Skip to main content
Log in

Genome-based prediction of test cross performance in two subsequent breeding cycles

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Genome-based prediction of genetic values is expected to overcome shortcomings that limit the application of QTL mapping and marker-assisted selection in plant breeding. Our goal was to study the genome-based prediction of test cross performance with genetic effects that were estimated using genotypes from the preceding breeding cycle. In particular, our objectives were to employ a ridge regression approach that approximates best linear unbiased prediction of genetic effects, compare cross validation with validation using genetic material of the subsequent breeding cycle, and investigate the prospects of genome-based prediction in sugar beet breeding. We focused on the traits sugar content and standard molasses loss (ML) and used a set of 310 sugar beet lines to estimate genetic effects at 384 SNP markers. In cross validation, correlations >0.8 between observed and predicted test cross performance were observed for both traits. However, in validation with 56 lines from the next breeding cycle, a correlation of 0.8 could only be observed for sugar content, for standard ML the correlation reduced to 0.4. We found that ridge regression based on preliminary estimates of the heritability provided a very good approximation of best linear unbiased prediction and was not accompanied with a loss in prediction accuracy. We conclude that prediction accuracy assessed with cross validation within one cycle of a breeding program can not be used as an indicator for the accuracy of predicting lines of the next cycle. Prediction of lines of the next cycle seems promising for traits with high heritabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Albrecht T, Wimmer V, Auinger HJ, Erbe M, Knaak C, Ouzunova M, Simianer H, Schön CC (2011) Genome-based prediction of testcross values in maize. Theor Appl Genet 123:339–350

    Article  PubMed  Google Scholar 

  • Bernardo R (2009) Genomewide selection for rapid introgression of exotic germplasm in maize. Crop Sci 49:419–425

    Article  Google Scholar 

  • Bernardo R, Yu J (2007) Prospects for genomewide selection for quantitative traits in maize. Crop Sci 47:1082–1090

    Article  Google Scholar 

  • Crossa J, de los Campos G, Pérez P, Gianola D, Burgueño J, Araus JL, Makumbi D, Singh RP, Dreisigacker S, Yan J, Arief V, Bänzinger M, Braun HJ (2010) Prediction of genetic values of quantitative traits in plant breeding using pedigree and molecular markers. Genetics 186:713–724

    Article  PubMed  CAS  Google Scholar 

  • Daetwyler HD, Pong-Wong R, Villanueva B, Wooliams JA (2010) The impact of genetic architecture on genome-wide evaluation methods. Genetics 185:1021–1031

    Article  PubMed  CAS  Google Scholar 

  • Gianola D, van Kaam JBCHM (2008) Reproducing kernel hilbert spaces regression methods for genomic assisted prediction of quantitative traits. Genetics 178:2289–2303

    Article  PubMed  Google Scholar 

  • Gianola D, Fernando RL, Stella A (2006) Genomic-assisted prediction of genetic value with semiparametric procedures. Genetics 173:1761–1776

    Article  PubMed  CAS  Google Scholar 

  • Goddard ME, Hayes BJ (2007) Genomic selection. J Anim Breed Genet 124:323–330

    Article  PubMed  CAS  Google Scholar 

  • Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829

    PubMed  CAS  Google Scholar 

  • Park T, Casella G (2008) The Bayesian Lasso. J Am Stat Assoc 103:681–686

    Article  CAS  Google Scholar 

  • Piepho HP (2009) Ridge regression and extensions for genomewide selection in maize. Crop Sci 49:1165–1176

    Article  Google Scholar 

  • Piepho HP, Möhring J (2007) Computing heritability and selection response from unbalanced plant breeding trials. Genetics 177:1881–1888

    Article  PubMed  Google Scholar 

  • Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes in C: the art of scientific computing, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Schneider K, Schäfer-Pregl R, Borchardt DC, Salamini F (2002) Mapping QTLs for sucrose content, yield and quality in a sugar beet population fingerprinted by EST-related markers. Theor Appl Genet 104:1107–1113

    Article  PubMed  CAS  Google Scholar 

  • Searle SR (1987) Linear models for unbalanced data. Wiley, New York

    Google Scholar 

  • Searle SR, Casella G, McCulloch CE (1992) Variance components. Wiley, New York

    Book  Google Scholar 

  • Shepherd RK, Meuwissen THE, Woolliams JA (2010) Genomic selection and complex trait prediction using a fast EM algorithm applied to genomewide-markers. BMC Bioinformatics 11:529

    Article  PubMed  Google Scholar 

  • Wong CK, Bernardo R (2008) Genome wide selection in oil palm: increasing selection gain per unit time and cost with small populations. Theor Appl Genet 116:815–824

    Article  PubMed  CAS  Google Scholar 

  • Xu S (2003) Estimating polygenic effects using markers of the entire genome. Genetics 163:789–801

    PubMed  CAS  Google Scholar 

  • Zhong S, Dekkers JCM, Fernando RL, Jannink JL (2009) Factors affecting accuracy from genomic selection in populations derived from multiple inbred lines: a barley case study. Genetics 182:355–364

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Gregory Mahone for proof reading the manuscript. We thank two anonymous reviewers for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Frisch.

Additional information

Communicated by M. Sillanpää.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hofheinz, N., Borchardt, D., Weissleder, K. et al. Genome-based prediction of test cross performance in two subsequent breeding cycles. Theor Appl Genet 125, 1639–1645 (2012). https://doi.org/10.1007/s00122-012-1940-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-012-1940-5

Keywords

Navigation