Skip to main content
Log in

Genomic selection in forest tree breeding

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Genomic selection (GS) involves selection decisions based on genomic breeding values estimated as the sum of the effects of genome-wide markers capturing most quantitative trait loci (QTL) for the target trait(s). GS is revolutionizing breeding practice in domestic animals. The same approach and concepts can be readily applied to forest tree breeding where long generation times and late expressing complex traits are also a challenge. GS in forest trees would have additional advantages: large training populations can be easily assembled and accurately phenotyped for several traits, and the extent of linkage disequilibrium (LD) can be high in elite populations with small effective population size (N e) frequently used in advanced forest tree breeding programs. Deterministic equations were used to assess the impact of LD (modeled by N e and intermarker distance), the size of the training set, trait heritability, and the number of QTL on the predicted accuracy of GS. Results indicate that GS has the potential to radically improve the efficiency of tree breeding. The benchmark accuracy of conventional BLUP selection is reached by GS even at a marker density ~2 markers/cM when N e ≤ 30, while up to 20 markers/cM are necessary for larger N e. Shortening the breeding cycle by 50% with GS provides an increase ≥100% in selection efficiency. With the rapid technological advances and declining costs of genotyping, our cautiously optimistic outlook is that GS has great potential to accelerate tree breeding. However, further simulation studies and proof-of-concept experiments of GS are needed before recommending it for operational implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abasht B, Sandford E, Arango J, Settar P, Fulton JE, O’Sullivan NP, Hassen A, Habier D, Fernando RL, Dekkers JCM, Lamont SJ (2009) Extent and consistency of linkage disequilibrium and identification of DNA markers for production and egg quality traits in commercial layer chicken populations. BMC Genomics 10:S2

    Article  PubMed  Google Scholar 

  • Amaral AJ, Megens HJ, Crooijmans RPMA, Heuven HCM, Groenen MAM (2008) Linkage disequilibrium decay and haplotype block structure in the pig. Genetics 179:569–579

    Article  PubMed  CAS  Google Scholar 

  • Beavis WD (1998) QTL analyses: power, precision, and accuracy. In: Patterson AH (ed) Molecular dissection of complex traits. CRC Publishing, Boca Raton, pp 145–162

    Google Scholar 

  • Bernardo R (2008) Molecular markers and selection for complex traits in plants: learning from the last 20 years. Crop Sci 48:1649–1664

    Article  Google Scholar 

  • Bernardo R (2009) Genomewide selection for rapid introgression of exotic germplasm in maize. Crop Sci 49:419–425

    Article  Google Scholar 

  • Bernardo R, Yu JM (2007) Prospects for genomewide selection for quantitative traits in maize. Crop Sci 47:1082–1090

    Article  Google Scholar 

  • Brondani RP, Williams ER, Brondani C, Grattapaglia D (2006) A microsatellite-based consensus linkage map for species of Eucalyptus and a novel set of 230 microsatellite markers for the genus. BMC Plant Biol 6:20

    Article  PubMed  Google Scholar 

  • Brown GR, Bassoni DL, Gill GP, Fontana JR, Wheeler NC, Megraw RA, Davis MF, Sewell MM, Tuskan GA, Neale DB (2003) Identification of quantitative trait loci influencing wood property traits in loblolly pine (Pinus taeda L.). III. QTL Verification and candidate gene mapping. Genetics 164:1537–1546

    PubMed  CAS  Google Scholar 

  • Buckler ES, Holland JB, Bradbury PJ, Acharya CB, Brown PJ, Browne C, Ersoz E, Flint-Garcia S, Garcia A, Glaubitz JC, Goodman MM, Harjes C, Guill K, Kroon DE, Larsson S, Lepak NK, Li HH, Mitchell SE, Pressoir G, Peiffer JA, Rosas MO, Rocheford TR, Romay MC, Romero S, Salvo S, Villeda HS, da Silva HS, Sun Q, Tian F, Upadyayula N, Ware D, Yates H, Yu JM, Zhang ZW, Kresovich S, McMullen MD (2009) The genetic architecture of maize flowering time. Science 325:714–718

    Article  PubMed  CAS  Google Scholar 

  • Calus MP, Meuwissen TH, de Roos AP, Veerkamp RF (2008) Accuracy of genomic selection using different methods to define haplotypes. Genetics 178:553–561

    Article  PubMed  CAS  Google Scholar 

  • Daetwyler HD, Villanueva B, Bijma P, Woolliams JA (2007) Inbreeding in genome-wide selection. J Anim Breed Genet 124:369–376

    Article  PubMed  CAS  Google Scholar 

  • Daetwyler HD, Villanueva B, Woolliams JA (2008) Accuracy of predicting the genetic risk of disease using a genome-wide approach. PLoS ONE 3:e3395

    Article  PubMed  Google Scholar 

  • de Roos AP, Hayes BJ, Goddard ME (2009) Reliability of genomic predictions across multiple populations. Genetics 183:545–553

    Google Scholar 

  • Dekkers JCM (2007) Prediction of response to marker-assisted and genomic selection using selection index theory. J Anim Breed Genet 124:331–341

    Article  PubMed  CAS  Google Scholar 

  • Dillen S, Storme V, Marron N, Bastien C, Neyrinck S, Steenackers M, Ceulemans R, Boerjan W (2008) Genomic regions involved in productivity of two interspecific poplar families in Europe. 1. Stem height, circumference and volume. Tree Genetics & Genomes 5:147–164

    Article  Google Scholar 

  • Eckert AJ, Bower AD, Wegrzyn JL, Pande B, Jermstad KD, Krutovsky KV, Clair JBS, Neale DB (2009a) Asssociation genetics of coastal douglas fir (Pseudotsuga menziesu var. menziesii, Pinaceae). I. Cold-hardiness related traits. Genetics 182:1289–1302

    Article  PubMed  CAS  Google Scholar 

  • Eckert AJ, Pande B, Ersoz ES, Wright MH, Rashbrook VK, Nicolet CM, Neale DB (2009b) High-throughput genotyping and mapping of single nucleotide polymorphisms in loblolly pine (Pinus taeda L.). Tree Genet Genomes 5:225–234

    Article  Google Scholar 

  • Goddard M (2009) Genomic selection: prediction of accuracy and maximisation of long term response. Genetica 136:245–257

    Article  PubMed  Google Scholar 

  • Goddard ME, Hayes BJ (2009) Mapping genes for complex traits in domestic animals and their use in breeding programmes. Nat Rev Genet 10:381–391

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Martinez SC, Wheeler NC, Ersoz E, Nelson CD, Neale DB (2007) Association genetics in Pinus taeda L. I. Wood property traits. Genetics 175:399–409

    Article  PubMed  Google Scholar 

  • Gonzalez-Martinez SC, Huber D, Ersoz E, Davis JM, Neale DB (2008) Association genetics in Pinus taeda L. II. Carbon isotope discrimination. Heredity 101:19–26

    Article  PubMed  CAS  Google Scholar 

  • Grattapaglia D, Kirst M (2008) Eucalyptus applied genomics: from gene sequences to breeding tools. New Phytol 179:911–929

    Article  PubMed  CAS  Google Scholar 

  • Grattapaglia D, Chaparro J, Wilcox P, Mccord S, Werner D, Amerson H, Mckeand S, Bridgwater F, Whetten R, O’malley D, Sederoff RR (1992) Mapping in woody plants with RAPD markers: applications to breeding in forestry and horticulture. Proceedings of the Symposium “Applications of RAPD Technology to Plant Breeding”. Crop Science Society of America, American Society of Horticultural Science, American Genetic Association, pp 37–40

  • Grattapaglia D, Plomion C, Kirst M, Sederoff RR (2009) Genomics of growth traits in forest trees. Curr Opin Plant Biol 12:148–156

    Article  PubMed  CAS  Google Scholar 

  • Greenwood MS (1980) Method for inducing early flowering on young forest trees. In: Office USPaT (ed). Weyerhaeuser Company, Tacoma

  • Griffin AR, Whiteman P, Rudge T, Burgess IP, Moncur M (1993) Effect of Paclobutrazol on flower-bud production and vegetative growth in 2 species of eucalyptus. Can J For Res-Revue Canadienne De Recherche Forestiere 23:640–647

    Article  CAS  Google Scholar 

  • Habier D, Fernando RL, Dekkers JCM (2009) Genomic selection using low-density marker panels. Genetics 182:343–353

    Article  PubMed  CAS  Google Scholar 

  • Hasan O, Reid JB (1995) Reduction of generation time in eucalyptus-globulus. Plant Growth Regul 17:53–60

    CAS  Google Scholar 

  • Hayes BJ, Goddard ME (2008) Technical note: prediction of breeding values using marker-derived relationship matrices. J Anim Sci 86:2089–2092

    Article  PubMed  CAS  Google Scholar 

  • Hayes BJ, Bowman PJ, Chamberlain AJ, Goddard ME (2009) Invited review: genomic selection in dairy cattle: progress and challenges. J Dairy Sci 92:433–443

    Article  PubMed  CAS  Google Scholar 

  • Heffner EL, Sorrells ME, Jannink JL (2009) Genomic selection for crop improvement. Crop Sci 49:1–12

    Article  CAS  Google Scholar 

  • Heifetz EM, Fulton JE, O’Sullivan N, Zhao H, Dekkers JCM, Soller M (2005) Extent and consistency across generations of linkage disequilibrium in commercial layer chicken breeding populations. Genetics 171:1173–1181

    Article  PubMed  CAS  Google Scholar 

  • Hill WG (1981) Estimation of effective population-size from data on linkage disequilibrium. Genet Res 38:209–216

    Article  Google Scholar 

  • Ibanz-Escriche N, Fernando RL, Toosi A, Dekkers JCM (2009) Genomic selection of purebreds for crossbred performance. Genet Sel Evol 41:12

    Article  Google Scholar 

  • Ingvarsson PK (2008) Multilocus patterns of nucleotide polymorphism and the demographic history of Populus tremula. Genetics 180:329–340

    Article  PubMed  Google Scholar 

  • Jannink JL, Lorenz AJ, Iwata H (2010) Genomic selection in plant breeding: from theory to practice. Brief Funct Genomics 9:166–177

    PubMed  CAS  Google Scholar 

  • Kirst M, Myburg A, Sederoff R (2004) Genetic mapping in forest trees: markers, linkage analysis and genomics. Genet Eng (N Y) 26:105–141

    CAS  Google Scholar 

  • Kulheim C, Yeoh SH, Maintz J, Foley WJ, Moran GF (2009) Comparative SNP diversity among four Eucalyptus species for genes from secondary metabolite biosynthetic pathways. BMC Genomics 10:452

    Article  PubMed  Google Scholar 

  • Lee SH, van der Werf JHJ, Hayes BJ, Goddard ME, Visscher PM (2008) Predicting unobserved phenotypes for complex traits from whole-genome SNP Data. Plos Genetics 4

  • Legarra A, Robert-Granie C, Manfredi E, Elsen JM (2008) Performance of genomic selection in mice. Genetics 180:611–618

    Article  PubMed  Google Scholar 

  • Long N, Gianola D, Rosa GJM, Weigel KA, Avendano S (2007) Machine learning classification procedure for selecting SNPs in genomic selection: application to early mortality in broilers. J Anim Breed Genet 124:377–389

    Article  PubMed  CAS  Google Scholar 

  • Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer Associates, Sunderland

    Google Scholar 

  • Mamanova L, Coffey AJ, Scott CE, Kozarewa I, Turner EH, Kumar A, Howard E, Shendure J, Turner DJ (2010) Target-enrichment strategies for next-generation sequencing. Nat Meth 7:111–118

    Article  CAS  Google Scholar 

  • Mayor PJ, Bernardo R (2009) Genomewide selection and marker-assisted recurrent selection in doubled haploid versus F-2 populations. Crop Sci 49:1719–1725

    Article  Google Scholar 

  • McKeand SE, Bridgwater FE (1998) A strategy for the third breeding cycle of loblolly pine in the southeastern US. Silvae Genetica 47:223–234

    Google Scholar 

  • Megens HJ, Crooijmans RPMA, Bastiaansen JWM, Kerstens HHD, Coster A, Jalving R, Vereijken A, Silva P, Muir WM, Cheng HH, Hanotte O, Groenen MAM (2009) Comparison of linkage disequilibrium and haplotype diversity on macro- and microchromosomes in chicken. BMC Genetics 10:86

    Article  PubMed  Google Scholar 

  • Meuwissen THE (2009) Accuracy of breeding values of ‘unrelated’ individuals predicted by dense SNP genotyping. Genet Sel Evol 41:35

    Article  PubMed  Google Scholar 

  • Meuwissen TH, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829

    PubMed  CAS  Google Scholar 

  • Mrode RA (2005) Linear models for the prediction of animal breeding values. CABI, UK

    Book  Google Scholar 

  • Muir WM (2007) Comparison of genomic and traditional BLUP-estimated breeding value accuracy and selection response under alternative trait and genomic parameters. J Anim Breed Genet 124:342–355

    Article  PubMed  CAS  Google Scholar 

  • Myles S, Chia JM, Hurwitz B, Simon C, Zhong GY, Buckler E, Ware D (2010) Rapid genomic characterization of the genus vitis. Plos One 5:e8219

    Article  PubMed  Google Scholar 

  • Namkoong G, Kang HC, Brouard JS (1988) Tree breeding: principles and strategies. Springer, New York

    Google Scholar 

  • Neale DB, Savolainen O (2004) Association genetics of complex traits in conifers. Trends Plant Sci 9:325–330

    Article  PubMed  CAS  Google Scholar 

  • Nielsen HM, Sonesson AK, Yazdi H, Meuwissen THE (2009) Comparison of accuracy of genome-wide and BLUP breeding value estimates in sib based aquaculture breeding schemes. Aquaculture 289:259–264

    Article  CAS  Google Scholar 

  • Novaes E, Drost DR, Farmerie WG, Pappas GJ Jr, Grattapaglia D, Sederoff RR, Kirst M (2008) High-throughput gene and SNP discovery in Eucalyptus grandis, an uncharacterized genome. BMC Genomics 9:312

    Article  PubMed  Google Scholar 

  • Novaes E, Osorio L, Drost DR, Miles BL, Boaventura-Novaes CRD, Benedict C, Dervinis C, Yu Q, Sykes R, Davis M, Martin TA, Peter GF, Kirst M (2009) Quantitative genetic analysis of biomass and wood chemistry of Populus under different nitrogen levels. New Phytol 182:878–890

    Article  CAS  Google Scholar 

  • Pavy N, Pelgas B, Beauseigle S, Blais S, Gagnon F, Gosselin I, Lamothe M, Isabel N, Bousquet J (2008) Enhancing genetic mapping of complex genomes through the design of highly-multiplexed SNP arrays: application to the large and unsequenced genomes of white spruce and black spruce. BMC Genomics 9:21

    Article  PubMed  Google Scholar 

  • Piyasatian N, Fernando RL, Dekkers JCM (2007) Genomic selection for marker-assisted improvement in line crosses. Theor Appl Genet 115:665–674

    Article  PubMed  CAS  Google Scholar 

  • Rae A, Pinel M, Bastien C, Sabatti M, Street N, Tucker J, Dixon C, Marron N, Dillen S, Taylor G (2008) QTL for yield in bioenergy Populus: identifying G × E interactions from growth at three contrasting sites. Tree Genet Genomes 4:97–112

    Article  Google Scholar 

  • Raymond CA, Schimleck LR (2002) Development of near infrared reflectance analysis calibrations for estimating genetic parameters for cellulose content in Eucalyptus globulus. Can J For Res-Revue Canadienne De Recherche Forestiere 32:170–176

    Article  Google Scholar 

  • Resende MDV, de Assis TF (2008) Seleção recorrente recíproca entre populações sintéticas multi-espécies (SRR-PSME) de eucalipto. Pesqui Florestal Bras 57:57–60

    Google Scholar 

  • Resende MDV, Fernandes JSC (1999) Procedimento BLUP (melhor predição linear não viciada) individual para delineamentos experimentais aplicados ao melhoramento florestal. Revista de Matemática e Estatística (Biometric Brazilian Journal - in Portuguese) 17:89–107

    Google Scholar 

  • Resende MDV, Lopes PS, Silva RL, Pires IL (2008) Seleção genômica ampla (GWS) e maximização da eficiência do melhoramento genético. Pesqui Florestal Bras 56:63–77

    Google Scholar 

  • Robinson AR, Mansfield SD (2009) Rapid analysis of poplar lignin monomer composition by a streamlined thioacidolysis procedure and near-infrared reflectance-based prediction modeling. Plant J 58:706–714

    Article  PubMed  CAS  Google Scholar 

  • Sansaloni CP, Petroli CD, Carling J, Hudson CJ, Steane DA, Myburg AA, Grattapaglia D, Vaillancourt RE, Kilian A (2010) A high-density diversity arrays technology (DArT) microarray for genome-wide genotyping in Eucalyptus. Plant Meth 6:16

    Article  Google Scholar 

  • Schaeffer LR (2006) Strategy for applying genome-wide selection in dairy cattle. J Anim Breed Genet 123:218–223

    Article  PubMed  CAS  Google Scholar 

  • Schimleck LR, Sussenbach E, Leaf G, Jones PD, Huang CL (2007) Microfibril angle prediction of Pinus taeda wood samples based on tangential face NIR spectra. IAWA J 28:1–12

    Google Scholar 

  • Sewell M, Neale D (2000) Mapping quantitative traits in forest trees. In: Jain SM, Minocha SC (eds) Molecular biology of woody plants, vol. 1 (Forestry Sciences, Vol 64). Kluwer Academic, The Netherlands, pp 407–423

    Google Scholar 

  • Sewell MM, Sherman BK, Neale DB (1999) A consensus map for loblolly pine (Pinus taeda L.). I. Construction and integration of individual linkage maps from two outbred three-generation pedigrees. Genetics 151:321–330

    PubMed  CAS  Google Scholar 

  • Sillanpaa MJ, Corander J (2002) Model choice in gene mapping: what and why. Trends Genet 18:301–307

    Article  PubMed  CAS  Google Scholar 

  • Solberg TR, Sonesson AK, Woolliams JA, Meuwissen THE (2008) Genomic selection using different marker types and densities. J Anim Sci 86:2447–2454

    Article  PubMed  CAS  Google Scholar 

  • Sonesson AK, Meuwissen THE (2009) Testing strategies for genomic selection in aquaculture breeding programs. Genet Sel Evol 41:37

    Article  PubMed  Google Scholar 

  • Strauss SH, Lande R, Namkoong G (1992) Limitations of molecular-marker-aided selection in forest tree breeding. Can J For Res-Revue Canadienne De Recherche Forestiere 22:1050–1061

    CAS  Google Scholar 

  • Sved JA (1971) Linkage disequilibrium and homozygosity of chromosome segments in finite populations. Theor Popul Biol 2:125–141

    Article  PubMed  CAS  Google Scholar 

  • Toosi A, Fernando RL, Dekkers JC (2009) Genomic selection in admixed and crossbred populations. J Anim Sci 88:32–46

    Article  PubMed  Google Scholar 

  • Tuskan G, West D, Bradshaw HD, Neale D, Sewell M, Wheeler N, Megraw B, Jech K, Wiselogel A, Evans R, Elam C, Davis M, Dinus R (1999) Two high-throughput techniques for determining wood properties as part of a molecular genetics analysis of hybrid poplar and loblolly pine. Appl Biochem Biotechnol 77–9:55–65

    Article  Google Scholar 

  • VanRaden PM (2008) Efficient methods to compute genomic predictions. J Dairy Sci 91:4414–4423

    Article  PubMed  CAS  Google Scholar 

  • Visscher PM (2008) Sizing up human height variation. Nat Genet 40:489–490

    Article  PubMed  CAS  Google Scholar 

  • White TL, Adams WT, Neale DB (2007) Forest genetics. CABI, UK

    Book  Google Scholar 

  • Williams CG, Neale DB (1992) Conifer wood quality and marker-aided selection—a case-study. Can J For Res-Revue Canadienne De Recherche Forestiere 22:1009–1017

    Google Scholar 

  • Wong CK, Bernardo R (2008) Genomewide selection in oil palm: increasing selection gain per unit time and cost with small populations. Theor Appl Genet 116:815–824

    Article  PubMed  CAS  Google Scholar 

  • Zhong SQ, Dekkers JCM, Fernando RL, Jannink JL (2009) Factors affecting accuracy from genomic selection in populations derived from multiple inbred lines: a barley case study. Genetics 182:355–364

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Brazilian Ministry of Science and Technology through FINEP grant 1755-01 (Genolyptus project), EMBRAPA Macroprogram grant 03.08.01.010, CNPq grant 577047/2008-6, and CNPq research productivity fellowships awarded to DG and MDVR. We thank the anonymous reviewers for their comments and suggestions on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dario Grattapaglia.

Additional information

Communicated by R. Burdon

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grattapaglia, D., Resende, M.D.V. Genomic selection in forest tree breeding. Tree Genetics & Genomes 7, 241–255 (2011). https://doi.org/10.1007/s11295-010-0328-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-010-0328-4

Keywords

Navigation