cellulosic ethanol production using the naturally occurring xylose-fermenting yeast, Pichia stipitis. Biotechnol Lett 30(9):1515–1524

    Article  CAS  Google Scholar 

  • Aiba H, Adhya S, de Crombrugghe B (1981) Evidence for two functional gal promoters in intact Escherichia coli cells. J Biol Chem 256(22):11905–11910

    CAS  PubMed  Google Scholar 

  • Anderson PJ, McNeil K, Watson K (1986) High-efficiency carbohydrate fermentation to ethanol at temperatures above 40 degrees C by Kluyveromyces marxianus var. marxianus isolated from sugar mills. Appl Environ Microbiol 51(6):1314–1320

    Article  CAS  Google Scholar 

  • Aristidou A, Penttila M (2000) Metabolic engineering applications to renewable resource utilization. Curr Opin Biotechnol 11(2):187–198

    Article  CAS  Google Scholar 

  • Banat IM, Nigam P, Singh D, Marchant R, McHale AP (1998) Ethanol production at elevated temperatures and alcohol concentrations: part I—yeasts in general. World J Microbiol Biotechnol 14(6):809–821

    Article  CAS  Google Scholar 

  • Bellaver LH, de Carvalho NM, Abrahao-Neto J, Gombert AK (2004) Ethanol formation and enzyme activities around glucose-6-phosphate in Kluyveromyces marxianus CBS 6556 exposed to glucose or lactose excess. FEMS Yeast Res 4(7):691–698

    Article  CAS  Google Scholar 

  • Bicho PA, Runnals PL, Cunningham JD, Lee H (1988) Induction of xylose reductase and xylitol dehydrogenase activities in Pachysolen tannophilus and Pichia stipitis on mixed sugars. Appl Environ Microbiol 54(1):50–54

    Article  CAS  Google Scholar 

  • De Bruijne AW, Schuddemat J, Van den Broek PJ, Van Steveninck J (1988) Regulation of sugar transport systems of Kluyveromyces marxianus: the role of carbohydrates and their catabolism. Biochim Biophys Acta 939(3):569–576

    Article  Google Scholar 

  • Dien BS, Kurtzman CP, Saha BC, Bothast RJ (1996) Screening for L-arabinose fermenting yeasts. Appl Biochem Biotechnol 57–58(1):233–242

    Article  Google Scholar 

  • Dong J, Dickson RC (1997) Glucose represses the lactose–galactose regulon in Kluyveromyces lactis through a SNF1 and MIG1-dependent pathway that modulates galactokinase (GAL1) gene expression. Nucleic Acids Res 25(18):3657–3664

    Article  CAS  Google Scholar 

  • Fonseca GG, Heinzle E, Wittmann C, Gombert AK (2008) The yeast Kluyveromyces marxianus and its biotechnological potential. Appl Microbiol Biotechnol 79(3):339–354

    Article  CAS  Google Scholar 

  • Fukuhara H (2003) The Kluyver effect revisited. FEMS Yeast Res 3(4):327–331

    Article  CAS  Google Scholar 

  • Gancedo JM (1998) Yeast carbon catabolite repression. Microbiol Mol Biol Rev 62(2):334–361

    Article  CAS  Google Scholar 

  • Gasnier B (1987) Characterization of low- and high-affinity glucose transports in the yeast Kluyveromyces marxianus. Biochim Biophys Acta 903(3):425–433

    Article  CAS  Google Scholar 

  • Gonzalez-Siso MI, Freire-Picos MA, Ramil E, Gonzalez-Dominguez M, Rodriguez Torres A, Cerdan ME (2000) Respirofermentative metabolism in Kluyveromyces lactis: insights and perspectives. Enzyme Microb Technol 26(9–10):699–705

    Article  CAS  Google Scholar 

  • Gonzalez-Siso MI, Garcia-Leiro A, Tarrio N, Cerdan ME (2009) Sugar metabolism, redox balance and oxidative stress response in the respiratory yeast Kluyveromyces lactis. Microb Cell Fact 8:46

    Article  Google Scholar 

  • Hahn-Hagerdal B, Galbe M, Gorwa-Grauslund MF, Liden G, Zacchi G (2006) Bio-ethanol—the fuel of tomorrow from the residues of today. Trends Biotechnol 24(12):549–556

    Article  CAS  Google Scholar 

  • Hamacher T, Becker J, Gardonyi M, Hahn-Hagerdal B, Boles E (2002) Characterization of the xylose-transporting properties of yeast hexose transporters and their influence on xylose utilization. Microbiology 148(Pt 9):2783–2788

    Article  CAS  Google Scholar 

  • Jeffries TW, Van Vleet JR (2009) Pichia stipitis genomics, transcriptomics, and gene clusters. FEMS Yeast Res 9(6):793–807

    Article  CAS  Google Scholar 

  • Kilian SG, van Uden N (1988) Transport of xylose and glucose in the xylose fermenting yeast Pichia stipitis. Appl Microbiol Biotechnol 27(5–6):545–548

    Article  CAS  Google Scholar 

  • Lane MM, Morrissey PJ (2010) Kluyveromyces marxianus: a yeast emerging from its sister’s shadow. Fungal Biol Rev 24(1–2):17–26

    Article  Google Scholar 

  • Lee WJ, Kim MD, Ryu YW, Bisson LF, Seo JH (2002) Kinetic studies on glucose and xylose transport in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 60(1–2):186–191

    CAS  PubMed  Google Scholar 

  • Lertwattanasakul N, Sootsuwan K, Limtong S, Thanonkeo P, Yamada M (2007) Comparison of the gene expression patterns of alcohol dehydrogenase isozymes in the thermotolerant yeast Kluyveromyces marxianus and their physiological functions. Biosci Biotechnol Biochem 71(5):1170–1182

    Article  CAS  Google Scholar 

  • Limtong S, Sringiew C, Yongmanitchai W (2007) Production of fuel ethanol at high temperature from sugar cane juice by a newly isolated Kluyveromyces marxianus. Bioresour Technol 98(17):3367–3374

    Article  CAS  Google Scholar 

  • Nonklang S, Abdel-Banat BM, Cha-aim K, Moonjai N, Hoshida H, Limtong S, Yamada M, Akada R (2008) High-temperature ethanol fermentation and transformation with linear DNA in the thermotolerant yeast Kluyveromyces marxianus DMKU3-1042. Appl Environ Microbiol 74(24):7514–7521

    Article  CAS  Google Scholar 

  • Perez J, Munoz-Dorado J, de la Rubia T, Martinez J (2002) Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. Int Microbiol 5(2):53–63

    Article  CAS  Google Scholar 

  • Reifenberger E, Boles E, Ciriacy M (1997) Kinetic characterization of individual hexose transporters of Saccharomyces cerevisiae and their relation to the triggering mechanisms of glucose repression. Eur J Biochem 245(2):324–333

    Article  CAS  Google Scholar 

  • Rubio-Texeira M (2005) A comparative analysis of the GAL genetic switch between not-so-distant cousins: Saccharomyces cerevisiae versus Kluyveromyces lactis. FEMS Yeast Res 5(12):1115–1128

    Article  CAS  Google Scholar 

  • Saha BC (2003) Hemicellulose bioconversion. J Ind Microbiol 30(5):279–291

    CAS  Google Scholar 

  • Schaffrath R, Breunig KD (2000) Genetics and molecular physiology of the yeast Kluyveromyces lactis. Fungal Genet Biol 30(3):173–190

    Article  CAS  Google Scholar 

  • Sedlak M, Ho NW (2004) Characterization of the effectiveness of hexose transporters for transporting xylose during glucose and xylose co-fermentation by a recombinant Saccharomyces yeast. Yeast 21(8):671–684

    Article  CAS  Google Scholar 

  • Van den Broek PJ, De Bruijne AW, Van Steveninck J (1987) The role of ATP in the control of H+-galactoside symport in the yeast Kluyveromyces marxianus. Biochem J 242(3):729–734

    Article  Google Scholar 

  • van Dijken JP, Weusthuis RA, Pronk JT (1993) Kinetics of growth and sugar consumption in yeasts. Antonie Leeuwenhoek 63(3–4):343–352

    Article  Google Scholar 

  • Van Leeuwen CC, Postma E, Van den Broek PJ, Van Steveninck J (1991) Proton-motive force-driven D-galactose transport in plasma membrane vesicles from the yeast Kluyveromyces marxianus. J Biol Chem 266(19):12146–12151

    PubMed  Google Scholar 

  • van Maris AJ, Abbott DA, Bellissimi E, van den Brink J, Kuyper M, Luttik MA, Wisselink HW, Scheffers WA, van Dijken JP, Pronk JT (2006) Alcoholic fermentation of carbon sources in biomass hydrolysates by Saccharomyces cerevisiae: current status. Antonie Leeuwenhoek 90(4):391–418

    Article  CAS  Google Scholar 

  • van Ooyen AJ, Dekker P, Huang M, Olsthoorn MM, Jacobs DI, Colussi PA, Taron CH (2006) Heterologous protein production in the yeast Kluyveromyces lactis. FEMS Yeast Res 6(3):381–392

    Article  Google Scholar 

  • Venkat RP, Sharad B, Kareenhalli VV (2010) Experimental and steady-state analysis of the GAL regulatory system in Kluyveromyces lactis. FEBS J 277(14):2987–3002

    Article  Google Scholar 

  • Visser W, Scheffers WA, Batenburg-van der Vegte WH, van Dijken JP (1990) Oxygen requirements of yeasts. Appl Environ Microbiol 56(12):3785–3792

    Article  CAS  Google Scholar 

  • Zaldivar J, Nielsen J, Olsson L (2001) Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration. Appl Microbiol Biotechnol 56(1–2):17–34

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank K. Matsushita and T. Yakushi for helpful discussion. This work is supported by the Program for Promotion of Basic Research Activities for Innovative Biosciences, NEDO and the Special Coordination Funds for Promoting Science & Technology, Ministry of Education, Culture, Sports, Science & Technology. This work was performed as a collaborative research in the Asian Core Program between Yamaguchi University and Khon Kaen University, which was supported by the Scientific Cooperation Program agreed by the Japan Society for the Promotion of Science and the National Research Council of Thailand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mamoru Yamada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodrussamee, N., Lertwattanasakul, N., Hirata, K. et al. Growth and ethanol fermentation ability on hexose and pentose sugars and glucose effect under various conditions in thermotolerant yeast Kluyveromyces marxianus . Appl Microbiol Biotechnol 90, 1573–1586 (2011). https://doi.org/10.1007/s00253-011-3218-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3218-2

Keywords

Navigation