Skip to main content
Log in

Recent advances in molecular marker techniques: Insight into QTL mapping, GWAS and genomic selection in plants

  • Review Article
  • Published:
Journal of Crop Science and Biotechnology Aims and scope Submit manuscript

Abstract

Recent advances in sequencing technology have brought several novel platforms for marker development and subsequent genotyping. The high-throughput and cost effective marker techniques have changed the entire scenario of marker applications. The huge genotypic data obtained with next generation sequencing (NGS) also demands analytical tools, statistical advances, and comprehensive understanding to cope with breeding applications. In the present review, we discussed different available marker techniques, their strengths, and limitations. Emphasis was given on software tools, analytical pipelines, workbenches, and online resources available for marker development. Comparison of SNP genotyping involving complexity reduction techniques like GBS, RRL, RAD, and array-based platforms were presented in a view to describe suitability for specific purposes. We found that genotyping by whole genome re-sequencing has great potential, and could be a routine application in the near future with continuously decreasing cost of sequencing. Microsatellites, still a valuable option for breeders, have also advanced with NGS. Here a catalogue of tools for microsatellite evaluation in short sequence reads was provided. The most common applications of molecular marker like QTL mapping, genome-wide association mapping (GWAS), and genomic selection were highlighted. The present review will be helpful for the effective utilization of available resources and for the planning of crop improvement programs employing molecular marker techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AFLP:

amplified fragment length polymorphism

CRoPS:

complexity reduction of polymorphic sequences

DArT:

diversity array technology

EST:

expressed sequence tag

GBS:

genotyping by sequencing

GS:

genomic selection

GWAS:

genomewide association studies

MAS:

marker-assisted selection

NGS:

next generation sequencing

PCR:

polymerase chain reaction

QTL:

quantitative trait loci

RAD:

restriction site-associated DNA

RFLP:

restriction fragment length polymorphism

RRLs:

reduced-representation libraries

RRS:

reduced representation sequencing

SCAR:

sequence characterized amplified region

SGS:

second generation sequencing

STS:

sequence tagged site

TILLING:

targeting induced local lesions in genomes

WGS:

whole genome sequencing

References

  • Ahmad R, Parfitt DE, Fass J, Ogundiwin E, Dhingra A, Gradziel TM,et al. 2011. Whole genome sequencing of peach (Prunus persica L.) for SNP identification and selection. BMC genomics 12: 569

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Akhunov ED, Akhunova AR, Anderson OD, Anderson JA, Blake N, Clegg MT, Coleman-Derr D. 2010. Nucleotide diversity maps reveal variation in diversity among wheat genomes and chromosomes. BMC Genomics 11: 702

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Altshuler D, Pollara VJ, Cowles CR, Van Etten WJ, Baldwin J, Linton L, Lander ES. 2000. An SNP map of the human genome generated by reduced representation shotgun sequencing. Nature 40: 513–516

    Google Scholar 

  • Arai-Kichise Y, Shiwa Y, Nagasaki H, Ebana K, Yoshikawa H, Yano M, Wakasa K. 2011. Discovery of genome-wide DNA polymorphism in a landrace cultivar of japonica rice by whole genome sequencing. Plant Cell Physiol. 52: 274–282

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Aranzana MJ, Kim S, Zhao K, Bakker E, Horton M, Jakob K, Lister C, Molitor J, Shindo C, Tang C. 2005. Genomewide association mapping in Arabidopsis identifies previously known flowering time and pathogen resistance genes. PLoS Genet. 1: e60

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barbazuk WB, Schnable PS. 2011. SNP discovery by transcriptome pyrosequencing. Methods Mol. Biol. 729: 225–246

    Article  PubMed  CAS  Google Scholar 

  • Bastien M, Sonah H, Belzile F. 2014. Genome-wide association mapping of resistance in soybean with a genotypingby-sequencing approach. Plant Genome 7: 1–13

    Article  CAS  Google Scholar 

  • Beyene Y, Semagn K, Mugo S, Tarekegne A, Babu R, Meisel B, Sehabiague P, Makumbi D, Magorokosho C, Oikeh S. 2015. Genetic gains in grain yield through genomic selection in eight bi-parental maize populations under drought stress. Crop Sci. 55: 154–163

    Article  Google Scholar 

  • Blair MW,Corté s AJ, Penmetsa RV. 2013. A high-throughput SNP marker system for parental polymorphism screening, and diversity analysis in common bean (Phaseolus vulgaris L.). Theor. Appl. Genet. 126: 535–548

    Article  PubMed  Google Scholar 

  • Blair MW, Hurtado N, Chavarro CM, Muñoz Torres MC, Giraldo MC, Pedraza F, Tomkins J, Wing RA. 2011. Gene-based SSR markers for common bean (Phaseolus vulgaris L.) derived from root and leaf tissue ESTs: an integration of the BMc series. BMC Plant Biol. 11: 50

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Blanca J, Cañizares J, Roig C, Ziarsolo P, Nuez F, Picó B. 2011. Transcriptome characterization and high throughput SSRs and SNPs discovery in Cucurbitapepo (Cucurbitaceae). BMC Genomics 12: 104

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bus A, Hecht J, Huettel B, Reinhardt R, Stich B. 2012. Highthroughput polymorphism detection and genotyping in Brassica napus using next-generation RAD sequencing. BMC Genomics 13: 281

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Byers RL, David B, Yourstone HSM, Maughan PJ, Udall JA. 2012. Development and mapping of SNP assays in allotetraploid cotton. Theor. Appl. Genet. 124: 1201–1214

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chutimanitsakun Y, Nipper RW, Cuesta-Marcos A, Cistué L, Corey A, Filichkina T, Johnson EA, Hayes PM. 2011. Construction and application for QTL analysis of a Restriction Site Associated DNA (RAD) linkage map in barley. BMC Genomics 12: 4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Colasuonno P, Maria MA, Blanco A, Gadaleta A. 2013. Description of durum wheat linkage map and comparative sequence analysis of wheat mapped DArT markers with rice and Brachypodium genomes. BMC Genet.14: 114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Collard BCY, Jahufer MZZ, Brouwer JB, Pang ECK. 2005. An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: The basic concepts. Euphytica 142: 169–196

    Article  CAS  Google Scholar 

  • Crossa J, de Los Campos G, Pérez P, Gianola D, Burgueño J, Araus JL, Makumbi D, Singh RP, Dreisigacker S, Yan J. 2010. Prediction of genetic values of quantitative traits in plant breeding using pedigree and molecular markers. Genetics 186: 713–724

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Crossa J, Pérez P, de los Campos G, Mahuku G, Dreisigacker S, Magorokosho C. 2011. Genomic selection and prediction in plant breeding. J. Crop Improv. 25: 239–261

    Article  Google Scholar 

  • Darvasi A, Weinreb A, Minke V, Weller JI, Soller M. 1993. Detecting marker-QTL linkage and estimating QTL gene effect and map location using a saturated genetic map. Genetics 134: 943–951

    PubMed  PubMed Central  CAS  Google Scholar 

  • Davey JW, Hohenlohe PA, Etter PD, Boone JQ, Catchen JM, Blaxter ML. 2011. Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat. Rev. 12: 499–510

    Article  CAS  Google Scholar 

  • Deokar AA, Ramsay L, Sharpe AG, Diapari M, Sindhu A, Bett K, Warkentin TD, Tar B. 2014. Genome wide SNP identification in chickpea for use in development of a high density genetic map and improvement of chickpea reference genome assembly. BMC Genomics 15: 708

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Deshmukh R, Sonah H, Patil G, Chen W, Prince S, Mutava R, Vuong T, Valliyodan B, Nguyen HT. 2014. Integrating omic approaches for abiotic stress tolerance in soybean. Front. plant sci. 5: 244

    Article  PubMed  PubMed Central  Google Scholar 

  • Deschamps S, Rota MI, Ratashak JP, Biddle P, Thuree D, Farmer A, et al. 2010. Rapid genome-wide single nucleotide polymorphism discovery in soybean and rice via deep resequencing of reduced representation libraries with the illumina genome analyzer. Plant Genome 3: 53–68

    Article  CAS  Google Scholar 

  • Deschamps S, Llaca V, May GD. 2012. Genotyping-by-Sequencing in plants. Biology 1: 460–483

    Article  PubMed  PubMed Central  Google Scholar 

  • Ellsworth DL, Rittenhouse KD, Honeycutt RL. 1993. Artifactual variation in randomly amplified polymorphic DNA banding patterns. Biotechniques 14: 214–217

    PubMed  CAS  Google Scholar 

  • Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE. 2011. A robust, simple genotyping-by sequencing (GBS) approach for high diversity species. PLoS ONE 6: e19379

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Galeano CH, Gomez M, Rodriguez LM, Blair MW. 2009. CEL I Nuclease digestion for SNP discovery and marker development in common bean (Phaseolus vulgaris L.) Crop Sci. 49: 381–394

    Article  CAS  Google Scholar 

  • Ganal MW, Altmann T, Roder MS. 2009. SNP identification in crop plants. Curr. Opin. Plant Biol. 12: 1–7

    Article  CAS  Google Scholar 

  • Ganal MW, Polley A, Graner E, Plieske J, Wieseke R, Luerssen H, Durstewitz G. 2012. Large SNP arrays for genotyping in crop plants. J. Biosci. 37: 821–828

    Article  PubMed  CAS  Google Scholar 

  • Garg R, Patel RK, Tyagi AK, Jain M. 2011. De novo assembly of chickpea transcriptome using short reads for gene discovery and marker identification. DNA Res. 18: 53–63

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Geleta N, Labuschagne MT, Viljoen CD. 2006. Genetic diversity analysis in sorghum germplasm as estimated by AFLP, SSR and morpho-agronomical markers. Biodivers. Conserv. 15: 3251–3265

    Article  Google Scholar 

  • Gouy M, Rousselle Y, Bastianelli D, Lecomte P, Bonnal L, Roques D, Efile JC, Rocher S, Daugrois J, Toubi L. 2013. Experimental assessment of the accuracy of genomic selection in sugarcane. Theor. Appl. Genet. 126: 2575–2586

    Article  PubMed  CAS  Google Scholar 

  • Grattapaglia D, Resende MD. 2011. Genomic selection in forest tree breeding. Tree Genet. Genomes 7: 241–255

    Article  Google Scholar 

  • Grattapaglia D, Vaillancourt RE, Shepherd M, Thumma BR, Foley W, Kü lheim C, Potts BM, Myburg AA. 2012. Progress in Myrtaceae genetics and genomics: Eucalyptus as the pivotal genus. Tree Genet. Genomes 8: 463–508

    Article  Google Scholar 

  • Guo S, Liu J, Zheng Y, Huang M, Zhang H, Gong G. et al. 2011. Characterisation of transcriptome dynamics during watermelon fruit development: sequencing, assembly, annotation and gene expression profiles. BMC Genomics 12: 454

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gupta PK, Roy JK, Prasad M. 2001. Single nucleotide polymorphisms: a new paradigm for molecular marker technology and DNA polymorphism detection with emphasis on their use in plants. Curr. Sci. 80:524–535

    CAS  Google Scholar 

  • Gupta PK, Rustgi S, Mir RR. 2013. Array-Based High-Throughput DNA Markers and Genotyping Platforms for Cereal Genetics and Genomics. inCereal Genomics III, PK Gupta, RK Varshney, eds, Springer, Netherlands, pp 11–55

  • Gupta PK, Varshney RK. 2000. The development and use of microsatellite markers for genetic analysis and plant breeding with emphasis on bread wheat. Euphytica 113: 163–185.

    Article  CAS  Google Scholar 

  • Heun M, Helentjaris T. 1993. Inheritance of RAPDs in F1 hybrids of corn. Theor. Appl. Genet. 85: 961–968

    Article  PubMed  CAS  Google Scholar 

  • Heffner EL, Jannink JL, Sorrells ME. 2011. Genomic selection accuracy using multifamily prediction models in a wheat breeding program. Plant Genome 4: 65–75

    Article  Google Scholar 

  • Hillel J, Schaap T, Haberfeld A, Jeffreys A, Plotzky Y, Cahaner A, Lavi U. 1990. DNA fingerprints applied to gene introgression in breeding programs. Genetics 124: 783–789

    PubMed  PubMed Central  CAS  Google Scholar 

  • Hofheinz N, Borchardt D, Weissleder K, Frisch M. 2012. Genome-based prediction of test cross performance in two subsequent breeding cycles. Theor. Appl. Genet. 125: 1639–1645

    Article  PubMed  Google Scholar 

  • Horner DS, Pavesi G, Castrignano T, De Meo PDO, Liuni S, Sammeth M, Picardi E, Pesole G. 2009. Bioinformatics approaches for genomics and post genomics applications ofnext-generation sequencing. Brief. Bioinform. 11: 181–197

    Article  PubMed  CAS  Google Scholar 

  • Hu Z, Li Y, Song X, Han Y, Cai X, Xu S, Li W. 2011. Genomic value prediction for quantitative traits under the epistatic model. BMC Genet. 12: 15

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang S, Deng L, Guan M, Li J, Lu K, Wang H, Fu D, Mason AS, Liu S, Hua W. 2013. Identification of genomewide single nucleotide polymorphisms in allopolyploid crop Brassica napus. BMC Genomics 14: 717

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hyten DL, Cannon SB, Song Q, Weeks N, Fickus EW, Shoemaker RC,et al. 2010. High-throughput SNP discovery through deep resequencing of a reduced representation library to anchor and orient scaffolds in the soybean whole genome sequence. BMC Genomics 11: 38

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Elmer I, Sonah H, Belzile F. 2015. Association mapping of QTLs for sclerotinia stem rot resistance in a collection of soybean plant introductions using a genotyping by sequencing (GBS) approach. BMC plant biology 15: 5

    Article  Google Scholar 

  • Iorizzo M, Senalik DA, Grzebelus D, Bowman M, Cavagnaro PF, Matvienko M, Ashrafi H, Van Deynze A, Simon PW. 2011. De novo assembly and characterization of the carrot transcriptome reveals novel genes, new markers, and genetic diversity. BMC Genomics 12: 389

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Isik F, Whetten R, Zapata-Valenzuela J, Ogut F, McKeand S. 2011. Genomic selection in loblolly pine-from lab to field. In: BMC Proceed. vol Suppl 7. BioMed Central Ltd., p 18

    Google Scholar 

  • Iwata H, Hayashi T, Terakami S, Takada N, Sawamura Y, Yamamoto T. 2013. Potential assessment of genome-wide association study and genomic selection in Japanese pear Pyrus pyrifolia. Breed. Sci. 63: 125

    Article  PubMed  PubMed Central  Google Scholar 

  • Jain SM, Brar DS, Ahloowalia BS. 2010. Molecular techniques in crop improvement. In Cereal genomics, PK Gupta, RK Varshney, eds., Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 639

    Google Scholar 

  • Jarquín D, Crossa J, Lacaze X, Du Cheyron P, Daucourt J, Lorgeou J, Piraux F, Guerreiro L, Pérez P, Calus M. 2013. A reaction norm model for genomic selection using highdimensional genomic and environmental data. Theor. Appl. Genet. 127: 1–13

    Google Scholar 

  • Jhanwar S, Priya P, Garg R, Parida SK, Tyagi AK, Jain M. 2012. Transcriptome sequencing of wild chickpea as a rich resource for marker development. Plant Biotechnol. J. 10: 690–702

    Article  PubMed  CAS  Google Scholar 

  • Jia Y, Jannink JL. 2012. Multiple-trait genomic selection methods increase genetic value prediction accuracy. Genetics 192: 1513–1522

    Article  PubMed  PubMed Central  Google Scholar 

  • Jones N, Ougham H, Thomas H, Pasakinskiene I. 2009. Markers and mapping revisited: finding your gene. New Phytol. 183: 935–966.

    Article  PubMed  CAS  Google Scholar 

  • Kale SM, Pardeshi VC, Kadoo NY, Ghorpade PB, Jana MM, Gupta VS. 2012. Development of genomic simple sequence repeat markers for linseed using next generation sequencing technology. Mol. Breed. 30: 597–606

    Article  CAS  Google Scholar 

  • Kiialainen A, Karlberg O, Ahlford A, Sigurdsson S, Lindblad-Toh K, Syvä nen AC. 2011. Performance of microarray and liquid based capture methods for target enrichment for massively parallel sequencing and SNP discovery. PLoS ONE 6: e16486

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim MY, Leeb S, Vana K, Kim TH, Jeong SC, Choi IY, et al. 2010. Whole-genome sequencing and intensive analysis of the undomesticated soybean (Glycine soja Sieb. And Zucc.) genome. PNAS 107: 22032–22037

    Article  PubMed  PubMed Central  Google Scholar 

  • King J, Thomas A, James C, King I, Armstead I. 2013. DArT marker genetic map of perennial ryegrass (Loliumperenne L.) integrated with detailed comparative mapping information; comparison with existing DArT marker genetic maps of Loliumperenne, L. multiflorum and Festucapratensis. BMC Genomics 14: 437

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Koebner RMD. 2005. Marker-assisted selection in the cereals: the dream and the reality. in Cereal genomics, PK Gupta, RK Varshney, eds, Springer, Netherlands, pp 317–329

    Chapter  Google Scholar 

  • Kondetti P, Jawali N, Apte SK, Shitole MG. 2012. Comparative study of genetic diversity in Indian soybean (Glycine max L. Merr.) by AP-PCR and AFLP. Ann. Biol. Res. 3: 3825–3837

    Google Scholar 

  • Korzun V. 2002. Use of molecular markers in cereal breeding. Cell. Mol. Biol. Lett. 7: 811–820

    PubMed  CAS  Google Scholar 

  • Kumar S, You FM, Cloutier S. 2012. Genome wide SNP discovery in flax through next generation sequencing of reduced representation libraries. BMC Genomics 13: 684

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kwok P. 2001. Methods for genotyping single nucleotide polymorphisms. Annu. Rev. Genom.Hum. Genet. 2: 235–258

    Article  CAS  Google Scholar 

  • Leonforte A, Sudheesh S, Cogan NO, Salisbury PA, Nicolas ME, Materne M, Forster JW, Kaur S. 2013. SNP marker discovery, linkage map construction and identification of QTLs for enhanced salinity tolerance in field pea (Pisum sativum L.). BMC Plant Biol. 13: 161

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li D, Deng Z, Qin B, Liu X, Men Z. 2012. De novo assembly and characterization of bark transcriptome using Illumina sequencing and development of EST-SSR markers in rubber tree (Hevea brasiliensis Muell. Arg.). BMC Genomics 13: 192

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li H, Homer N. 2010. A survey of sequence alignment algorithms for next-generation sequencing. Brief. Bioinform. 11: 473–483

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu S, Yeh CT, Tang HM, Nettleton D, Schnable PS. 2012. Gene mapping via Bulked Segregant RNA-Seq (BSRSeq). PLoS ONE 7: e36406

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lorenzana RE, Bernardo R. 2009. Accuracy of genotypic value predictions for marker-based selection in biparental plant populations. Theor. Applied Genet 120: 151–161

    Article  Google Scholar 

  • Mace ES, Xia L, Jordan DR, Halloran K, Parh DK, Huttner E, Wenzl P, Kilian A. 2008. DArT markers: diversity analyses and mapping in Sorghum bicolor. BMC Genomics 9: 26

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maughan PJ, Yourstone SM, Jellen EN, Udall JA. 2009. SNP discovery via genomic reduction, barcoding, and 454-pyrosequencing in amaranth. Plant Genome 2: 260–270

    Article  CAS  Google Scholar 

  • Meng L, Li H, Zhang L, Wang J. 2015. QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J. 3: 269–283

    Article  Google Scholar 

  • Metzker ML. 2010. Sequencing technologies-the next generation. Nat. Rev. Genet. 1: 31–46

    Article  CAS  Google Scholar 

  • Mudalkar S, Golla R, Ghatty S, Reddy AR. 2014. De novo transcriptome analysis of an imminent biofuel crop, Camelina sativa L. using Illumina GAIIX sequencing platform and identification of SSR markers. Plant Mol. Biol. 84: 159–171

    Article  PubMed  CAS  Google Scholar 

  • Murtaza N. 2006. Cotton genetic diversity study by AFLP markers. Electron. J. Biotechnol. 9: 1–5

    Article  CAS  Google Scholar 

  • Nicolai M, Pisani C, Bouchet JP, Vuylsteke M, Palloix A. 2013. Discovery of a large set of SNP and SSR genetic markers by high-throughput sequencing of pepper (Capsicum annuum). Genet. Mol. Res. 11: 2295–2300

    Article  CAS  Google Scholar 

  • Nielsen R, Paul JS, Albrechtsen A, Song YS. 2011. Genotype and SNP calling from next-generation sequencing data. Nature Reviews Genetics 12: 443–451.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pegadaraju V, Nipper R, Hulke B, Qi L, Schultz Q. 2013. De novo sequencing of sunflower genome for SNP discovery using RAD (Restriction site Associated DNA) approach. BMC Genomics 14: 556

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pérez-Rodríguez P, Gianola D, González-Camacho JM, Crossa J, Manès Y, Dreisigacker S. 2012. Comparison between linear and non-parametric regression models for genome-enabled prediction in wheat. G3: Genes Genomes Genet. 2: 1595–1605

    Article  CAS  Google Scholar 

  • Peterson TW, Nam SJ, Darby A. 2010. Next-gen sequencing survey, in North America Equity Research, New York: JP Morgan Chase & Co.

    Google Scholar 

  • Rabbi I, Hamblin M, Gedil M, Kulakow P, Ferguson M, Ikpan AS, Ly D, Jannink J. 2014. Genetic mapping using genotyping-by-sequencing in the clonally-propagated cassava. Crop Sci. 54: 1384–1396

    Article  CAS  Google Scholar 

  • Rafalski A 2002. Applications of single nucleotide polymorphisms in crop genetics. Curr. Opin. Plant Biol. 5: 94–100

    Article  PubMed  CAS  Google Scholar 

  • Raman H, Raman R, Schondelmaier J. 2012. Diversity Array Technology Markers: Genetic diversity analyses and linkage map construction in Rapeseed (Brassica napus L.). DNA Res.18: 51–65

    Article  CAS  Google Scholar 

  • Resende M, Del Valle PM, Acosta J, Resende M, Grattapaglia D, Kirst M. 2011. Stability of genomic selection prediction models across ages and environments. In: BMC Proceed., vol. Suppl 7. BioMed Central Ltd, p O14

    Google Scholar 

  • Resende MF, Munoz P, Acosta J, Peter G, Davis J, Grattapaglia D, Resende M, Kirst M. 2012a. Accelerating the domestication of trees using genomic selection: accuracy of prediction models across ages and environments. New Phytol. 193: 617–624

    Article  PubMed  Google Scholar 

  • Resende MF, Muñoz P, Resende MD, Garrick DJ, Fernando RL, Davis JM, Jokela EJ, Martin TA, Peter GF, Kirst M. 2012b. Accuracy of genomic selection methods in a standard data set of loblolly pine (Pinus taeda L.). Genetics 190: 1503–1510

    Article  PubMed  PubMed Central  Google Scholar 

  • Riedelsheimer C, Technow F, Melchinger AE. 2012. Comparison of whole-genome prediction models for traits with contrasting genetic architecture in a diversity panel of maize inbred lines. BMC Genomics 13: 452

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sansaloni CP, Petroli CD, Carling J, Hudson CJ, Steane DA, Myburg AA, Grattapaglia D, Vaillancourt RE, Kilian A. 2010. A high-density Diversity Arrays Technology (DArT) microarray for genome-wide genotyping in Eucalyptus. Plant Methods 6: 16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schneeberger K, Ossowski S, Lanz C, Juul T, Petersen AH, Nielsen KL, Jørgensen J, Weigel D, Andersen SU. 2009. SHORE map: simultaneous mapping and mutation identification by deep sequencing. Nat. Meth. 6: 550–551

    Article  CAS  Google Scholar 

  • Schulz-Streeck T, Ogutu JO, Piepho HP. 2013. Comparisons of single-stage and two-stage approaches to genomic selection. Theor. Appl. Genet. 126: 69–82

    Article  PubMed  Google Scholar 

  • Sexton TR, Shapter FM. 2012. Amplicon sequencing for marker discovery in Molecular Markers in Plants, RJ Henry, eds, Blackwell Publishing Ltd., Oxford, UK,pp 35–56

    Google Scholar 

  • Shu Y, Yu D, Wang D, Bai X, Zhu Y, Guo C. 2012. Genomic selection of seed weight based on low-density SCAR markers in soybean. Genetics Mol. Res. GMR 12: 2178–2188

    Article  CAS  Google Scholar 

  • Singh H, Deshmukh RK, Singh A, Singh AK, Gaikwad K, Sharma TR.et al. 2010. Highly variable SSR markers suitable for rice genotyping using agarose gels. Mol. Breed. 25, 359–364

    Article  CAS  Google Scholar 

  • Snowdon RJ, Luy FLI. 2012. Potential to improve oilseed rape and canola breeding in the genomics era. Plant Breed. 131: 351–360

    Article  CAS  Google Scholar 

  • Sonah H, Bastien M, Iquira E, Tardivel A, Légaré G, Boyle B, Normandeau É, Laroche J, Larose S, Jean M. 2013. An improved genotyping by sequencing (GBS) approach offering increased versatility and efficiency of SNP discovery and genotyping. PloS ONE 8: e54603

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sonah H, Deshmukh RK, Sharma A, Singh VP, Gupta DK, Gacche RN.et al. 2011. Genome-wide distribution and organization of microsatellites in plants: an insight into marker development in Brachypodium. PLoS ONE 6: e21298

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sonah H, O’Donoughue L, Cober E, Rajcan I, Belzile F. 2014. Identification of loci governing eight agronomic traits using a GBS-GWAS approach and validation by QTL mapping in soya bean. Plant Biotechnol. J. 13: 211–221

    Article  PubMed  CAS  Google Scholar 

  • Steemers FJ, Chang W, Lee G, Barker DL, Shen R, Gunderson KL. 2006 Whole-genome genotyping with the single-base extension assay. Nat. Meth. 3: 31–33

    Article  CAS  Google Scholar 

  • Studer B, Jensen LB, Fiil A, Asp T. 2009. Blind mapping of genic DNA sequence polymorphisms in Lolium perenne L. by high resolution melting curve analysis. Mol. Breed. 24: 191–199

    Article  CAS  Google Scholar 

  • Syvanen AC. 2005. Toward genome-wide SNP genotyping. Nat. Genet. 37: 5–10

    Article  CAS  Google Scholar 

  • Tardivel A, Sonah H, Belzile F, O’Donoughue LS. 2014.Rapid identification of alleles at the soybean maturity gene E3 using genotyping by sequencing and a haplotype-based approach. Plant Genome 7: 1–9

    Article  CAS  Google Scholar 

  • Tewhey R, Warner JB, Nakano M, Libby B, Medkova M, David PH.et al. 2009. Microdroplet-based PCR enrichment for large-scale targeted sequencing. Nat. Biotechnol. 27: 1025–1031

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thomson MJ, Zhao K, Wright M, McNally KL, Rey J, Tung CW,et al. 2011. High-throughput single nucleotide polymorphism for breeding applications in rice using the BeadXpress platform. Mol. Breed. 29: 875–886

    Article  CAS  Google Scholar 

  • Thudi M, Li Y, Jackson SA, May GD, Varshney RK. 2012. Current state-of-the-art sequencing technologies for plant genomics research. Brief. Funct. Genomics 11: 3–11

    Article  PubMed  CAS  Google Scholar 

  • Trick M, Long Y, Meng J, Bancroft I. 2009. Single nucleotide polymorphism (SNP) discovery in the polyploid Brassica napus using Solexatranscriptome sequencing. Plant Biotechnol. J. 7: 334–346

    Article  PubMed  CAS  Google Scholar 

  • Uitdewilligen JGAML, A-MA W, D’hoop BB, Borm TJA, Visser RGF, van Eck HJ. 2013. A next-generation sequencing method for genotyping-by-sequencing of highly heterozygous autotetraploid potato. PLoS ONE 8: e62355

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Varshney RK, Graner A, Sorrells ME. 2005. Genomicsassisted breeding for crop improvement. Trends Plant Sci. 10: 621–630.

    Article  PubMed  CAS  Google Scholar 

  • Varshney RK, Nayak SN, May GD, Jackson SA. 2009. Nextgeneration sequencing technologies and their implications for crop genetics and breeding. Trends Biotechnol. 27: 522–530

    Article  PubMed  CAS  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, Van de Lee T, Hornes M, et al. 1995. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Research 3: 4407–4414

    Article  Google Scholar 

  • Wang DG, Fan JB, Siao CJ. 1998. Large-scale identification, mapping, and genotyping of single nucleotide polymorphisms in the human genome. Science 280: 1077–1082

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Chuang K, Ahluwalia M, Patel S, Umblas N, Mirel D, Higuchi D, Germer S. 2005. High-throughput SNP genotyping by single-tube PCR with Tm-shift primers. BioTechniques 39: 885–893

    Article  PubMed  CAS  Google Scholar 

  • Wetterstrand KA. 2014. DNA sequencing costs: data from the NHGRI large-scale genome sequencing program. 2011

  • Wetterstrand KA. DNA Sequencing Costs: Data from the NHGRI Genome Sequencing Program (GSP) Available at: www.genome.gov/sequencingcosts. Accessed [12 March 2015].

  • Williams JGK, Kubelic AR, Livak KJ, Rafalski JA, Tingey SV. 1990. DNA polymorphism amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18: 6532–6535

    Google Scholar 

  • Wu X, Ren C, Joshi T, Vuong T, Xu D, Nguyen HT. 2010. SNP discovery by high-throughput sequencing in soybean. BMC Genomics 11: 469

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Würschum T, Abel S, Zhao Y. 2013. Potential of genomic selection in rapeseed (Brassica napus L.) breeding. Plant Breed. 133: 45–51

    Article  CAS  Google Scholar 

  • Xu DH, Ban T. 2004. Conversion of AFLP markers associated with FHB resistance in wheat into STS markers with an extension-AFLP method. Genome 47: 660–665

    Article  PubMed  CAS  Google Scholar 

  • Xu X, Zeng L, Tao Y, Vuong T, Wan J, Boerma R, Noe J, Li Z, Finnerty S, Pathan SM. 2013. Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing. PNAS 110: 13469–13474

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamamoto T, Nagasaki H, Yonemaru J, Ebana K, Nakajima M, Shibaya T, Yano M. 2010. Fine definition of the pedigree haplotypes of closely related rice cultivars by means of genome-wide discovery of single-nucleotide polymorphisms. BMC Genomics 11: 267

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yan JB, Yang XH, Shah T, Sánchez-Villeda H, Li J, Warburton M, Zhou Y, Crouch JH, Xu Y. 2010. Highthroughput SNP genotyping with the Golden Gate assay in maize. Mol. Breed. 25: 441–451

    Article  CAS  Google Scholar 

  • Yang H, Tao Y, Zheng Z, Li C, Sweetingham MW, Howieson JG. 2012. Application of next-generation sequencing for rapid marker development in molecular plant breeding: a case study on anthracnose disease resistance in Lupinus angustifolius L. BMC Genomics 13: 318

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yu X, Wang H, Zhong W, Bai J, Liu P, He Y. 2013. QTL Mapping of leafy heads by genome resequencing in the RIL population of Brassica rapa. PLoS ONE 8: e76059

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang W, Chen J, Yang Y, Tang Y, Shang J, Shen B. 2011. A practical comparison of de novo genome assembly software tools for next-generation sequencing technologies. PLoS ONE 6: e17915

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang Y, Wang L, Xin H, Li D, Ma C, Ding X, Hong W, Zhang X. 2013. Construction of a high-density genetic map for sesame based on large scale marker development by specific length amplified fragment (SLAF) sequencing. BMC Plant Biol. 13: 141

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao K, Tung CW, Eizenga GC, Wright MH, Ali ML, Price AH,et al. 2011. Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nature Communications 2: 467

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao Q, Huang X, Lin Z, Han B. 2010. SEG-Map: A novel software for genotype calling and genetic map construction from next-generation sequencing. Rice 3: 98–102

    Article  Google Scholar 

  • Zhou L, Holliday JA. 2012. Targeted enrichment of the black cottonwood (Populus trichocarpa) gene space using sequence capture. BMC Genomics 13: 703

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zou Z, Ishida M, Li F, Kakizaki T, Suzuki S, Kitashiba H, Nishio T. 2013. QTL analysis using SNP markers developed by next-generation sequencing for identification of candidate genes controlling 4-methylthio-3-butenyl glucosinolate contents in roots of radish, Raphanus sativus L. PLoS ONE 8: e53541

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sajad Majeed Zargar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zargar, S.M., Raatz, B., Sonah, H. et al. Recent advances in molecular marker techniques: Insight into QTL mapping, GWAS and genomic selection in plants. J. Crop Sci. Biotechnol. 18, 293–308 (2015). https://doi.org/10.1007/s12892-015-0037-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12892-015-0037-5

Keywords

Navigation