Skip to main content

SNP Discovery by Transcriptome Pyrosequencing

  • Protocol
  • First Online:
cDNA Libraries

Part of the book series: Methods in Molecular Biology ((MIMB,volume 729))

Abstract

Single nucleotide polymorphisms (SNPs) are single base differences between haplotypes. SNPs are abundant in many species and valuable as markers for genetic map construction, modern molecular breeding programs, and quantitative genetic studies. SNPs are readily mined from genomic DNA or cDNA sequence obtained from individuals having two or more distinct genotypes. While automated Sanger sequencing has become less expensive over time, it is still costly to acquire deep Sanger sequence from several genotypes. “Next-generation” DNA sequencing technologies that utilize new chemistries and massively parallel approaches have enabled DNA sequences to be acquired at extremely high depths of coverage faster and for less cost than traditional sequencing. One such method is represented by the Roche/454 Life Sciences GS-FLX Titanium Series, which currently uses pyrosequencing to produce up to 400–600 million bases of DNA sequence/run (>1 million reads, ∼400 bp/read). This chapter discusses the use of high-throughput pyrosequencing for SNP discovery by focusing on 454 sequencing of maize cDNA, the development of a computational pipeline for polymorphism detection, and the subsequent identification of over 7,000 putative SNPs between Mo17 and B73 maize. In addition, alternative alignment and polymorphism detection strategies that implement Illumina short reads, data processing and visualization tools, and reduced representation techniques that reduce the sequencing of repeat DNA, thus enabling efficient analysis of genome sequence, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gut, I. G. (2001) Automation in genotyping of single nucleotide polymorphisms. Hum. Mutat. 17, 475–492.

    Article  PubMed  CAS  Google Scholar 

  2. Kwok, P. Y. (2001) Methods for genotyping single nucleotide polymorphisms. Annu. Rev. Genomics Hum. Genet. 2, 235–258.

    Article  PubMed  CAS  Google Scholar 

  3. Leushner, J. and Chiu, N. H. (2000) Automated mass spectrometry: a revolutionary technology for clinical diagnostics. Mol. Diagn. 5, 341–348.

    PubMed  CAS  Google Scholar 

  4. Consortium, T. I. H. (2003) The International HapMap Project. Nature 426, 789–796.

    Article  Google Scholar 

  5. Consortium, T. I. H. (2005) A haplotype map of the human genome. Nature 437, 1299–1320.

    Article  Google Scholar 

  6. Bray, N. J., Buckland, P. R., Owen, M. J., and O’Donovan, M. C. (2003) Cis-acting variation in the expression of a high proportion of genes in human brain. Hum. Genet. 113, 149–153.

    PubMed  Google Scholar 

  7. Cowles, C. R., Hirschhorn, J. N., Altshuler, D., and Lander, E. S. (2002) Detection of regulatory variation in mouse genes. Nat. Genet. 32, 432–437.

    Article  PubMed  CAS  Google Scholar 

  8. Guo, M., Rupe, M. A., Zinselmeier, C., Habben, J., Bowen, B. A., and Smith, O. S. (2004) Allelic variation of gene expression in maize hybrids. Plant Cell 16, 1707–1716.

    Article  PubMed  CAS  Google Scholar 

  9. Pastinen, T., Sladek, R., Gurd, S., Sammak, A., Ge, B., Lepage, P., Lavergne, K., Villeneuve, A., Gaudin, T., Brandstrom, H., Beck, A., Verner, A., Kingsley, J., Harmsen, E., Labuda, D., Morgan, K., Vohl, M. C., Naumova, A. K., Sinnett, D., and Hudson, T. J. (2004) A survey of genetic and epigenetic variation affecting human gene expression. Physiol. Genomics 16, 184–193.

    PubMed  CAS  Google Scholar 

  10. Stupar, R. M. and Springer, N. M. (2006) Cis-transcriptional variation in maize inbred lines B73 and Mo17 leads to additive expression patterns in the F1 hybrid. Genetics 173, 2199–2210.

    Article  PubMed  CAS  Google Scholar 

  11. Sachidanandam, R., Weissman, D., Schmidt, S. C., et al. (2001) A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature 409, 928–933.

    Article  PubMed  CAS  Google Scholar 

  12. Wiltshire, T., Pletcher, M. T., Batalov, S., Barnes, S. W., Tarantino, L. M., Cooke, M. P., Wu, H., Smylie, K., Santrosyan, A., Copeland, N. G., Jenkins, N. A., Kalush, F., Mural, R. J., Glynne, R. J., Kay, S. A., Adams, M. D., and Fletcher, C. F. (2003) Genome-wide single-nucleotide polymorphism analysis defines haplotype patterns in mouse. Proc. Natl Acad. Sci. USA 100, 3380–3385.

    Article  PubMed  CAS  Google Scholar 

  13. Feltus, F. A., Wan, J., Schulze, S. R., Estill, J. C., Jiang, N., and Paterson, A. H. (2004) An SNP resource for rice genetics and breeding based on subspecies indica and japonica genome alignments. Genome Res. 14, 1812–1819.

    Article  PubMed  CAS  Google Scholar 

  14. Jander, G., Norris, S. R., Rounsley, S. D., Bush, D. F., Levin, I. M., and Last, R. L. (2002) Arabidopsis map-based cloning in the post-genome era. Plant Physiol. 129, 440–450.

    Article  PubMed  CAS  Google Scholar 

  15. Yamasaki, M., Tenaillon, M. I., Bi, I. V., Schroeder, S. G., Sanchez-Villeda, H., Doebley, J. F., Gaut, B. S., and McMullen, M. D. (2005) A large-scale screen for artificial selection in maize identifies candidate agronomic loci for domestication and crop improvement. Plant Cell 17, 2859–2872.

    Article  PubMed  CAS  Google Scholar 

  16. Marth, G. T., Korf, I., Yandell, M. D., Yeh, R. T., Gu, Z., Zakeri, H., Stitziel, N. O., Hillier, L., Kwok, P. Y., and Gish, W. R. (1999) A general approach to single-nucleotide polymorphism discovery. Nat. Genet. 23, 452–456.

    Article  PubMed  CAS  Google Scholar 

  17. Dantec, L. L., Chagne, D., Pot, D., Cantin, O., Garnier-Gere, P., Bedon, F., Frigerio, J. M., Chaumeil, P., Leger, P., Garcia, V., Laigret, F., De Daruvar, A., and Plomion, C. (2004) Automated SNP detection in expressed sequence tags: statistical considerations and application to maritime pine sequences. Plant Mol. Biol. 54, 461–470.

    Article  PubMed  Google Scholar 

  18. Kota, R., Rudd, S., Facius, A., Kolesov, G., Thiel, T., Zhang, H., Stein, N., Mayer, K., and Graner, A. (2003) Snipping polymorphisms from large EST collections in barley (Hordeum vulgare L.). Mol. Genet. Genomics 270, 24–33.

    Article  PubMed  CAS  Google Scholar 

  19. Kota, R., Varshney, R. K., Thiel, T., Dehmer, K. J., and Graner, A. (2001) Generation and comparison of EST-derived SSRs and SNPs in barley (Hordeum vulgare L.). Hereditas 135, 145–151.

    Article  PubMed  CAS  Google Scholar 

  20. Lopez, C., Piegu, B., Cooke, R., Delseny, M., Tohme, J., and Verdier, V. (2005) Using cDNA and genomic sequences as tools to develop SNP strategies in cassava (Manihot esculenta Crantz). Theor. Appl. Genet. 110, 425–431.

    Article  PubMed  CAS  Google Scholar 

  21. Barbazuk, W. B., Emrich, S. J., Chen, H. D., Li, L., and Schnable, P. S. (2007) SNP discovery via 454 transcriptome sequencing. Plant J. 51, 910–918.

    Article  PubMed  CAS  Google Scholar 

  22. Batley, J., Barker, G., O’Sullivan, H., Edwards, K. J., and Edwards, D. (2003) Mining for single nucleotide polymorphisms and insertions/deletions in maize expressed sequence tag data. Plant Physiol. 132, 84–91.

    Article  PubMed  CAS  Google Scholar 

  23. Holt, R. A. and Jones, S. J. (2008) The new paradigm of flow cell sequencing. Genome Res. 18, 839–846.

    Article  PubMed  CAS  Google Scholar 

  24. Margulies, M., Egholm, M., Altman, W. E., et al. (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437, 376–380.

    PubMed  CAS  Google Scholar 

  25. Bentley, D. R. (2006) Whole-genome ­re-sequencing, Curr. Opin. Genet. Dev. 16, 545–552.

    Article  PubMed  CAS  Google Scholar 

  26. Huang, X. and Madan, A. (1999) CAP3: a DNA sequence assembly program. Genome Res. 9, 868–877.

    Article  PubMed  CAS  Google Scholar 

  27. Sundquist, A., Ronaghi, M., Tang, H., Pevzner, P., and Batzoglou, S. (2007) Whole-genome sequencing and assembly with high-throughput, short-read technologies. PLoS One 2, e484.

    Article  PubMed  Google Scholar 

  28. Quinlan, A. R., Stewart, D. A., Stromberg, M. P., and Marth, G. T. (2008) Pyrobayes: an improved base caller for SNP discovery in pyrosequences. Nat. Methods 5, 179–181.

    Article  PubMed  CAS  Google Scholar 

  29. Huse, S. M., Huber, J. A., Morrison, H. G., Sogin, M. L., and Welch, D. M. (2007) Accuracy and quality of massively parallel DNA pyrosequencing. Genome Biol. 8, R143.

    Article  PubMed  Google Scholar 

  30. Ewing, B., Hillier, L., Wendl, M. C., and Green, P. (1998) Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res. 8, 175–185.

    PubMed  CAS  Google Scholar 

  31. Goldberg, S. M., Johnson, J., Busam, D., et al. (2006) A Sanger/pyrosequencing hybrid approach for the generation of high-quality draft assemblies of marine microbial genomes. Proc. Natl Acad. Sci. USA 103, 11240–11245.

    Article  PubMed  CAS  Google Scholar 

  32. Hiller, N. L., Janto, B., Hogg, J. S., Boissy, R., Yu, S., Powell, E., Keefe, R., Ehrlich, N. E., Shen, K., Hayes, J., Barbadora, K., Klimke, W., Dernovoy, D., Tatusova, T., Parkhill, J., Bentley, S. D., Post, J. C., Ehrlich, G. D., and Hu, F. Z. (2007) Comparative genomic analyses of seventeen Streptococcus pneumoniae strains: insights into the pneumococcal supragenome. J. Bacteriol. 189, 8186–8195.

    Article  PubMed  CAS  Google Scholar 

  33. Hofreuter, D., Tsai, J., Watson, R. O., Novik, V., Altman, B., Benitez, M., Clark, C., Perbost, C., Jarvie, T., Du, L., and Galan, J. E. (2006) Unique features of a highly pathogenic Campylobacter jejuni strain. Infect. Immun. 74, 4694–4707.

    Article  PubMed  CAS  Google Scholar 

  34. Pearson, B. M., Gaskin, D. J., Segers, R. P., Wells, J. M., Nuijten, P. J., and van Vliet, A. H. (2007) The complete genome sequence of Campylobacter jejuni strain 81116 (NCTC11828). J. Bacteriol. 189, 8402–8403.

    Article  PubMed  CAS  Google Scholar 

  35. Smith, M. G., Gianoulis, T. A., Pukatzki, S., Mekalanos, J. J., Ornston, L. N., Gerstein, M., and Snyder, M. (2007) New insights into Acinetobacter baumannii pathogenesis revealed by high-density pyrosequencing and transposon mutagenesis. Genes Dev. 21, 601–614.

    Article  PubMed  CAS  Google Scholar 

  36. Warren, R. L., Sutton, G. G., Jones, S. J., and Holt, R. A. (2007) Assembling millions of short DNA sequences using SSAKE. Bioinformatics 23, 500–501.

    Article  PubMed  CAS  Google Scholar 

  37. Jeck, W. R., Reinhardt, J. A., Baltrus, D. A., Hickenbotham, M. T., Magrini, V., Mardis, E. R., Dangl, J. L., and Jones, C. D. (2007) Extending assembly of short DNA sequences to handle error. Bioinformatics 23, 2942–2944.

    Article  PubMed  CAS  Google Scholar 

  38. Dohm, J. C., Lottaz, C., Borodina, T., and Himmelbauer, H. (2007) SHARCGS, a fast and highly accurate short-read assembly algorithm for de novo genomic sequencing. Genome Res. 17, 1697–1706.

    Article  PubMed  CAS  Google Scholar 

  39. Henderson, I. R., Zhang, X., Lu, C., Johnson, L., Meyers, B. C., Green, P. J., and Jacobsen, S. E. (2006) Dissecting Arabidopsis thaliana DICER function in small RNA processing, gene silencing and DNA methylation patterning. Nat. Genet. 38, 721–725.

    Article  PubMed  CAS  Google Scholar 

  40. Butler, J., MacCallum, I., Kleber, M., Shlyakhter, I. A., Belmonte, M. K., Lander, E. S., Nusbaum, C., and Jaffe, D. B. (2008) ALLPATHS: de novo assembly of whole-genome shotgun microreads. Genome Res. 18, 810–820.

    Article  PubMed  CAS  Google Scholar 

  41. Zerbino, D. R. and Birney, E. (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 18, 821–829.

    Article  PubMed  CAS  Google Scholar 

  42. Andries, K., Verhasselt, P., Guillemont, J., Gohlmann, H. W., Neefs, J. M., Winkler, H., Van Gestel, J., Timmerman, P., Zhu, M., Lee, E., Williams, P., de Chaffoy, D., Huitric, E., Hoffner, S., Cambau, E., Truffot-Pernot, C., Lounis, N., and Jarlier, V. (2005) A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science 307, 223–227.

    Article  PubMed  CAS  Google Scholar 

  43. Eveland, A. L., McCarty, D. R., and Koch, K. E. (2008) Transcript profiling by 3′-untranslated region sequencing resolves expression of gene families. Plant Physiol. 146, 32–44.

    Article  PubMed  CAS  Google Scholar 

  44. Johnson, D. S., Mortazavi, A., Myers, R. M., and Wold, B. (2007) Genome-wide mapping of in vivo protein-DNA interactions. Science 316, 1497–1502.

    Article  PubMed  CAS  Google Scholar 

  45. Novaes, E., Drost, D. R., Farmerie, W. G., Pappas, G. J., Jr., Grattapaglia, D., Sederoff, R. R., and Kirst, M. (2008) High-throughput gene and SNP discovery in Eucalyptus grandis, an uncharacterized genome. BMC Genomics 9, 312.

    Article  PubMed  Google Scholar 

  46. Van Tassell, C. P., Smith, T. P., Matukumalli, L. K., Taylor, J. F., Schnabel, R. D., Lawley, C. T., Haudenschild, C. D., Moore, S. S., Warren, W. C., and Sonstegard, T. S. (2008) SNP discovery and allele frequency estimation by deep sequencing of reduced representation libraries. Nat. Methods 5, 247–252.

    Article  PubMed  Google Scholar 

  47. Buggs, R. J. A., Chamala, S., Wu, W., Gao, L., May, G. D., Schnable, P. S., Soltis, D. E., Soltis, P. S., and Barbazuk, W. B. (2010) Characterization of duplicate gene evolution in the recent natural allopolyploid Tragopogon miscellus by next-generation sequencing and Sequenom iPLEX MassARRAY genotyping. Mol. Ecol. 19(S1), 132–146.

    Article  PubMed  CAS  Google Scholar 

  48. Emrich, S. J., Barbazuk, W. B., Li, L., and Schnable, P. S. (2007) Gene discovery and annotation using LCM-454 transcriptome sequencing. Genome Res. 17, 69–73.

    Article  PubMed  CAS  Google Scholar 

  49. Hillier, L. W., Marth, G. T., Quinlan, A. R., Dooling, D., Fewell, G., Barnett, D., Fox, P., Glasscock, J. I., Hickenbotham, M., Huang, W., Magrini, V. J., Richt, R. J., Sander, S. N., Stewart, D. A., Stromberg, M., Tsung, E. F., Wylie, T., Schedl, T., Wilson, R. K., and Mardis, E. R. (2008) Whole-genome sequencing and variant discovery in C. elegans. Nat. Methods 5, 183–188.

    Article  PubMed  CAS  Google Scholar 

  50. Emrich, S. J., Aluru, S., Fu, Y., Wen, T. J., Narayanan, M., Guo, L., Ashlock, D. A., and Schnable, P. S. (2004) A strategy for assembling the maize (Zea mays L.) genome. Bioinformatics 20, 140–147.

    Article  PubMed  CAS  Google Scholar 

  51. Pertea, G., Huang, X., Liang, F., Antonescu, V., Sultana, R., Karamycheva, S., Lee, Y., White, J., Cheung, F., Parvizi, B., Tsai, J., and Quackenbush, J. (2003) TIGR Gene Indices clustering tools (TGICL): a software system for fast clustering of large EST datasets. Bioinformatics 19, 651–652.

    Article  PubMed  CAS  Google Scholar 

  52. Huang, W. and Marth, G. (2008) EagleView: a genome assembly viewer for next-generation sequencing technologies. Genome Res. 18, 1538–1543

    Article  PubMed  CAS  Google Scholar 

  53. Gordon, D., Abajian, C., and Green, P. (1998) Consed: a graphical tool for sequence finishing. Genome Res. 8, 195–202.

    PubMed  CAS  Google Scholar 

  54. Manaster, C., Zheng, W., Teuber, M., Wachter, S., Doring, F., Schreiber, S., and Hampe, J. (2005) InSNP: a tool for automated detection and visualization of SNPs and InDels. Hum. Mutat. 26, 11–19.

    Article  PubMed  CAS  Google Scholar 

  55. Nickerson, D. A., Tobe, V. O., and Taylor, S. L. (1997) PolyPhred: automating the detection and genotyping of single nucleotide substitutions using fluorescence-based resequencing. Nucleic Acids Res. 25, 2745–2751.

    Article  PubMed  CAS  Google Scholar 

  56. Wang, J. and Huang, X. (2005) A method for finding single-nucleotide polymorphisms with allele frequencies in sequences of deep coverage. BMC Bioinform. 6, 220.

    Article  Google Scholar 

  57. Weckx, S., Del-Favero, J., Rademakers, R., Claes, L., Cruts, M., De Jonghe, P., Van Broeckhoven, C., and De Rijk, P. (2005) novoSNP, a novel computational tool for sequence variation discovery. Genome Res. 15, 436–442.

    Article  PubMed  CAS  Google Scholar 

  58. Zhang, J., Wheeler, D. A., Yakub, I., Wei, S., Sood, R., Rowe, W., Liu, P. P., Gibbs, R. A., and Buetow, K. H. (2005) SNP detector: A software tool for sensitive and accurate SNP detection. PLoS Comput. Biol. 1, e53.

    Article  PubMed  Google Scholar 

  59. Schnable, P. S., Ware, D., Fulton, R. S., et al. (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326, 1112–1115.

    Article  PubMed  CAS  Google Scholar 

  60. Fu, Y., Emrich, S. J., Guo, L., Wen, T. J., Ashlock, D. A., Aluru, S., and Schnable, P. S. (2005) Quality assessment of maize assembled genomic islands (MAGIs) and large-scale experimental verification of predicted genes. Proc. Natl Acad. Sci. USA 102, 12282–12287.

    Article  PubMed  CAS  Google Scholar 

  61. Whitelaw, C. A., Barbazuk, W. B., Pertea, G., Chan, A. P., Cheung, F., Lee, Y., Zheng, L., van Heeringen, S., Karamycheva, S., Bennetzen, J. L., SanMiguel, P., Lakey, N., Bedell, J., Yuan, Y., Budiman, M. A., Resnick, A., Van Aken, S., Utterback, T., Riedmuller, S., Williams, M., Feldblyum, T., Schubert, K., Beachy, R., Fraser, C. M., and Quackenbush, J. (2003) Enrichment of gene-coding sequences in maize by genome filtration. Science 302, 2118–2120.

    Article  PubMed  Google Scholar 

  62. Emrich, S. J., Li, L., Wen, T. J., Yandeau-Nelson, M. D., Fu, Y., Guo, L., Chou, H. H., Aluru, S., Ashlock, D. A., and Schnable, P. S. (2007) Nearly identical paralogs: implications for maize (Zea mays L.) genome evolution. Genetics 175, 429–439.

    Article  PubMed  CAS  Google Scholar 

  63. Liu, S., Chen, H. D., Makarevitch, I., Shirmer, R., Emrich, S. J., Dietrich, C. R., Barbazuk, W. B., Springer, N. M., and Schnable, P. S. (2009) High-throughput genetic mapping of mutants via quantitative SNP-typing. Genetics 184, 19–26.

    Article  PubMed  Google Scholar 

  64. The International Brachypodium Initiative. (2010) Genome sequence and analysis of the model grass Brachypodium distachyon. Nature 463, 763–768.

    Article  Google Scholar 

  65. Kalyanaraman, A., Aluru, S., Kothari, S., and Brendel, V. (2003) Efficient clustering of large EST data sets on parallel computers. Nucleic Acids Res. 31, 2963–2974.

    Article  PubMed  CAS  Google Scholar 

  66. Kalyanaraman, A., Aluru, S., Kothari, S., and Brendel, V. (2003) Space and time efficient parallel algorithms and software for EST ­clustering. IEEE Transactions on Parallel and Distributed Systems (TPDS) 14, 1209–1221.

    Article  Google Scholar 

  67. Bennetzen, J. L., Schrick, K., Springer, P. S., Brown, W. E., and SanMiguel, P. (1994) Active maize genes are unmodified and flanked by diverse classes of modified, highly repetitive DNA. Genome 37, 565–576.

    Article  PubMed  CAS  Google Scholar 

  68. Lippman, Z., Gendrel, A. V., Black, M., Vaughn, M. W., Dedhia, N., McCombie, W. R., Lavine, K., Mittal, V., May, B., Kasschau, K. D., Carrington, J. C., Doerge, R. W., Colot, V., and Martienssen, R. (2004) Role of transposable elements in heterochromatin and epigenetic control. Nature 430, 471–476.

    Article  PubMed  CAS  Google Scholar 

  69. Rabinowicz, P. D., Schutz, K., Dedhia, N., Yordan, C., Parnell, L. D., Stein, L., McCombie, W. R., and Martienssen, R. A. (1999) Differential methylation of genes and retrotransposons facilitates shotgun sequencing of the maize genome. Nat. Genet. 23, 305–308.

    Article  PubMed  CAS  Google Scholar 

  70. Bedell, J., Budiman, M., Nunberg, A., Citek, R., Robbins, D., et al., (2005) Sorghum genome sequencing by methylation filtration. PloS Biol. 3, e13.

    Article  PubMed  Google Scholar 

  71. Altshuler, D., Pollara, V. J., Cowles, C. R., Van Etten, W. J., Baldwin, J., Linton, L., and Lander, E. S. (2000) An SNP map of the human genome generated by reduced representation shotgun sequencing. Nature 407, 513–516.

    Article  PubMed  CAS  Google Scholar 

  72. Burr, B., Burr, F. A., Thompson, K. H., Albertson, M. C., and Stuber, C. W. (1988) Gene mapping with recombinant inbreds in maize. Genetics 118, 519–526.

    PubMed  CAS  Google Scholar 

  73. Emberton, J., Ma, J., Yuan, Y., SanMiguel, P., and Bennetzen, J. L. (2005) Gene enrichment in maize with hypomethylated partial restriction (HMPR) libraries. Genome Res. 10, 1441–1446.

    Article  Google Scholar 

  74. Britten, R. J., Graham, D. E., and Neufeld, B. R. (1974) Analysis of repeating DNA sequences by reassociation. Methods Enzymol. 29, 363–418.

    Article  PubMed  CAS  Google Scholar 

  75. Peterson, D. G., Wessler, S. R., and Paterson, A. H. (2002) Efficient capture of unique sequences from eukaryotic genomes. Trends Genet. 18, 547–550.

    Article  PubMed  CAS  Google Scholar 

  76. Yuan, Y., SanMiguel, P. J., and Bennetzen, J. L. (2003) High-Cot sequence analysis of the maize genome. Plant J. 34, 249–255.

    Article  PubMed  CAS  Google Scholar 

  77. Barbazuk, W. B., Bedell, J. A., and Rabinowicz, P. D. (2005) Reduced representation sequencing: a success in maize and a promise for other plant genomes. Bioessays 27, 839–848.

    Article  PubMed  CAS  Google Scholar 

  78. Albert, T. J., Molla, M. N., Muzny, D. M., Nazareth, L., Wheeler, D., Song, X., Richmond, T. A., Middle, C. M., Rodesch, M. J., Packard, C. J., Weinstock, G. M., and Gibbs, R. A. (2007) Direct selection of human genomic loci by microarray hybridization. Nat. Methods 4, 903–905.

    Article  PubMed  CAS  Google Scholar 

  79. D’Ascenzo, M., Meacham, C., Kitzman, J., Middle, C., Knight, J., Winer, R., Kukricar, M., Richmond, T., Albert, T. J., Czechanski, A., Donahue, L. R., Affourtit, J., Jeddeloh, J. A., and Reinholdt, L. (2009) Mutation discovery in the mouse using genetically guided array capture and resequencing. Mamm. Genome 20, 424–436.

    Article  PubMed  Google Scholar 

  80. Hodges, E., Xuan, Z., Balija, V., Kramer, M., Molla, M. N., Smith, S. W., Middle, C. M., Rodesch, M. J., Albert, T. J., Hannon, G. J., and McCombie, W. R. (2007) Genome-wide in situ exon capture for selective resequencing. Nat. Genet. 39, 1522–1527.

    Article  PubMed  CAS  Google Scholar 

  81. Okou, D. T., Steinberg, K. M., Middle, C., Cutler, D. J., Albert, T. J., and Zwick, M. E. (2007) Microarray-based genomic selection for high-throughput resequencing. Nat. Methods 4, 907–909.

    Article  PubMed  CAS  Google Scholar 

  82. Fu, Y., Springer, N. M., Gerhardt, D. J., Ying, K., Yeh, C-T., Wu, W., Swanson-Wagner, R., D’Ascenzo, D., Millard, T., Freeberg, L., Aoyama, N., Kitzman, J., Burgess, D., Richmond, T., Albert, T. J., Barbazuk, W. B., Jeddeloh, J. A., and Schnable, P. S. (2010) Repeat subtraction-mediated sequence capture from a complex genome. Plant J. 62, 898–909.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Sanzhen Liu (Iowa State University), Yi Jia (Iowa State University), and Cheng-Ting Eddy Yeh (Iowa State University) for comments on the manuscript; Drs. Haiyan Wu (Iowa State University and China Agriculture University), Ananth Kalyanaraman (Washington State University), Wei Wu (Iowa State University), and An-Ping Hsia (Iowa State University) for sharing Brachypodium 454 EST data prior to publication; Drs. Richard Buggs (University of Florida), Doug Soltis (University of Florida), and Pam Soltis (University of Florida) for sharing Tragopogon data prior to publication; Dr. Nathan Springer (University of Minnesota) and Dr. Jeff Jeddeloh (Roche NimbleGen Inc.) for sharing maize sequence capture data prior to publication; Dr. Scott Emrich (University of Notre Dame) for stimulating discussions; and Marianne Smith (Iowa State University) and Lisa Coffey (Iowa State University) for technical assistance. This project was supported by competitive grants from the National Science Foundation Plant Genome Program to P.S.S. (DBI-0321711, DBI-0321595, and DBI-0919254) and W.B.B. (DBI-0501758 and DBI-0919254), by the National Research Initiative (NRI) Plant Genome Program of the USDA Cooperative State Research, Education and Extension Service (CSREES) to W.B.B., and by Hatch Act and State of Iowa funds to P.S.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Brad Barbazuk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Barbazuk, W.B., Schnable, P.S. (2011). SNP Discovery by Transcriptome Pyrosequencing. In: Lu, C., Browse, J., Wallis, J. (eds) cDNA Libraries. Methods in Molecular Biology, vol 729. Humana Press. https://doi.org/10.1007/978-1-61779-065-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-065-2_15

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-064-5

  • Online ISBN: 978-1-61779-065-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics