Skip to main content
Log in

New electrochemical energy storage systems based on metallic lithium anode—the research status, problems and challenges of lithium-sulfur, lithium-oxygen and all solid state batteries

  • Reviews
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Li-ion batteries have played a key role in the portable electronics and electrification of transport in modern society. Nevertheless, the limited highest energy density of Li-ion batteries is not sufficient for the long-term needs of society. Since lithium is the lightest metal among all metallic elements and possesses the lowest redox potential of −3.04 V vs. standard hydrogen electrode, it delivers the highest theoretical specific capacity of 3860 mA h g−1 and a high working voltage of full batteries which causes a great interest in electrochemical energy storage systems. Lithium-sulfur, lithium-oxygen and corresponding all solid state batteries based on metal lithium anode have received widely attention owing to their high energy densities. However, the problems in the cathode, electrolyte and anode of these three systems restrict their practical application. In this review, the research status and problems of these three energy storage systems are summarized and the challenges and future perspectives are also outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nagaura T, Tozawa K. Prog Batteries Sol Cells, 1990, 9: 209–217

    CAS  Google Scholar 

  2. Tarascon JM, Armand M. Nature, 2001, 414: 359–367

    Article  CAS  Google Scholar 

  3. van Schalkwijk W, Scrosati B. Advances in Lithium-ion Batteries. New York: Kluwer Academic/Plenum, 2002

    Book  Google Scholar 

  4. Tarascon JM, Grugeon S, Laruelle S, Larcher D, Poizot P, Nazri GA, Pistoia G. Lithium Batteries Science and Technology. Boston: Kluwer Academic/Plenum, 2004

    Google Scholar 

  5. Zhang J, Guo X, Yao S, Qiu X. Sci China Chem, 2016, 59: 1479–1485

    Article  CAS  Google Scholar 

  6. Li D, Zhang Y, Li L, Hu F, Yang H, Wang C, Wang Q. Sci China Chem, 2016, 59: 122–127

    Article  CAS  Google Scholar 

  7. Bruce PG. Solid State Ion, 2008, 179: 752–760

    Article  CAS  Google Scholar 

  8. Bruce PG, Scrosati B, Tarascon JM. Angew Chem Int Ed, 2008, 47: 2930–2946

    Article  CAS  Google Scholar 

  9. Bruce PG, Freunberger SA, Hardwick LJ, Tarascon JM. Nat Mater, 2011, 11: 19–29

    Article  CAS  Google Scholar 

  10. Skotheim TA. High capacity cathodes for secondary cells. U.S. Patent, 5460905, 1995-10-24

  11. Peramunage D, Licht S. Science, 1993, 261: 1029–1032

    Article  CAS  Google Scholar 

  12. Yin YX, Xin S, Guo YG, Wan LJ. Angew Chem Int Ed, 2013, 52: 13186–13200

    Article  CAS  Google Scholar 

  13. Evers S, Nazar LF. Acc Chem Res, 2013, 46: 1135–1143

    Article  CAS  Google Scholar 

  14. Manthiram A, Fu Y, Chung SH, Zu C, Su YS. Chem Rev, 2014, 114: 11751–11787

    Article  CAS  Google Scholar 

  15. Ma L, Hendrickson KE, Wei S, Archer LA. Nano Today, 2015, 10: 315–338

    Article  CAS  Google Scholar 

  16. Yang Y, Zheng G, Cui Y. Chem Soc Rev, 2013, 42: 3018–3032

    Article  CAS  Google Scholar 

  17. Ji X, Lee KT, Nazar LF. Nat Mater, 2009, 8: 500–506

    Article  CAS  Google Scholar 

  18. Yuan L, Yuan H, Qiu X, Chen L, Zhu W. J Power Sources, 2009, 189: 1141–1146

    Article  CAS  Google Scholar 

  19. Zheng G, Yang Y, Cha JJ, Hong SS, Cui Y. Nano Lett, 2011, 11: 4462–4467

    Article  CAS  Google Scholar 

  20. Rong J, Ge M, Fang X, Zhou C. Nano Lett, 2014, 14: 473–479

    Article  CAS  Google Scholar 

  21. Schuster J, He G, Mandlmeier B, Yim T, Lee KT, Bein T, Nazar LF. Angew Chem, 2012, 124: 3651–3655

    Article  Google Scholar 

  22. Zhang B, Qin X, Li GR, Gao XP. Energy Environ Sci, 2010, 3: 1531–1537

    Article  CAS  Google Scholar 

  23. Zhou W, Xiao X, Cai M, Yang L. Nano Lett, 2014, 14: 5250–5256

    Article  CAS  Google Scholar 

  24. Peng HJ, Huang JQ, Zhao MQ, Zhang Q, Cheng XB, Liu XY, Qian WZ, Wei F. Adv Funct Mater, 2014, 24: 2772–2781

    Article  CAS  Google Scholar 

  25. Zhou L, Zong Y, Liu Z, Yu A. Renew Energ, 2016, 96: 333–340

    Article  CAS  Google Scholar 

  26. Peng HJ, Zhang G, Chen X, Zhang ZW, Xu WT, Huang JQ, Zhang Q. Angew Chem, 2016, 128: 13184–13189

    Article  Google Scholar 

  27. Tao X, Wang J, Liu C, Wang H, Yao H, Zheng G, Seh ZW, Cai Q, Li W, Zhou G, Zu C, Cui Y. Nat Commun, 2016, 7: 11203

    Article  CAS  Google Scholar 

  28. Zhou L, Ding N, Yang J, Yang L, Zong Y, Liu Z, Yu A. ACS Sustain Chem Eng, 2016, 4: 3679–3687

    Article  CAS  Google Scholar 

  29. Evers S, Yim T, Nazar LF. J Phys Chem C, 2012, 116: 19653–19658

    CAS  Google Scholar 

  30. Whittingham MS. Chem Rev, 2004, 104: 4271–4302

    Article  CAS  Google Scholar 

  31. Trevey JE, Stoldt CR, Lee SH. J Electrochem Soc, 2011, 158: A1282

    Google Scholar 

  32. Kim JS, Hwang TH, Kim BG, Min J, Choi JW. Adv Funct Mater, 2014, 24: 5359–5367

    Article  CAS  Google Scholar 

  33. Chung WJ, Griebel JJ, Kim ET, Yoon H, Simmonds AG, Ji HJ, Dirlam PT, Glass RS, Wie JJ, Nguyen NA, Guralnick BW, Park J, Somogyi A, Theato P, Mackay ME, Sung YE, Char K, Pyun J. Nat Chem, 2013, 5: 518–524

    Article  CAS  Google Scholar 

  34. Xin S, Gu L, Zhao NH, Yin YX, Zhou LJ, Guo YG, Wan LJ. J Am Chem Soc, 2012, 134: 18510–18513

    Article  CAS  Google Scholar 

  35. Yang CP, Yin YX, Guo YG, Wan LJ. J Am Chem Soc, 2015, 137: 2215–2218

    Article  CAS  Google Scholar 

  36. Du WC, Yin YX, Zeng XX, Shi JL, Zhang SF, Wan LJ, Guo YG. ACS Appl Mater Interfaces, 2016, 8: 3584–3590

    Article  CAS  Google Scholar 

  37. Fang R, Zhao S, Hou P, Cheng M, Wang S, Cheng HM, Liu C, Li F. Adv Mater, 2016, 28: 3374–3382

    Article  CAS  Google Scholar 

  38. Yuan Z, Peng HJ, Huang JQ, Liu XY, Wang DW, Cheng XB, Zhang Q. Adv Funct Mater, 2014, 24: 6105–6112

    Article  CAS  Google Scholar 

  39. Chang DR, Lee SH, Kim SW, Kim HT. J Power Sources, 2002, 112: 452–460

    Article  CAS  Google Scholar 

  40. Barchasz C, Lepretre JC, Patoux S, Alloin F. J Electrochem Soc, 2013, 160: A430–A436

    Google Scholar 

  41. Elazari R, Salitra G, Talyosef Y, Grinblat J, Scordilis-Kelley C, Xiao A, Affinito J, Aurbach D. J Electrochem Soc, 2010, 157: A1131

    Google Scholar 

  42. Lin Z, Liu Z, Fu W, Dudney NJ, Liang C. Adv Funct Mater, 2013, 23: 1064–1069

    Article  CAS  Google Scholar 

  43. Wu F, Lee JT, Nitta N, Kim H, Borodin O, Yushin G. Adv Mater, 2015, 27: 101–108

    Article  CAS  Google Scholar 

  44. Meini S, Elazari R, Rosenman A, Garsuch A, Aurbach D. J Phys Chem Lett, 2014, 5: 915–918

    Article  CAS  Google Scholar 

  45. Gerber LCH, Frischmann PD, Fan FY, Doris SE, Qu X, Scheuermann AM, Persson K, Chiang YM, Helms BA. Nano Lett, 2016, 16: 549–554

    Article  CAS  Google Scholar 

  46. Su YS, Manthiram A. Nat Commun, 2012, 3: 1166

    Article  Google Scholar 

  47. Zhou G, Pei S, Li L, Wang DW, Wang S, Huang K, Yin LC, Li F, Cheng HM. Adv Mater, 2014, 26: 625–631

    Article  CAS  Google Scholar 

  48. Jin Z, Xie K, Hong X, Hu Z, Liu X. J Power Sources, 2012, 218: 163–167

    Article  CAS  Google Scholar 

  49. Huang JQ, Zhang Q, Peng HJ, Liu XY, Qian WZ, Wei F. Energy Environ Sci, 2014, 7: 347–353

    Article  CAS  Google Scholar 

  50. Yu X, Joseph J, Manthiram A. J Mater Chem A, 2015, 3: 15683–15691

    Article  CAS  Google Scholar 

  51. Huang JQ, Zhuang TZ, Zhang Q, Peng HJ, Chen CM, Wei F. ACS Nano, 2015, 9: 3002–3011

    Article  CAS  Google Scholar 

  52. Littauer EL, Tsai KC. J Electrochem Soc, 1976, 123: 771–776

    Article  CAS  Google Scholar 

  53. Abraham KM, Jiang Z. J Electrochem Soc, 1996, 143: 1–5

    Article  CAS  Google Scholar 

  54. Ogasawara T, Débart A, Holzapfel M, Novák P, Bruce PG. J Am Chem Soc, 2006, 128: 1390–1393

    Article  CAS  Google Scholar 

  55. Lu J, Li L, Park JB, Sun YK, Wu F, Amine K. Chem Rev, 2014, 114: 5611–5640

    Article  CAS  Google Scholar 

  56. Park M, Sun H, Lee H, Lee J, Cho J. Adv Energ Mater, 2012, 2: 780–800

    Article  CAS  Google Scholar 

  57. Luntz AC, McCloskey BD. Chem Rev, 2014, 114: 11721–11750

    Article  CAS  Google Scholar 

  58. Lu YC, Gasteiger HA, Parent MC, Chiloyan V, Shao-Horn Y. Electrochem Solid-State Lett, 2010, 13: A69

    Google Scholar 

  59. Wang J, Li Y, Sun X. Nano Energy, 2013, 2: 443–467

    Article  CAS  Google Scholar 

  60. Monaco S, Soavi F, Mastragostino M. J Phys Chem Lett, 2013, 4: 1379–1382

    Article  CAS  Google Scholar 

  61. Ma Z, Yuan X, Li L, Ma ZF, Wilkinson DP, Zhang L, Zhang J. Energy Environ Sci, 2015, 8: 2144–2198

    Article  CAS  Google Scholar 

  62. Balaish M, Kraytsberg A, Ein-Eli Y. Phys Chem Chem Phys, 2014, 16: 2801–2822

    Article  CAS  Google Scholar 

  63. Choi JW, Aurbach D. Nat Rev Mater, 2016, 1: 16013

    Article  CAS  Google Scholar 

  64. Bruce PG, Hardwick LJ, Abraham KM. MRS Bull, 2011, 36: 506–512

    Article  CAS  Google Scholar 

  65. Freunberger SA, Chen Y, Peng Z, Griffin JM, Hardwick LJ, Bardé F, Novák P, Bruce PG. J Am Chem Soc, 2011, 133: 8040–8047

    Article  CAS  Google Scholar 

  66. Veith GM, Dudney NJ, Howe J, Nanda J. J Phys Chem C, 2011, 115: 14325–14333

    Article  CAS  Google Scholar 

  67. Xu W, Xu K, Viswanathan VV, Towne SA, Hardy JS, Xiao J, Nie Z, Hu D, Wang D, Zhang JG. J Power Sources, 2011, 196: 9631–9639

    Article  CAS  Google Scholar 

  68. Wang H, Xie K. Electrochim Acta, 2012, 64: 29–34

    Article  CAS  Google Scholar 

  69. Jung HG, Hassoun J, Park JB, Sun YK, Scrosati B. Nat Chem, 2012, 4: 579–585

    Article  CAS  Google Scholar 

  70. Ryan KR, Trahey L, Ingram BJ, Burrell AK. J Phys Chem C, 2012, 116: 19724–19728

    Article  CAS  Google Scholar 

  71. Younesi R, Hahlin M, Björefors F, Johansson P, Edström K. Chem Mater, 2013, 25: 77–84

    Article  CAS  Google Scholar 

  72. Allen CJ, Mukerjee S, Plichta EJ, Hendrickson MA, Abraham KM. J Phys Chem Lett, 2011, 2: 2420–2424

    Article  CAS  Google Scholar 

  73. Walker W, Giordani V, Uddin J, Bryantsev VS, Chase GV, Addison D. J Am Chem Soc, 2013, 135: 2076–2079

    Article  CAS  Google Scholar 

  74. Xu D, Wang Z, Xu J, Zhang L, Zhang X. Chem Commun, 2012, 48: 6948–6950

    Article  CAS  Google Scholar 

  75. Cecchetto L, Salomon M, Scrosati B, Croce F. J Power Sources, 2012, 213: 233–238

    Article  CAS  Google Scholar 

  76. Bryantsev VS, Giordani V, Walker W, Uddin J, Lee I, van Duin ACT, Chase GV, Addison D. J Phys Chem C, 2013, 117: 11977–11988

    Article  CAS  Google Scholar 

  77. Chen Y, Freunberger SA, Peng Z, Fontaine O, Bruce PG. Nat Chem, 2013, 5: 489–494

    Article  CAS  Google Scholar 

  78. Lim HD, Song H, Kim J, Gwon H, Bae Y, Park KY, Hong J, Kim H, Kim T, Kim YH, Lepró X, Ovalle-Robles R, Baughman RH, Kang K. Angew Chem Int Ed, 2014, 53: 3926–3931

    Article  CAS  Google Scholar 

  79. Choi NS, Jeong G, Koo B, Lee YW, Lee KT. J Power Sources, 2013, 225: 95–100

    Article  CAS  Google Scholar 

  80. Nie H, Zhang Y, Li J, Zhou W, Lai Q, Liu T, Zhang H. RSC Adv, 2014, 4: 17141–17145

    Article  CAS  Google Scholar 

  81. Beattie SD, Manolescu DM, Blair SL. J Electrochem Soc, 2009, 156: A44

    Google Scholar 

  82. Mirzaeian M, Hall PJ. Electrochim Acta, 2009, 54: 7444–7451

    Article  CAS  Google Scholar 

  83. Fan W, Cui Z, Guo X. J Phys Chem C, 2013, 117: 2623–2627

    Article  CAS  Google Scholar 

  84. Etacheri V, Sharon D, Garsuch A, Afri M, Frimer AA, Aurbach D. J Mater Chem A, 2013, 1: 5021–5030

    Article  CAS  Google Scholar 

  85. Yoo E, Zhou H. ACS Nano, 2011, 5: 3020–3026

    Article  CAS  Google Scholar 

  86. Harding JR, Lu YC, Tsukada Y, Shao-Horn Y. Phys Chem Chem Phys, 2012, 14: 10540–10546

    Article  CAS  Google Scholar 

  87. Lu YC, Xu Z, Gasteiger HA, Chen S, Hamad-Schifferli K, Shao-Horn Y. J Am Chem Soc, 2010, 132: 12170–12171

    Article  CAS  Google Scholar 

  88. Yilmaz E, Yogi C, Yamanaka K, Ohta T, Byon HR. Nano Lett, 2013, 13: 4679–4684

    Article  CAS  Google Scholar 

  89. Guo X, Liu P, Han J, Ito Y, Hirata A, Fujita T, Chen M. Adv Mater, 2015, 27: 6137–6143

    Article  CAS  Google Scholar 

  90. Zhang J, Xu W, Li X, Liu W. J Electrochem Soc, 2010, 157: A940

    Google Scholar 

  91. Zhang JG, Wang D, Xu W, Xiao J, Williford RE. J Power Sources, 2010, 195: 4332–4337

    Article  CAS  Google Scholar 

  92. Crowther O, Keeny D, Moureau DM, Meyer B, Salomon M, Hendrickson M. J Power Sources, 2012, 202: 347–351

    Article  CAS  Google Scholar 

  93. Crowther O, Meyer B, Morgan M, Salomon M. J Power Sources, 2011, 196: 1498–1502

    Article  CAS  Google Scholar 

  94. Ryou MH, Lee YM, Lee Y, Winter M, Bieker P. Adv Funct Mater, 2015, 25: 834–841

    Article  CAS  Google Scholar 

  95. Yang CP, Yin YX, Zhang SF, Li NW, Guo YG. Nat Commun, 2015, 6: 8058

    Article  CAS  Google Scholar 

  96. Zhang R, Cheng XB, Zhao CZ, Peng HJ, Shi JL, Huang JQ, Wang J, Wei F, Zhang Q. Adv Mater, 2016, 28: 2155–2162

    Article  CAS  Google Scholar 

  97. Yu X, Bates JB, Jellison GE, Hart FX. J Electrochem Soc, 1997, 144: 524–532

    Article  CAS  Google Scholar 

  98. Lee H, Lee DJ, Kim YJ, Park JK, Kim HT. J Power Sources, 2015, 284: 103–108

    Article  CAS  Google Scholar 

  99. Zheng G, Lee SW, Liang Z, Lee HW, Yan K, Yao H, Wang H, Li W, Chu S, Cui Y. Nat Nanotech, 2014, 9: 618–623

    Article  CAS  Google Scholar 

  100. Kim JS, Kim DW, Jung HT, Choi JW. Chem Mater, 2015, 27: 2780–2787

    Article  CAS  Google Scholar 

  101. Lee JH, Lim CW, Lee JK, Cho SM, Kim BK, Yoon WY. Electrochim Acta, 2014, 131: 202–206

    Article  CAS  Google Scholar 

  102. Kotobuki M, Munakata H, Kanamura K. Chapter 4.2-all-solid-state Li battery for future energy technology. In: Somiya S, Eds. Handbook of Advanced Ceramics. 2nd Ed. Oxford: Academic Press, 2013. 343–351

    Chapter  Google Scholar 

  103. Gray FM, Smith MJ. Secondary batteries—lithium rechargeable systems. In: Garche J, Eds. Encyclopedia of Electrochemical Power Sources. Amsterdam: Elsevier, 2009. 76–169

    Google Scholar 

  104. Takada K, Inada T, Kajiyama A, Koungchi M, Sasaki H, Kondo S, Michiue Y, Nakano S, Tabuchi M, Watanable M. Solid State Ion, 2004, 172: 25–30

    Article  CAS  Google Scholar 

  105. Yao X, Huang B, Yin J, Peng G, Huang Z, Gao C, Liu D, Xu X. Chin Phy B, 2016, 25: 212–225

    Google Scholar 

  106. Han X, Gong Y, Fu KK, He X, Hitz GT, Dai J, Pearse A, Liu B, Wang H, Rubloff G, Mo Y, Thangadurai V, Wachsman ED, Hu L. Nat Mater, 2016, doi: 10.1038/nmat4821

    Google Scholar 

  107. Li Y, Xu B, Xu H, Duan H, Lü X, Xin S, Zhou W, Xue L, Fu G, Manthiram A, Goodenough JB. Angew Chem, 2017, 129: 771–774

    Article  Google Scholar 

  108. Agrawal RC, Pandey GP. J Phys D-Appl Phys, 2008, 41: 223001–223019

    Article  CAS  Google Scholar 

  109. Magistris A, Mustarelli P, Quartarone E, Tomasi C. Solid State Ion, 2000, 136–137: 1241–1247

    Article  Google Scholar 

  110. Scagliotti M, Parmigiani F, Chiodelli G, Magistris A, Samoggia G, Lanzi G. Solid State Ion, 1988, 28–30: 1766–1769

    Article  Google Scholar 

  111. Tarascon JM, Gozdz AS, Schmutz C, Shokoohi F, Warren PC. Solid State Ion, 1996, 86–88: 49–54

    Article  Google Scholar 

  112. Wieczorek W, Such K, Przyłuski J, Floriańczyk Z. Synth Met, 1991, 45: 373–383

    Article  CAS  Google Scholar 

  113. Manthiram A, Yu X, Wang S. Nat Rev Mater, 2017, 2: 16103

    Article  CAS  Google Scholar 

  114. Knauth P. Solid State Ion, 2009, 180: 911–916

    Article  CAS  Google Scholar 

  115. Inaguma Y, Liquan C, Itoh M, Nakamura T, Uchida T, Ikuta H, Wakihara M. Solid State Commun, 1993, 86: 689–693

    Article  CAS  Google Scholar 

  116. Teng S, Tan J, Tiwari A. Curr Opin Solid State Mater Sci, 2014, 18: 29–38

    Article  CAS  Google Scholar 

  117. Kim DG, Shim J, Lee JH, Kwon SJ, Baik JH, Lee JC. Polymer, 2013, 54: 5812–5820

    Article  CAS  Google Scholar 

  118. Tatsumisago M, Nagao M, Hayashi A. J Asian Ceram Soc, 2013, 1: 17–25

    Article  Google Scholar 

  119. Ohta N, Takada K, Zhang L, Ma R, Osada M, Sasaki T. Adv Mater, 2006, 18: 2226–2229

    Article  CAS  Google Scholar 

  120. Xu X, Takada K, Fukuda K, Ohnishi T, Akatsuka K, Osada M, Hang BT, Kumagai K, Sekiguchi T, Sasaki T. Energy Environ Sci, 2011, 4: 3509–3512

    Article  CAS  Google Scholar 

  121. Okada K, Machida N, Naito M, Shigematsu T, Ito S, Fujiki S, Nakano M, Aihara Y. Solid State Ion, 2014, 255: 120–127

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Basic Research Program of China (2014CB932301), the National Natural Science Foundation of China (21473040), and Science & Technology Commission of Shanghai Municipality (08DZ2270500).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aishui Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Chen, C. & Yu, A. New electrochemical energy storage systems based on metallic lithium anode—the research status, problems and challenges of lithium-sulfur, lithium-oxygen and all solid state batteries. Sci. China Chem. 60, 1402–1412 (2017). https://doi.org/10.1007/s11426-017-9041-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-017-9041-1

Keywords

Navigation