Skip to main content

Advertisement

Log in

Recent progress in carbon/lithium metal composite anode for safe lithium metal batteries

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Owing to their very high theoretical capacity, lithium (Li) metal anodes regain widespread attentions for their promising applications for next-generation high-energy-density Li batteries (e.g., lithium–sulfur batteries, lithium–oxygen batteries, solid-state lithium metal batteries). However, the inherent bottleneck of Li metal anodes, especially the growth of Li dendrites and the related safety concerns, should be well addressed. Owing to their featured micro-/nano-porous structures and intriguing physical properties, nanocarbon materials have been applied as host materials for Li metal anodes. This review summarizes the recent progress in the development of porous nanocarbon materials for safe Li metal anodes. The perspectives regarding the challenges and future development of employing micro-/nano-porous carbon materials in Li metal anodes are also included.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Goodenough JB, Park KS. The Li-ion rechargeable battery: a perspective. J Am Chem Soc. 2013;135(4):1167.

    Article  CAS  Google Scholar 

  2. Choi JW, Aurbach D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat Rev Mater. 2016;1:16013.

    Article  CAS  Google Scholar 

  3. Shen X, Liu H, Cheng XB, Yan C, Huang JQ. Beyond lithium ion batteries: higher energy density battery systems based on lithium metal anodes. Energy Storage Mater. 2018;12:161.

    Article  Google Scholar 

  4. Zhang X, Cheng X, Zhang Q. Nanostructured energy materials for electrochemical energy conversion and storage: a review. J Energy Chem. 2016;25(6):967.

    Article  Google Scholar 

  5. Peng HJ, Huang JQ, Zhang Q. A review of flexible lithium–sulfur and analogous alkali metal-chalcogen rechargeable batteries. Chem Soc Rev. 2017;46(17):5237.

    Article  CAS  Google Scholar 

  6. Zeng LC, Li WH, Jiang Y, Yu Y. Recent progress in Li–S and Li–Se batteries. Rare Met. 2017;36(5):339.

    Article  CAS  Google Scholar 

  7. Tu YC, Deng DH, Bao XH. Nanocarbons and their hybrids as catalysts for non-aqueous lithium–oxygen batteries. J Energy Chem. 2016;25(6):957.

    Article  Google Scholar 

  8. Li LY, Chen CG, Yu AS. New electrochemical energy storage systems based on metallic lithium anode-the research status, problems and challenges of lithium–sulfur, lithium–oxygen and all solid state batteries. Sci China Chem. 2017;60(11):1402.

    Article  CAS  Google Scholar 

  9. Xu W, Wang J, Ding F, Chen X, Nasybulin E, Zhang Y, Zhang J-G. Lithium metal anodes for rechargeable batteries. Energy Environ Sci. 2014;7(2):513.

    Article  CAS  Google Scholar 

  10. Cheng XB, Zhao MQ, Chen C, Pentecost A, Maleski K, Mathis T, Zhang XQ, Zhang Q, Jiang J, Gogotsi Y. Nanodiamonds suppress the growth of lithium dendrites. Nat Commun. 2017;8(1):336.

    Article  CAS  Google Scholar 

  11. Lin D, Liu Y, Cui Y. Reviving the lithium metal anode for high-energy batteries. Nat Nanotechnol. 2017;12(3):194.

    Article  CAS  Google Scholar 

  12. Yang C, Fu K, Zhang Y, Hitz E, Hu L. Protected lithium-metal anodes in batteries: from liquid to solid. Adv Mater. 2017;29:1701169.

    Article  CAS  Google Scholar 

  13. Guo YP, Li HQ, Zhai TY. Reviving lithium-metal anodes for next-generation high-energy batteries. Adv Mater. 2017;29(29):1700007.

    Article  CAS  Google Scholar 

  14. Lin D, Liu Y, Pei A, Cui Y. Nanoscale perspective: materials designs and understandings in lithium metal anodes. Nano Res. 2017;10(12):4003.

    Article  CAS  Google Scholar 

  15. Cheng XB, Yan C, Huang JQ, Li P, Zhu L, Zhao L, Zhang Y, Zhu W, Yang ST, Zhang Q. The gap between long lifespan Li–S coin and pouch cells: the importance of lithium metal anode protection. Energy Storage Mater. 2017;6:18.

    Article  Google Scholar 

  16. Lang J, Qi L, Luo Y, Wu H. High performance lithium metal anode: progress and prospects. Energy Storage Mater. 2017;7:115.

    Article  Google Scholar 

  17. Tao T, Lu S, Fan Y, Lei W, Huang S, Chen Y. Anode improvement in rechargeable lithium–sulfur batteries. Adv Mater. 2017;29(48):1700542.

    Article  CAS  Google Scholar 

  18. Zhang G, Zhang ZW, Peng HJ, Huang JQ, Zhang Q. A toolbox for lithium–sulfur battery research: methods and protocols. Small Methods. 2017;1:1700134.

    Article  CAS  Google Scholar 

  19. Cheng XB, Huang JQ, Zhang Q. Li metal anode in working lithium–sulfur batteries. J Electrochem Soc. 2018;165(1):A6058.

    Article  CAS  Google Scholar 

  20. Liu S, Wang X, Xie D, Xia X, Gu C, Wu J, Tu J. Recent development in lithium metal anodes of liquid-state rechargeable batteries. J Alloys Compd. 2018;730:135.

    Article  CAS  Google Scholar 

  21. Albertus P, Babinec S, Litzelman S, Newman A. Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries. Nat Energy. 2018;3:16.

    Article  CAS  Google Scholar 

  22. Xu X, Wang S, Wang H, Hu C, Jin Y, Liu J, Yan H. Recent progresses in the suppression method based on the growth mechanism of lithium dendrite. J Energy Chem. 2018;27(2):513.

    Article  Google Scholar 

  23. Cheng XB, Zhang R, Zhao CZ, Zhang Q. Toward safe lithium metal anode in rechargeable batteries: a review. Chem Rev. 2017;117(15):10403.

    Article  CAS  Google Scholar 

  24. Chen X, Shen X, Li B, Peng HJ, Cheng XB, Li BQ, Zhang XQ, Huang JQ, Zhang Q. Ion–solvent complexes promote gas evolution from electrolytes on a sodium metal anode. Angew Chem Int Ed. 2018;57:734.

    Article  CAS  Google Scholar 

  25. Wang D, Zhang W, Zheng WT, Cui XQ, Rojo T, Zhang Q. Towards high-safe lithium metal anodes: suppressing lithium dendrites via tuning surface energy. Adv Sci. 2017;4(1):1600168.

    Article  CAS  Google Scholar 

  26. Liu QQ, Du CY, Shen B, Zuo PJ, Cheng XQ, Ma YL, Yin GP, Gao YZ. Understanding undesirable anode lithium plating issues in lithium-ion batteries. RSC Adv. 2016;6(91):88683.

    Article  CAS  Google Scholar 

  27. Li Y, Li Y, Pei A, Yan K, Sun Y, Wu CL, Joubert LM, Chin R, Koh AL, Yu Y. Atomic structure of sensitive battery materials and interfaces revealed by cryo–electron microscopy. Science. 2017;358(6362):506.

    Article  CAS  Google Scholar 

  28. Cheng XB, Zhang R, Zhao CZ, Wei F, Zhang JG, Zhang Q. A review of solid electrolyte interphases on lithium metal anode. Adv Sci. 2016;3(3):1500213.

    Article  CAS  Google Scholar 

  29. Wang X, Zhang M, Alvarado J, Wang S, Sina M, Lu B, Bouwer J, Xu W, Xiao J, Zhang JG. New insights on the structure of electrochemically deposited lithium metal and its solid electrolyte interphases via cryogenic tem. Nano Lett. 2017;17(12):7606.

    Article  CAS  Google Scholar 

  30. Zhang XQ, Cheng XB, Zhang Q. Advances in interfaces between Li metal anode and electrolyte. Adv Mater Interfaces. 2017;5:1701097.

    Article  CAS  Google Scholar 

  31. Yu X, Manthiram A. Electrode–electrolyte interfaces in lithium–sulfur batteries with liquid or inorganic solid electrolytes. Acc Chem Res. 2017;50(11):2653.

    Article  CAS  Google Scholar 

  32. Liang Z, Zou Q, Wang Y, Lu YC. Recent progress in applying in situ/operando characterization techniques to probe the solid/liquid/gas interfaces of Li–O2 batteries. Small Methods. 2017;1(7):1700150.

    Article  CAS  Google Scholar 

  33. Zhang XQ, Cheng XB, Chen X, Yan C, Zhang Q. Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries. Adv Funct Mater. 2017;27(10):1605989.

    Article  CAS  Google Scholar 

  34. Li W, Yao H, Yan K, Zheng G, Liang Z, Chiang YM, Cui Y. The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth. Nat Commun. 2015;6:7436.

    Article  CAS  Google Scholar 

  35. Ding F, Xu W, Graff GL, Zhang J, Sushko ML, Chen X, Shao Y, Engelhard MH, Nie Z, Xiao J. Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J Am Chem Soc. 2013;135(11):4450.

    Article  CAS  Google Scholar 

  36. Shim J, Kim HJ, Kim BG, Kim YS, Kim DG, Lee JC. 2D boron nitride nanoflakes as a multifunctional additive in gel polymer electrolyte for safe, long cycle life and high rate lithium metal batteries. Energy Environ Sci. 2017;10:1911.

    Article  CAS  Google Scholar 

  37. Cui J, Zhan TG, Zhang KD, Chen D. The recent advances in constructing designed electrode in lithium metal batteries. Chin Chem Lett. 2017;28(12):2171.

    Article  CAS  Google Scholar 

  38. Liu Y, Lin D, Yuen PY, Liu K, Xie J, Dauskardt RH, Cui Y. An artificial solid electrolyte interphase with high Li-ion conductivity, mechanical strength, and flexibility for stable lithium metal anodes. Adv Mater. 2017;29(10):1605531.

    Article  CAS  Google Scholar 

  39. Li NW, Yin YX, Yang CP, Guo YG. An artificial solid electrolyte interphase layer for stable lithium metal anodes. Adv Mater. 2016;28(9):1853.

    Article  CAS  Google Scholar 

  40. Gao Y, Zhao Y, Li YC, Huang Q, Mallouk TE, Wang DH. Interfacial chemistry regulation via a skin-grafting strategy enables high-performance lithium-metal batteries. J Am Chem Soc. 2017;139(43):15288.

    Article  CAS  Google Scholar 

  41. Raji A-RO, Villegas Salvatierra R, Kim ND, Fan X, Li Y, Silva GA, Sha J, Tour JM. Lithium batteries with nearly maximum metal storage. ACS Nano. 2017;11(6):6362.

    Article  CAS  Google Scholar 

  42. Xu R, Zhang XQ, Cheng XB, Peng HJ, Zhao CZ, Yan C, Huang JQ. Artificial soft–rigid protective layer for dendrite-free lithium metal anode. Adv Funct Mater. 2018;28:1705838.

    Article  CAS  Google Scholar 

  43. Zhu B, Jin Y, Hu X, Zheng Q, Zhang S, Wang Q, Zhu J. Poly (dimethylsiloxane) thin film as a stable interfacial layer for high-performance lithium-metal battery anodes. Adv Mater. 2017;29(2):1603755.

    Article  CAS  Google Scholar 

  44. Liu W, Li W, Zhuo D, Zheng G, Lu Z, Liu K, Cui Y. Core–shell nanoparticle coating as an interfacial layer for dendrite-free lithium metal anodes. ACS Cent Sci. 2017;3(2):135.

    Article  CAS  Google Scholar 

  45. Huang S, Tang L, Najafabadi HS, Chen S, Ren Z. A highly flexible semi-tubular carbon film for stable lithium metal anodes in high-performance batteries. Nano Energy. 2017;38:504.

    Article  CAS  Google Scholar 

  46. Wang L, Zhang L, Wang Q, Li W, Wu B, Jia W, Wang Y, Li J, Li H. Long lifespan lithium metal anodes enabled by Al2O3 sputter coating. Energy Storage Mater. 2018;10:16.

    Article  CAS  Google Scholar 

  47. Lu Y, Tikekar M, Mohanty R, Hendrickson K, Ma L, Archer LA. Stable cycling of lithium metal batteries using high transference number electrolytes. Adv Energy Mater. 2015;5(9):1402073.

    Article  CAS  Google Scholar 

  48. Luo W, Gong Y, Zhu Y, Fu KK, Dai J, Lacey SD, Wang C, Liu B, Han X, Mo Y. Transition from superlithiophobicity to superlithiophilicity of garnet solid-state electrolyte. J Am Chem Soc. 2016;138(37):12258.

    Article  CAS  Google Scholar 

  49. Zhao CZ, Zhang XQ, Cheng XB, Zhang R, Xu R, Chen PY, Peng HJ, Huang JQ, Zhang Q. An anion-immobilized composite electrolyte for dendrite-free lithium metal anodes. Proc Natl Acad Sci USA. 2017;114(42):11069.

    Article  CAS  Google Scholar 

  50. Zeng XX, Yin YX, Li NW, Du WC, Guo YG, Wan LJ. Reshaping lithium plating/stripping behavior via bifunctional polymer electrolyte for room-temperature solid Li metal batteries. J Am Chem Soc. 2016;138(49):15825.

    Article  CAS  Google Scholar 

  51. Yao X, Liu D, Wang C, Long P, Peng G, Hu YS, Li H, Chen L, Xu X. High-energy all-solid-state lithium batteries with ultralong cycle life. Nano Lett. 2016;16(11):7148.

    Article  CAS  Google Scholar 

  52. Sun YZ, Huang JQ, Zhao CZ, Zhang Q. A review of solid electrolytes for safe lithium–sulfur batteries. Sci China Chem. 2017;60(12):1508.

    Article  CAS  Google Scholar 

  53. Zeng XX, Yin YX, Shi Y, Zhang XD, Yao HR, Wen R, Wu XW, Guo YG. Lithiation-derived repellent toward lithium anode safeguard in quasi-solid batteries. Chem. 2018;4(2):298.

    Article  CAS  Google Scholar 

  54. Duan H, Yin YX, Zeng XX, Li JY, Shi JL, Shi Y, Wen R, Guo YG, Wan LJ. In-situ plasticized polymer electrolyte with double-network for flexible solid-state lithium-metal batteries. Energy Storage Mater. 2018;10:85.

    Article  Google Scholar 

  55. Duan H, Yin YX, Shi Y, Wang PF, Zhang XD, Yang CP, Shi JL, Wen R, Guo YG, Wan LJ. Dendrite-free Li-metal battery enabled by a thin asymmetric solid electrolyte with engineered layers. J Am Chem Soc. 2017;140(1):82.

    Article  CAS  Google Scholar 

  56. Suo L, Hu YS, Li H, Armand M, Chen L. A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat Commun. 2013;4:1481.

    Article  CAS  Google Scholar 

  57. Qian J, Henderson WA, Xu W, Bhattacharya P, Engelhard M, Borodin O, Zhang JG. High rate and stable cycling of lithium metal anode. Nat Commun. 2015;6:6362.

    Article  CAS  Google Scholar 

  58. Liu Y, Lin D, Liang Z, Zhao J, Yan K, Cui Y. Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode. Nat Commun. 2016;7:10992.

    Article  CAS  Google Scholar 

  59. Zhang Y, Luo W, Wang C, Li Y, Chen C, Song J, Dai J, Hitz EM, Xu S, Yang C. High-capacity, low-tortuosity, and channel-guided lithium metal anode. Proc Natl Acad Sci USA. 2017;114(14):3584.

    Article  CAS  Google Scholar 

  60. Zhang C, Huang Z, Lv W, Yun Q, Kang F, Yang QH. Carbon enables the practical use of lithium metal in a battery. Carbon. 2017;123:744.

    Article  CAS  Google Scholar 

  61. Yan C, Cheng XB, Zhao CZ, Huang JQ, Yang ST, Zhang Q. Lithium metal protection through in situ formed solid electrolyte interphase in lithium–sulfur batteries: the role of polysulfides on lithium anode. J Power Sources. 2016;327:212.

    Article  CAS  Google Scholar 

  62. Zhao CZ, Cheng XB, Zhang R, Peng HJ, Huang JQ, Ran R, Huang ZH, Wei F, Zhang Q. Li2S5-based ternary-salt electrolyte for robust lithium metal anode. Energy Storage Mater. 2016;3:77.

    Article  Google Scholar 

  63. Zhang R, Li NW, Cheng XB, Yin YX, Zhang Q, Guo YG. Advanced micro/nanostructures for lithium metal anodes. Adv Sci. 2017;4(3):1600445.

    Article  CAS  Google Scholar 

  64. Liu L, Yin YX, Li JY, Wang SH, Guo YG, Wan LJ. Uniform lithium nucleation/growth induced by lightweight nitrogen-doped graphitic carbon foams for high-performance lithium metal anodes. Adv Mater. 2018;30:1706216.

    Article  CAS  Google Scholar 

  65. Deng W, Zhou X, Fang Q, Liu Z. Microscale lithium metal stored inside cellular graphene scaffold toward advanced metallic lithium anodes. Adv Energy Mater. 2018;8:1703152.

    Article  CAS  Google Scholar 

  66. Yan K, Sun B, Munroe P, Wang G. Three-dimensional pie-like current collectors for dendrite-free lithium metal anodes. Energy Storage Mater. 2018;11:127.

    Article  Google Scholar 

  67. Ye H, Xin S, Yin YX, Li JY, Guo YG, Wan LJ. Stable Li plating/stripping electrochemistry realized by a hybrid Li reservoir in spherical carbon granules with 3D conducting skeletons. J Am Chem Soc. 2017;139(16):5916.

    Article  CAS  Google Scholar 

  68. Xu Y, Menon AS, Harks PPR, Hermes DC, Haverkate LA, Unnikrishnan S, Mulder FM. Honeycomb-like porous 3D nickel electrodeposition for stable Li and Na metal anodes. Energy Storage Mater. 2018;12:69.

    Article  Google Scholar 

  69. Wang SH, Yin YX, Zuo TT, Dong W, Li JY, Shi JL, Zhang CH, Li NW, Li CJ, Guo YG. Stable Li metal anodes via regulating lithium plating/stripping in vertically aligned microchannels. Adv Mater. 2017;29(40):1703729.

    Article  CAS  Google Scholar 

  70. Yan K, Lee H-W, Gao T, Zheng G, Yao H, Wang H, Lu Z, Zhou Y, Liang Z, Liu Z. Ultrathin two-dimensional atomic crystals as stable interfacial layer for improvement of lithium metal anode. Nano Lett. 2014;14(10):6016.

    Article  CAS  Google Scholar 

  71. Xie J, Liao L, Gong Y, Li Y, Shi F, Pei A, Sun J, Zhang R, Kong B, Subbaraman R. Stitching h-BN by atomic layer deposition of LiF as a stable interface for lithium metal anode. Sci Adv. 2017;3(11):eaao3170.

    Article  Google Scholar 

  72. Cheng XB, Hou TZ, Zhang R, Peng HJ, Zhao CZ, Huang JQ, Zhang Q. Dendrite-free lithium deposition induced by uniformly distributed lithium ions for efficient lithium metal batteries. Adv Mater. 2016;28(15):2888.

    Article  CAS  Google Scholar 

  73. Liang Z, Lin D, Zhao J, Lu Z, Liu Y, Liu C, Lu Y, Wang H, Yan K, Tao X, Cui Y. Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating. Proc Natl Acad Sci USA. 2016;113(11):2862.

    Article  CAS  Google Scholar 

  74. Ye H, Xin S, Yin YX, Guo YG. Advanced porous carbon materials for high-efficient lithium metal anodes. Adv Energy Mater. 2017;7:1700530.

    Article  CAS  Google Scholar 

  75. Yang CP, Yao YG, He SM, Xie H, Hitz E, Hu LB. Ultrafine silver nanoparticles for seeded lithium deposition toward stable lithium metal anode. Adv Mater. 2017;29(38):1702714.

    Article  CAS  Google Scholar 

  76. Matsuda S, Kubo Y, Uosaki K, Nakanishi S. Lithium-metal deposition/dissolution within internal space of CNT 3D matrix results in prolonged cycle of lithium-metal negative electrode. Carbon. 2017;119:119.

    Article  CAS  Google Scholar 

  77. Lu Z, Zhang Z, Chen X, Chen Q, Ren F, Wang M, Wu S, Peng Z, Wang D, Ye J. Improving Li anode performance by a porous 3D carbon paper host with plasma assisted sponge carbon coating. Energy Storage Mater. 2017;11:47.

    Article  Google Scholar 

  78. Zhang R, Chen X, Shen X, Zhang XQ, Chen XR, Cheng XB, Yan C, Zhao CZ, Zhang Q. Coralloid carbon fibers based composite lithium anode for robust lithium metal batteries. Joule. 2018. https://doi.org/10.1016/j.joule.2018.02.001.

    Article  Google Scholar 

  79. Zuo TT, Wu XW, Yang CP, Yin YX, Ye H, Li NW, Guo YG. Graphitized carbon fibers as multifunctional 3D current collectors for high areal capacity Li anodes. Adv Mater. 2017;29:1700389.

    Article  CAS  Google Scholar 

  80. Liu L, Yin YX, Li JY, Li NW, Zeng XX, Ye H, Guo YG, Wan LJ. Free-standing hollow carbon fibers as high-capacity containers for stable lithium metal anodes. Joule. 2017;1(3):563.

    Article  CAS  Google Scholar 

  81. Jin S, Sun ZW, Guo YL, Qi ZK, Guo CK, Kong XH, Zhu YW, Ji HX. High areal capacity and lithium utilization in anodes made of covalently connected graphite microtubes. Adv Mater. 2017;29(38):1700783.

    Article  CAS  Google Scholar 

  82. Mukherjee R, Thomas AV, Datta D, Singh E, Li J, Eksik O, Shenoy VB, Koratkar N. Defect-induced plating of lithium metal within porous graphene networks. Nat Commun. 2014;5:3710.

    Article  CAS  Google Scholar 

  83. Zhang R, Chen XR, Chen X, Cheng XB, Zhang XQ, Yan C, Zhang Q. Lithiophilic sites in doped graphene guide uniform lithium nucleation for dendrite-free lithium metal anodes. Angew Chem Int Ed. 2017;56:7764.

    Article  CAS  Google Scholar 

  84. Lin D, Liu Y, Liang Z, Lee HW, Sun J, Wang H, Yan K, Xie J, Cui Y. Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. Nat Nanotechnol. 2016;11(7):626.

    Article  CAS  Google Scholar 

  85. Zhang R, Cheng XB, Zhao CZ, Peng HJ, Shi JL, Huang JQ, Wang J, Wei F, Zhang Q. Conductive nanostructured scaffolds render low local current density to inhibit lithium dendrite growth. Adv Mater. 2016;28(11):2155.

    Article  CAS  Google Scholar 

  86. Wang A, Tang S, Kong D, Liu S, Chiou K, Zhi L, Huang J, Xia YY, Luo J. Bending-tolerant anodes for lithium-metal batteries. Adv Mater. 2018;30(1):1703891.

    Article  CAS  Google Scholar 

  87. Zhao J, Zhou G, Yan K, Xie J, Li Y, Liao L, Jin Y, Liu K, Hsu PC, Wang J, Cheng HM, Cui Y. Air-stable and freestanding lithium alloy/graphene foil as an alternative to lithium metal anodes. Nat Nanotechnol. 2017;12:993.

    Article  CAS  Google Scholar 

  88. Liu S, Wang A, Li Q, Wu J, Chiou K, Huang J, Luo J. Crumpled graphene balls stabilized dendrite-free lithium metal anodes. Joule. 2018;2(1):184.

    Article  CAS  Google Scholar 

  89. Lochala JA, Zhang H, Wang Y, Okolo O, Li X, Xiao J. Practical challenges in employing graphene for lithium-ion batteries and beyond. Small Methods. 2017;1(6):1700099.

    Article  CAS  Google Scholar 

  90. Zhang Y, Liu S, Wang X, Zhong Y, Xia X, Wu J, Tu J. Composite Li metal anode with vertical graphene host for high performance Li–S batteries. J Power Sources. 2018;374:205.

    Article  CAS  Google Scholar 

  91. Peng HJ, Huang JQ, Cheng XB, Zhang Q. Review on high-loading and high-energy lithium–sulfur batteries. Adv Energy Mater. 2017;7(24):1700260.

    Article  CAS  Google Scholar 

  92. Chen XR, Zhang R, Cheng XB, Zhang Q. Dendrite-free carbon/lithium metal anodes for use in flexible lithium metal batteries. New Carbon Mater. 2017;32(6):600.

    Article  Google Scholar 

  93. Zhang XQ, Chen X, Xu R, Cheng XB, Peng HJ, Zhang R, Huang JQ, Zhang Q. Columnar lithium metal anodes. Angew Chem Int Ed. 2017;56(45):14207.

    Article  CAS  Google Scholar 

  94. Wang T, Villegas Salvatierra R, Jalilov AS, Tian J, Tour JM. Ultrafast charging high capacity asphalt–lithium metal batteries. ACS Nano. 2017;11(11):10761.

    Article  CAS  Google Scholar 

  95. Cheng XB, Peng HJ, Huang JQ, Zhang R, Zhao CZ, Zhang Q. Dual-phase lithium metal anode containing a polysulfide-induced solid electrolyte interphase and nanostructured graphene framework for lithium–sulfur batteries. ACS Nano. 2015;9(6):6373.

    Article  CAS  Google Scholar 

  96. Lee YG, Ryu S, Sugimoto T, Yu T, Chang WS, Yang Y, Jung C, Woo J, Kang SG, Han HN. Dendrite-free lithium deposition for lithium metal anodes with interconnected microsphere protection. Chem Mater. 2017;29(14):5906.

    Article  CAS  Google Scholar 

  97. Zheng G, Lee SW, Liang Z, Lee HW, Yan K, Yao H, Wang H, Li W, Chu S, Cui Y. Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat Nanotechnol. 2014;9(8):618.

    Article  CAS  Google Scholar 

  98. Sun YM, Zheng GY, Seh ZW, Liu N, Wang S, Sun J, Lee HR, Cui Y. Graphite-encapsulated Li-metal hybrid anodes for high-capacity Li batteries. Chem. 2016;1(2):287.

    Article  CAS  Google Scholar 

  99. Jin CB, Sheng OW, Luo JM, Yuan HD, Fang C, Zhang WK, Huang H, Gan YP, Xia Y, Liang C, Zhang J, Tao XY. 3D lithium metal embedded within lithiophilic porous matrix for stable lithium metal batteries. Nano Energy. 2017;37:177.

    Article  CAS  Google Scholar 

  100. Chi SS, Liu YC, Song WL, Fan LZ, Zhang Q. Prestoring lithium into stable 3D nickel foam host as dendrite-free lithium metal anode. Adv Funct Mater. 2017;27(24):1700348.

    Article  CAS  Google Scholar 

  101. Yun QB, He YB, Lv W, Zhao Y, Li BH, Kang FY, Yang QH. Chemical dealloying derived 3D porous current collector for Li metal anodes. Adv Mater. 2016;28(32):6932.

    Article  CAS  Google Scholar 

  102. Zhang Y, Liu BY, Hitz E, Luo W, Yao YG, Li YJ, Dai JQ, Chen CJ, Wang YB, Yang CP, Li HB, Hu LB. A carbon-based 3D current collector with surface protection for li metal anode. Nano Res. 2017;10(4):1356.

    Article  CAS  Google Scholar 

  103. Liu S, Xia X, Zhong Y, Deng S, Yao Z, Zhang L, Cheng XB, Wang X, Zhang Q, Tu J. 3D TiC/C core/shell nanowire skeleton for dendrite-free and long-life lithium metal anode. Adv Energy Mater. 2018;8:1702322.

    Article  CAS  Google Scholar 

  104. Cheng XB, Peng HJ, Huang JQ, Wei F, Zhang Q. Dendrite-free nanostructured anode: entrapment of lithium in a 3D fibrous matrix for ultra-stable lithium–sulfur batteries. Small. 2014;10(21):4257.

    Article  CAS  Google Scholar 

  105. Xie KY, Wei WF, Yuan K, Lu W, Guo M, Li ZH, Song Q, Liu XR, Wang JG, Shen C. Toward dendrite-free lithium deposition via structural and interfacial synergistic effects of 3D graphene@Ni scaffold. ACS Appl Mater Interfaces. 2016;8(39):26091.

    Article  CAS  Google Scholar 

  106. Kong L, Yan C, Huang JQ. A review of nanocarbon current collectors used in electrochemical energy storage devices. New Carbon Mater. 2017;32(6):481.

    Google Scholar 

  107. Wang L, Zhu X, Guan Y, Zhang J, Ai F, Zhang W, Xiang Y, Vijayan S, Li G, Huang Y, Cao G, Yang Y, Zhang H. ZnO/carbon framework derived from metal-organic frameworks as a stable host for lithium metal anodes. Energy Storage Mater. 2018;11:191.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program (Nos. 2016YFA0202500, 2015CB932500) and the National Natural Scientific Foundation of China (Nos. 21676160, 21561130151). We thank Xin-Bing Cheng, Jia-Qi Huang, Chong Yan, and Xiao-Ru Chen for helpful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, T., Liu, H., Shi, P. et al. Recent progress in carbon/lithium metal composite anode for safe lithium metal batteries. Rare Met. 37, 449–458 (2018). https://doi.org/10.1007/s12598-018-1049-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-018-1049-3

Keywords

Navigation