Skip to main content
Log in

Si-Based Anodes: Advances and Challenges in Li-Ion Batteries for Enhanced Stability

  • Review article
  • Published:
Electrochemical Energy Reviews Aims and scope Submit manuscript

Abstract

Owing to their advantages, such as a high energy density, low operating potential, high abundance, and low cost, rechargeable silicon (Si) anode lithium-ion batteries (LIBs) have attracted considerable interest. Significant advancements in Si-based LIBs have been made over the past decade. Nevertheless, because the cycle instability is a crucial factor in the half/full-battery design and significantly affects the consumption of active components and the weight of the assembled battery, it has become a concern in recent years. This paper presents a thorough analysis of the recent developments in the enhancement methods for the stability of LIBs. Comprehensive in situ and operando characterizations are performed to thoroughly evaluate the electrochemical reactions, structural evolution, and degradation processes. Approaches for enhancing the cycle stability of Si anodes are systematically divided from a design perspective into several categories, such as the structural regulation, interfacial design, binder architecture, and electrolyte additives. The advantages and disadvantages of several methods are emphasized and thoroughly evaluated, offering insightful information for the logical design and advancement of cutting-edge solutions to address the deteriorating low-cycle stability of silicon-based LIBs. Finally, the conclusions and potential future research perspectives for promoting the cycling instability of silicon-based LIBs are presented.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Reproduced with permission from Ref. [89]. Copyright © 2004, Elsevier. c The initial discharging/charging curve of pristine micro-Si anode materials. Reproduced with permission from Ref. [90]. Copyright © 2022, Elsevier

Fig. 3

Reproduced with permission from Ref. [110]. Copyright © 2022, Wiley-VCH

Fig. 4
Fig. 5
Fig. 6

Copyright © 2020, Elsevier

Fig. 7

Reproduced with permission from Ref. [37]. Copyright © 2020, Elsevier. Image of an Si-graphite anode taken by using XRD-CT: d an XRD-CT slice recorded at the start of the charge process displaying a phase-distribution pattern of crystalline Si (green), LixSi (blue), and LiC12 (red), where the teal is a blend of green (Si) and blue (lithiated Si) based on complementary color mixing; e magnified zones of focus revealing massive LixSi phase components in the graphite substrate with crystalline Si centers (1–3) and smaller LixSi particles (4). f Charge gradient and associated phases. g Over operating and open-circuit times, the d-spacing corresponds to the (002) reflection of the LixC6 architecture. h Magnified time span of Zone 1 demonstrating the incorporated peak regions of the LixC6 phases upon delithiation. i Magnified zone of concern displaying the c-lattice value of the solid-solution graphite phase over activation and open-circuit (green). Reproduced with permission from Ref. [117]. Copyright © 2019, American Chemical Society

Fig. 8

Reproduced with permission from Ref. [118]. Copyright © 2021, Elsevier

Fig. 9

Copyright © 2019, Royal Society of Chemistry. d, e In situ Raman spectra and mapping of Si@MoSe2 throughout the (de)lithiation procedure. Reproduced with permission from Ref. [120]. Copyright © 2022, American Chemical Society

Fig. 10

Reproduced with permission from Ref. [121]. Copyright © 2022, American Chemical Society

Fig. 11

Reproduced with permission from Ref. [124]. Copyright © 2021, Wiley-VCH. Architecture of g P-SiO and i D-SiO@G after 50 cycles and h, j corresponding chemical mapping, respectively. k Si K-edge XANES spectra of the four samples. l Morphology of cycled D-SiO@G particles and corresponding selected regions mapping, with modification. Reproduced with permission from Ref. [126]. Copyright © 2021, Wiley-VCH

Fig. 12

Reproduced with permission from Ref. [129]. Copyright © 2019, American Chemical Society. e HRTEM image of Si NW during (de)lithiation. f Enlarged HRTEM pattern of Si NW SEI. g EEL image of the C K-edge from the Si NW during (de)lithiation. h Si NW STEM EELS mapping at 1 V delithiation. Reproduced with permission from Ref. [130]. Copyright © 2019, Elsevier. HRTEM with the corresponding EDS images i, m after the initial discharge process and j, n initial charge process in FEC-free electrolyte, and k, o after initial lithiation and l, p initial delithiation in the FEC-containing electrolyte. Reproduced with permission from Ref. [131]. Copyright © 2021, Elsevier

Fig. 13
Fig. 14

Reproduced with permission from Ref. [136]. Copyright © 2021, Elsevier. e Scheme of hollow Si-C/graphite composites. f TEM and g, h HRTEM patterns of Si-C/G-A electrode materials. Reproduced with permission from Ref. [137]. Copyright © 2022, Elsevier. i Scheme of SiOx/C HS (GA, GL). SEM and TEM images of j–l SiOx/C HS-TA, (mo) SiOx/C HS-GA, and pr SiOx/C HS-GL with modifications. Reproduced with permission from Ref. [138]. Copyright © 2021. Wiley-VCH

Fig. 15

Reproduced with permission from Ref. [140]. Copyright © 2021, Elsevier. e Scheme of the design and synthesis of the hollow porous p-CoNC@SiX. SEM patterns of f ZnCo-ZIF, g ZnCo-ZIF@Si50, h ZnCo-ZIF@Si80, i ZnCo-ZIF@Si100 before pyrolysis, j p-CoNC, k p-CoNC@Si50, l p-CoNC@Si80, and m p-CoNC@Si100 after pyrolysis process. Reproduced with permission from Ref. [141]. Copyright © 2022, American Chemical Society. Preparation of n GP-Si and o NP-Si. Von Mises Stress distribution and volume change for GP-Si p before discharge, and at discharge times of q 10 h, r 20 h, and s 30 h (full discharge), with modifications. t Volume-specific capacity of two samples. Reproduced with permission from Ref. [142]. Copyright © 2021, Wiley-VCH

Fig. 16

Reproduced with permission from Ref. [149]. Copyright © 2022, American Chemical Society. g Scheme of synthesis process for H-SiNS/C material. h–j TEM, k, l HRTEM, and m cycling property of H-SiNS/C material. Reproduced with permission from Ref. [150]. Copyright © 2022, Wiley-VCH. n Synthesis procedure of LHGF/SiO materials. Scheme of the structural change in o pristine SiO anode and p LHGF/SiO anode. Reproduced with permission from Ref. [158]. Copyright © 2022, Springer Nature. q Galvanostatic charge/discharge plots of the two electrodes. r Rate behavior of LHGF/SiO-75% anode. s Scheme of SiO with two different metal hydrides (TiH2 and LiH). Reproduced with permission from Ref. [159]. Copyright © 2022, Elsevier

Fig. 17

Reproduced with permission from Ref. [63]. Copyright © 2021, Springer Nature. d Scheme of Li metal-free prelithiation induced phase change. e Results of the isosurface (atomic content of Si > 75%) investigation of SiO and prelithiated SiO materials. f Orthographic view of clipped volume, 2D contour plot of Si and O for the clipped volume, and clipped volume of prelithiated SiO (Li/Si = 0.67). Reproduced with permission from Ref. [62]. Copyright © 2021, Elsevier

Fig. 18

Reproduced with permission from Ref. [70]. Copyright © 2020, Elsevier. d Potential pathways for TTFPB’s electrochemical reductive breakdown. e Illustrative diagrams of defense process using implanted TTFPB nano-layer. f Estimated HOMO and LUMO energy for various molecules. g Cycling properties of pristine Si and Si@TTFPB at 0.2 C. Reproduced with permission from Ref. [166]. Copyright © 2022, Elsevier

Fig. 19
Fig. 20

Reproduced with permission from Ref. [191]. Copyright © 2022, Wiley-VCH. b Synthetic scheme of triblock polymer PSEA. c Scheme of π···π interaction between carbon and phenyl groups as well as hydrogen bonds between Si particles and carboxyl group of PSEA binder. Reproduced with permission from Ref. [194]. Copyright © 2022, Wiley-VCH. d Scheme of elastic properties of CPAU and e cycling performance of electrode materials. Reproduced with permission from Ref. [195]. Copyright © 2021, American Chemical Society. f Scheme of self-healing procedure and g cycling performance of electrode materials. Reproduced with permission from Ref. [196]. Copyright © 2022, Elsevier. h Comprehensive scheme of a gallol-conjugated binder’s molecular mobility in Si-microenvironments (Si-μ-env, the blue areas). Reproduced with permission from Ref. [197]. Copyright © 2021, Wiley-VCH

Similar content being viewed by others

References

  1. Fan, E.S., Li, L., Wang, Z.P., et al.: Sustainable recycling technology for Li-ion batteries and beyond: challenges and future prospects. Chem. Rev. 120, 7020–7063 (2020). https://doi.org/10.1021/acs.chemrev.9b00535

    Article  PubMed  CAS  Google Scholar 

  2. Guo, J.P., Dong, D.Q., Wang, J., et al.: Silicon-based lithium ion battery systems: state-of-the-art from half and full cell viewpoint. Adv. Funct. Mater. 31, 2102546 (2021). https://doi.org/10.1002/adfm.202102546

    Article  CAS  Google Scholar 

  3. Yin, Y.X., Wan, L.J., Guo, Y.G.: Silicon-based nanomaterials for lithium-ion batteries. Chin. Sci. Bull. 57, 4104–4110 (2012). https://doi.org/10.1007/s11434-012-5017-2

    Article  CAS  Google Scholar 

  4. Zhu, G.J., Chao, D.L., Xu, W.L., et al.: Microscale silicon-based anodes: fundamental understanding and industrial prospects for practical high-energy lithium-ion batteries. ACS Nano 15, 15567–15593 (2021). https://doi.org/10.1021/acsnano.1c05898

    Article  PubMed  CAS  Google Scholar 

  5. Eshetu, G.G., Zhang, H., Judez, X., et al.: Production of high-energy Li-ion batteries comprising silicon-containing anodes and insertion-type cathodes. Nat. Commun. 12, 5459 (2021). https://doi.org/10.1038/s41467-021-25334-8

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  6. Etacheri, V., Marom, R., Elazari, R., et al.: Challenges in the development of advanced Li-ion batteries: a review. Energy Environ. Sci. 4, 3243 (2011). https://doi.org/10.1039/c1ee01598b

    Article  CAS  Google Scholar 

  7. Chae, S., Ko, M., Kim, K., et al.: Confronting issues of the practical implementation of Si anode in high-energy lithium-ion batteries. Joule 1, 47–60 (2017). https://doi.org/10.1016/j.joule.2017.07.006

    Article  CAS  Google Scholar 

  8. Zhao, L., Zhang, D.F., Huang, Y.F., et al.: Constructing a reinforced and gradient solid electrolyte interphase on Si nanoparticles by in-situ thiol-ene click reaction for long cycling lithium-ion batteries. Small 17, e2102316 (2021). https://doi.org/10.1002/smll.202102316

    Article  PubMed  CAS  Google Scholar 

  9. Yuda, A.P., Koraag, P.Y.E., Iskandar, F., et al.: Advances of the top-down synthesis approach for high-performance silicon anodes in Li-ion batteries. J. Mater. Chem. A 9, 18906–18926 (2021). https://doi.org/10.1039/d1ta02711e

    Article  CAS  Google Scholar 

  10. Wei, T.T., Peng, P.P., Ji, Y.R., et al.: Rational construction and decoration of Li5Cr7Ti6O25@C nanofibers as stable lithium storage materials. J. Energy Chem. 71, 400–410 (2022). https://doi.org/10.1016/j.jechem.2022.04.017

    Article  CAS  Google Scholar 

  11. Yi, T.F., Mei, J., Peng, P.P., et al.: Facile synthesis of polypyrrole-modified Li5Cr7Ti6O25 with improved rate performance as negative electrode material for Li-ion batteries. Compos. Part B Eng. 167, 566–572 (2019). https://doi.org/10.1016/j.compositesb.2019.03.032

    Article  CAS  Google Scholar 

  12. Yi, T.F., Shi, L.N., Han, X., et al.: Approaching high-performance lithium storage materials by constructing hierarchical CoNiO2@CeO2 nanosheets. Energy Environ. Mater. 4, 586–595 (2021). https://doi.org/10.1002/eem2.12140

    Article  CAS  Google Scholar 

  13. Zheng, G.R., Xiang, Y.X., Xu, L.F., et al.: Controlling surface oxides in Si/C nanocomposite anodes for high-performance Li-ion batteries. Adv. Energy Mater. 8, 1801718 (2018). https://doi.org/10.1002/aenm.201801718

    Article  CAS  Google Scholar 

  14. Lu, W.J., Guo, X.T., Luo, Y.Q., et al.: Core-shell materials for advanced batteries. Chem. Eng. J. 355, 208–237 (2019). https://doi.org/10.1016/j.cej.2018.08.132

    Article  CAS  Google Scholar 

  15. Shen, C.F., Fang, X., Ge, M.Y., et al.: Hierarchical carbon-coated ball-milled silicon: synthesis and applications in free-standing electrodes and high-voltage full lithium-ion batteries. ACS Nano 12, 6280–6291 (2018). https://doi.org/10.1021/acsnano.8b03312

    Article  PubMed  CAS  Google Scholar 

  16. Guo, K., Kumar, R., Xiao, X.C., et al.: Failure progression in the solid electrolyte interphase (SEI) on silicon electrodes. Nano Energy 68, 104257 (2020). https://doi.org/10.1016/j.nanoen.2019.104257

    Article  CAS  Google Scholar 

  17. Gu, L.H., Han, J.J., Chen, M.F., et al.: Enabling robust structural and interfacial stability of micron-Si anode toward high-performance liquid and solid-state lithium-ion batteries. Energy Storage Mater. 52, 547–561 (2022). https://doi.org/10.1016/j.ensm.2022.08.028

    Article  Google Scholar 

  18. Gao, X., Lu, W.Q., Xu, J.: Insights into the Li diffusion mechanism in Si/C composite anodes for lithium-ion batteries. ACS Appl. Mater. Interfaces 13, 21362–21370 (2021). https://doi.org/10.1021/acsami.1c03366

    Article  PubMed  CAS  Google Scholar 

  19. Ren, Y.R., Li, M.Q.: Facile synthesis of SiOx@C composite nanorods as anodes for lithium ion batteries with excellent electrochemical performance. J. Power Sources 306, 459–466 (2016). https://doi.org/10.1016/j.jpowsour.2015.12.064

    Article  ADS  CAS  Google Scholar 

  20. Kohler, T., Hadjixenophontos, E., Joshi, Y., et al.: Reversible oxide formation during cycling of Si anodes. Nano Energy 84, 105886 (2021). https://doi.org/10.1016/j.nanoen.2021.105886

    Article  CAS  Google Scholar 

  21. Sun, C.L., Wang, Y.J., Gu, H., et al.: Interfacial coupled design of epitaxial graphene@SiC Schottky junction with built-in electric field for high-performance anodes of lithium ion batteries. Nano Energy 77, 105092 (2020). https://doi.org/10.1016/j.nanoen.2020.105092

    Article  CAS  Google Scholar 

  22. Zhang, Y., Wang, Z.Y., Hu, K., et al.: Anchoring silicon on the basal plane of graphite via a three-phase heterostructure for highly reversible lithium storage. Energy Storage Mater. 34, 311–319 (2021). https://doi.org/10.1016/j.ensm.2020.10.002

    Article  Google Scholar 

  23. Wu, H., Cui, Y.: Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today 7, 414–429 (2012). https://doi.org/10.1016/j.nantod.2012.08.004

    Article  CAS  Google Scholar 

  24. Yan, Z.L., Liu, Y.J., Hatchard, T.D., et al.: Quantitative measurement of solid electrolyte interphase growth on Si-based anode materials. J. Power Sources 530, 231281 (2022). https://doi.org/10.1016/j.jpowsour.2022.231281

    Article  CAS  Google Scholar 

  25. Li, X.Z., Zhang, N., Wu, Y.R., et al.: Interconnected Bi5Nb3O15@CNTs network as high-performance anode materials of Li-ion battery. Rare Met. 41, 3401–3411 (2022). https://doi.org/10.1007/s12598-022-02049-3

    Article  CAS  Google Scholar 

  26. Wu, H., Zheng, G.Y., Liu, N., et al.: Engineering empty space between Si nanoparticles for lithium-ion battery anodes. Nano Lett. 12, 904–909 (2012). https://doi.org/10.1021/nl203967r

    Article  ADS  PubMed  CAS  Google Scholar 

  27. Ren, W.F., Li, J.T., Zhang, S.J., et al.: Fabrication of multi-shell coated silicon nanoparticles via in-situ electroless deposition as high performance anodes for lithium ion batteries. J. Energy Chem. 48, 160–168 (2020). https://doi.org/10.1016/j.jechem.2020.01.001

    Article  Google Scholar 

  28. Ge, M.Z., Tang, Y.X., Malyi, O.I., et al.: Mechanically reinforced localized structure design to stabilize solid-electrolyte interface of the composited electrode of Si nanoparticles and TiO2 nanotubes. Small 16, e2002094 (2020). https://doi.org/10.1002/smll.202002094

    Article  PubMed  CAS  Google Scholar 

  29. Wu, Y.J., Chen, Y., Huang, C.L., et al.: Small highly mesoporous silicon nanoparticles for high performance lithium ion based energy storage. Chem. Eng. J. 400, 125958 (2020). https://doi.org/10.1016/j.cej.2020.125958

    Article  CAS  Google Scholar 

  30. Song, M.S., Chang, G., Jung, D.W., et al.: Strategy for boosting Li-ion current in silicon nanoparticles. ACS Energy Lett. 3, 2252–2258 (2018). https://doi.org/10.1021/acsenergylett.8b01114

    Article  CAS  Google Scholar 

  31. Hu, L., Luo, B., Wu, C.H., et al.: Yolk-shell Si/C composites with multiple Si nanoparticles encapsulated into double carbon shells as lithium-ion battery anodes. J. Energy Chem. 32, 124–130 (2019). https://doi.org/10.1016/j.jechem.2018.07.008

    Article  Google Scholar 

  32. Wilson, A.M., Way, B.M., Dahn, J.R., et al.: Nanodispersed silicon in pregraphitic carbons. J. Appl. Phys. 77, 2363–2369 (1995). https://doi.org/10.1063/1.358759

    Article  ADS  CAS  Google Scholar 

  33. Tian, H., Tian, H.J., Yang, W., et al.: Stable hollow-structured silicon suboxide-based anodes toward high-performance lithium-ion batteries. Adv. Funct. Mater. 31, 2101796 (2021). https://doi.org/10.1002/adfm.202101796

    Article  CAS  Google Scholar 

  34. Zhang, Y., Zhang, R., Chen, S.C., et al.: Diatomite-derived hierarchical porous crystalline-amorphous network for high-performance and sustainable Si anodes. Adv. Funct. Mater. 30, 2005956 (2020). https://doi.org/10.1002/adfm.202005956

    Article  CAS  Google Scholar 

  35. Fang, J.B., Cao, Y.Q., Chang, S.Z., et al.: Dual-design of nanoporous to compact interface via atomic/molecular layer deposition enabling a long-life silicon anode. Adv. Funct. Mater. 32, 2109682 (2022). https://doi.org/10.1002/adfm.202109682

    Article  CAS  Google Scholar 

  36. An, Y.L., Fei, H.F., Zeng, G.F., et al.: Green, scalable, and controllable fabrication of nanoporous silicon from commercial alloy precursors for high-energy lithium-ion batteries. ACS Nano 12, 4993–5002 (2018). https://doi.org/10.1021/acsnano.8b02219

    Article  PubMed  CAS  Google Scholar 

  37. Zhao, C.H., Wada, T., De Andrade, V., et al.: Imaging of 3D morphological evolution of nanoporous silicon anode in lithium ion battery by X-ray nano-tomography. Nano Energy 52, 381–390 (2018). https://doi.org/10.1016/j.nanoen.2018.08.009

    Article  CAS  Google Scholar 

  38. Sohn, M., Lee, D.G., Park, H.I., et al.: Microstructure controlled porous silicon particles as a high capacity lithium storage material via dual step pore engineering. Adv. Funct. Mater. 28, 1800855 (2018). https://doi.org/10.1002/adfm.201800855

    Article  CAS  Google Scholar 

  39. Zeng, Y.F., Huang, Y.D., Liu, N.T., et al.: N-doped porous carbon nanofibers sheathed pumpkin-like Si/C composites as free-standing anodes for lithium-ion batteries. J. Energy Chem. 54, 727–735 (2021). https://doi.org/10.1016/j.jechem.2020.06.022

    Article  CAS  Google Scholar 

  40. Yang, Z., Song, Y.W., Zhang, C.F., et al.: Porous 3D silicon-diamondyne blooms excellent storage and diffusion properties for Li, Na, and K ions. Adv. Energy Mater. 11, 2101197 (2021). https://doi.org/10.1002/aenm.202101197

    Article  ADS  CAS  Google Scholar 

  41. Yi, Z., Qian, Y., Cao, C.H., et al.: Porous Si/C microspheres decorated with stable outer carbon interphase and inner interpenetrated Si@C channels for enhanced lithium storage. Carbon 149, 664–671 (2019). https://doi.org/10.1016/j.carbon.2019.04.080

    Article  CAS  Google Scholar 

  42. Chen, S., Chen, Z., Xu, X.Y., et al.: Scalable 2D mesoporous silicon nanosheets for high-performance lithium-ion battery anode. Small 14, e1703361 (2018). https://doi.org/10.1002/smll.201703361

    Article  PubMed  CAS  Google Scholar 

  43. Yi, Z., Lin, N., Xu, T.J., et al.: TiO2 coated Si/C interconnected microsphere with stable framework and interface for high-rate lithium storage. Chem. Eng. J. 347, 214–222 (2018). https://doi.org/10.1016/j.cej.2018.04.101

    Article  ADS  CAS  Google Scholar 

  44. Yu, C.H., Lin, X.Q., Chen, X., et al.: Suppressing the side reaction by a selective blocking layer to enhance the performance of Si-based anodes. Nano Lett. 20, 5176–5184 (2020). https://doi.org/10.1021/acs.nanolett.0c01394

    Article  ADS  PubMed  CAS  Google Scholar 

  45. Chen, Z.D., Li, L., Zhang, Z., et al.: “Sticky” carbon coating enables high-area-capacity lithium storage of silicon-graphitic carbon hybrid. Carbon 184, 91–101 (2021). https://doi.org/10.1016/j.carbon.2021.07.097

    Article  CAS  Google Scholar 

  46. Ning, L.J., Wu, Y.P., Wang, L.Z., et al.: Carbon anode materials from polysiloxanes for lithium ion batteries. J. Solid State Electrochem. 9, 520–523 (2005). https://doi.org/10.1007/s10008-004-0616-8

    Article  CAS  Google Scholar 

  47. Zhang, T., Fu, L.J., Gao, J., et al.: Core-shell Si/C nanocomposite as anode material for lithium ion batteries. Pure Appl. Chem. 78, 1889–1896 (2006). https://doi.org/10.1351/pac200678101889

    Article  CAS  Google Scholar 

  48. Yang, Y.J., Wu, S.X., Zhang, Y.P., et al.: Towards efficient binders for silicon based lithium-ion battery anodes. Chem. Eng. J. 406, 126807 (2021). https://doi.org/10.1016/j.cej.2020.126807

    Article  CAS  Google Scholar 

  49. Li, Z.H., Zhang, Y.P., Liu, T.F., et al.: Silicon anode with high initial coulombic efficiency by modulated trifunctional binder for high-areal-capacity lithium-ion batteries. Adv. Energy Mater. 10, 1903110 (2020). https://doi.org/10.1002/aenm.201903110

    Article  ADS  CAS  Google Scholar 

  50. Munao, D., van Erven, J.W.M., Valvo, M., et al.: Role of the binder on the failure mechanism of Si nano-composite electrodes for Li-ion batteries. J. Power Sources 196, 6695–6702 (2011). https://doi.org/10.1016/j.jpowsour.2010.11.072

    Article  ADS  CAS  Google Scholar 

  51. Li, Z.H., Wan, Z.W., Zeng, X.Q., et al.: A robust network binder via localized linking by small molecules for high-areal-capacity silicon anodes in lithium-ion batteries. Nano Energy 79, 105430 (2021). https://doi.org/10.1016/j.nanoen.2020.105430

    Article  CAS  Google Scholar 

  52. Li, S., Liu, Y.M., Zhang, Y.C., et al.: A review of rational design and investigation of binders applied in silicon-based anodes for lithium-ion batteries. J. Power Sources 485, 229331 (2021). https://doi.org/10.1016/j.jpowsour.2020.229331

    Article  CAS  Google Scholar 

  53. Chen, H., Wu, Z.Z., Su, Z., et al.: A mechanically robust self-healing binder for silicon anode in lithium ion batteries. Nano Energy 81, 105654 (2021). https://doi.org/10.1016/j.nanoen.2020.105654

    Article  CAS  Google Scholar 

  54. Liu, X.J., Xu, Z.X., Iqbal, A., et al.: Chemical coupled PEDOT:PSS/Si electrode: suppressed electrolyte consumption enables long-term stability. Nano Micro Lett. 13, 54 (2021). https://doi.org/10.1007/s40820-020-00564-5

    Article  ADS  CAS  Google Scholar 

  55. Ha, Y., Stetson, C., Harvey, S.P., et al.: Effect of water concentration in LiPF6-based electrolytes on the formation, evolution, and properties of the solid electrolyte interphase on Si anodes. ACS Appl. Mater. Interfaces 12, 49563–49573 (2020). https://doi.org/10.1021/acsami.0c12884

    Article  PubMed  CAS  Google Scholar 

  56. Cao, Z., Zheng, X.Y., Qu, Q.T., et al.: Electrolyte design enabling a high-safety and high-performance Si anode with a tailored electrode-electrolyte interphase. Adv. Mater. 33, e2103178 (2021). https://doi.org/10.1002/adma.202103178

    Article  PubMed  CAS  Google Scholar 

  57. Wang, J.Y., Cui, Y.: Electrolytes for microsized silicon. Nat. Energy 5, 361–362 (2020). https://doi.org/10.1038/s41560-020-0608-7

    Article  ADS  CAS  Google Scholar 

  58. Xu, Z.X., Yang, J., Li, H.P., et al.: Electrolytes for advanced lithium ion batteries using silicon-based anodes. J. Mater. Chem. A 7, 9432–9446 (2019). https://doi.org/10.1039/c9ta01876j

    Article  CAS  Google Scholar 

  59. Chen, J., Fan, X.L., Li, Q., et al.: Electrolyte design for LiF-rich solid-electrolyte interfaces to enable high-performance microsized alloy anodes for batteries. Nat. Energy 5, 386–397 (2020). https://doi.org/10.1038/s41560-020-0601-1

    Article  ADS  CAS  Google Scholar 

  60. Shin, J., Kim, T.H., Lee, Y.J., et al.: Key functional groups defining the formation of Si anode solid-electrolyte interphase towards high energy density Li-ion batteries. Energy Storage Mater. 25, 764–781 (2020). https://doi.org/10.1016/j.ensm.2019.09.009

    Article  Google Scholar 

  61. Park, S., Jeong, S.Y., Lee, T.K., et al.: Replacing conventional battery electrolyte additives with dioxolone derivatives for high-energy-density lithium-ion batteries. Nat. Commun. 12, 838 (2021). https://doi.org/10.1038/s41467-021-21106-6

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  62. Chung, D.J., Youn, D., Kim, S., et al.: Dehydrogenation-driven Li metal-free prelithiation for high initial efficiency SiO-based lithium storage materials. Nano Energy 89, 106378 (2021). https://doi.org/10.1016/j.nanoen.2021.106378

    Article  CAS  Google Scholar 

  63. Li, Y., Qian, Y., Zhou, J., et al.: Molten-LiCl induced thermochemical prelithiation of SiOx: regulating the active Si/O ratio for high initial Coulombic efficiency. Nano Res. 15, 230–237 (2022). https://doi.org/10.1007/s12274-021-3464-2

    Article  ADS  CAS  Google Scholar 

  64. Zhan, R.M., Wang, X.C., Chen, Z.H., et al.: Promises and challenges of the practical implementation of prelithiation in lithium-ion batteries. Adv. Energy Mater. 11, 2101565 (2021). https://doi.org/10.1002/aenm.202101565

    Article  CAS  Google Scholar 

  65. Zhang, Y.X., Wu, B.R., Mu, G., et al.: Recent progress and perspectives on silicon anode: synthesis and prelithiation for LIBs energy storage. J. Energy Chem. 64, 615–650 (2022). https://doi.org/10.1016/j.jechem.2021.04.013

    Article  CAS  Google Scholar 

  66. Li, Y., Qian, Y., Zhao, Y., et al.: Revealing the interface-rectifying functions of a Li-cyanonaphthalene prelithiation system for SiO electrode. Sci. Bull. 67, 636–645 (2022). https://doi.org/10.1016/j.scib.2021.12.010

    Article  CAS  Google Scholar 

  67. Liu, Z.Z., Ma, S.B., Mu, X., et al.: A scalable cathode chemical prelithiation strategy for advanced silicon-based lithium ion full batteries. ACS Appl. Mater. Interfaces 13, 11985–11994 (2021). https://doi.org/10.1021/acsami.0c22880

    Article  PubMed  CAS  Google Scholar 

  68. Choi, J., Jeong, H., Jang, J., et al.: Weakly solvating solution enables chemical prelithiation of graphite-SiOx anodes for high-energy Li-ion batteries. J. Am. Chem. Soc. 143, 9169–9176 (2021). https://doi.org/10.1021/jacs.1c03648

    Article  PubMed  CAS  Google Scholar 

  69. Liang, K., Huang, S.P., Zhao, H.S., et al.: An artificial interphase engineering simultaneously suppressing hydrogen evolution reaction and controlling zinc dendrite growth to achieve stable zinc metal anodes. Adv. Mater. Interfaces 9, 2200564 (2022). https://doi.org/10.1002/admi.202200564

    Article  CAS  Google Scholar 

  70. Ai, Q., Fang, Q.Y., Liang, J., et al.: Lithium-conducting covalent-organic-frameworks as artificial solid-electrolyte-interphase on silicon anode for high performance lithium ion batteries. Nano Energy 72, 104657 (2020). https://doi.org/10.1016/j.nanoen.2020.104657

    Article  CAS  Google Scholar 

  71. Li, G.J., Guo, S.G., Xiang, B., et al.: Recent advances and perspectives of microsized alloying-type porous anode materials in high-performance Li- and Na-ion batteries. Energy Mater. 2, 200020 (2022). https://doi.org/10.20517/energymater.2022.24

    Article  CAS  Google Scholar 

  72. Liu, X.H., Zheng, H., Zhong, L., et al.: Anisotropic swelling and fracture of silicon nanowires during lithiation. Nano Lett. 11, 3312–3318 (2011). https://doi.org/10.1021/nl201684d

    Article  ADS  PubMed  CAS  Google Scholar 

  73. Stokes, K., Flynn, G., Geaney, H., et al.: Axial Si-Ge heterostructure nanowires as lithium-ion battery anodes. Nano Lett. 18, 5569–5575 (2018). https://doi.org/10.1021/acs.nanolett.8b01988

    Article  ADS  PubMed  CAS  Google Scholar 

  74. Adkins, E.R., Jiang, T.Z., Luo, L.L., et al.: In situ transmission electron microsopy of oxide shell-induced pore formation in (de)lithiated silicon nanowires. ACS Energy Lett. 3, 2829–2834 (2018). https://doi.org/10.1021/acsenergylett.8b01904

    Article  CAS  Google Scholar 

  75. Ryu, I., Choi, J.W., Cui, Y., et al.: Size-dependent fracture of Si nanowire battery anodes. J. Mech. Phys. Solids 59, 1717–1730 (2011). https://doi.org/10.1016/j.jmps.2011.06.003

    Article  ADS  CAS  Google Scholar 

  76. He, T., Feng, J.R., Zhang, Y., et al.: Stress-relieved nanowires by silicon substitution for high-capacity and stable lithium storage. Adv. Energy Mater. 8, 1702805 (2018). https://doi.org/10.1002/aenm.201702805

    Article  CAS  Google Scholar 

  77. Sri Maha Vishnu, D., Sure, J., Kim, H.K., et al.: Solid state electrochemically synthesised β-SiC nanowires as the anode material in lithium ion batteries. Energy Storage Mater. 26, 234–241 (2020). https://doi.org/10.1016/j.ensm.2019.12.041

    Article  Google Scholar 

  78. Chang, H., Wu, Y.R., Han, X., et al.: Recent developments in advanced anode materials for lithium-ion batteries. Energy Mater. 1, 100003 (2022). https://doi.org/10.20517/energymater.2021.02

    Article  CAS  Google Scholar 

  79. Guo, J.P., Zhao, G.M., Xie, T., et al.: Carbon/polymer bilayer-coated Si-SiOx electrodes with enhanced electrical conductivity and structural stability. ACS Appl. Mater. Interfaces 12, 19023–19032 (2020). https://doi.org/10.1021/acsami.0c02445

    Article  PubMed  CAS  Google Scholar 

  80. Xu, Q., Sun, J.K., Yin, Y.X., et al.: Facile synthesis of blocky SiOx/C with graphite-like structure for high-performance lithium-ion battery anodes. Adv. Funct. Mater. 28, 1705235 (2018). https://doi.org/10.1002/adfm.201705235

    Article  CAS  Google Scholar 

  81. Chen, W.Y., Xu, D.H., Kuang, S.J., et al.: Hierarchically porous SiOx/C and carbon materials from one biomass waste precursor toward high-performance lithium/sodium storage. J. Power Sources 489, 229459 (2021). https://doi.org/10.1016/j.jpowsour.2021.229459

    Article  CAS  Google Scholar 

  82. Lee, J.H., Yoon, C.S., Hwang, J.Y., et al.: High-energy-density lithium-ion battery using a carbon-nanotube-Si composite anode and a compositionally graded Li[Ni0.85Co0.05Mn0.10]O2 cathode. Energy Environ. Sci. 9, 2152–2158 (2016). https://doi.org/10.1039/c6ee01134a

    Article  CAS  Google Scholar 

  83. Liu, R.P., Shen, C., Dong, Y., et al.: Sandwich-like CNTs/Si/C nanotubes as high performance anode materials for lithium-ion batteries. J. Mater. Chem. A 6, 14797–14804 (2018). https://doi.org/10.1039/c8ta04686g

    Article  CAS  Google Scholar 

  84. Ma, J., Sung, J., Lee, Y., et al.: Strategic pore architecture for accommodating volume change from high Si content in lithium-ion battery anodes. Adv. Energy Mater. 10, 1903400 (2020). https://doi.org/10.1002/aenm.201903400

    Article  CAS  Google Scholar 

  85. Lee, Y., Lee, T., Hong, J., et al.: Stress relief principle of micron-sized anodes with large volume variation for practical high-energy lithium-ion batteries. Adv. Funct. Mater. 30, 2004841 (2020). https://doi.org/10.1002/adfm.202004841

    Article  CAS  Google Scholar 

  86. Gao, X., Lu, W.Q., Xu, J.: Unlocking multiphysics design guidelines on Si/C composite nanostructures for high-energy-density and robust lithium-ion battery anode. Nano Energy 81, 105591 (2021). https://doi.org/10.1016/j.nanoen.2020.105591

    Article  CAS  Google Scholar 

  87. Ke, C.Z., Liu, F., Zheng, Z.M., et al.: Boosting lithium storage performance of Si nanoparticles via thin carbon and nitrogen/phosphorus co-doped two-dimensional carbon sheet dual encapsulation. Rare Met. 40, 1347–1356 (2021). https://doi.org/10.1007/s12598-021-01716-1

    Article  CAS  Google Scholar 

  88. Li, S., Niu, J.J., Zhao, Y.C., et al.: High-rate aluminium yolk-shell nanoparticle anode for Li-ion battery with long cycle life and ultrahigh capacity. Nat. Commun. 6, 7872 (2015). https://doi.org/10.1038/ncomms8872

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  89. Ryu, J.H., Kim, J.W., Sung, Y.E., et al.: Failure modes of silicon powder negative electrode in lithium secondary batteries. Electrochem. Solid-State Lett. 7, A306 (2004). https://doi.org/10.1149/1.1792242

    Article  CAS  Google Scholar 

  90. Sun, L., Liu, Y.X., Shao, R., et al.: Recent progress and future perspective on practical silicon anode-based lithium ion batteries. Energy Storage Mater. 46, 482–502 (2022). https://doi.org/10.1016/j.ensm.2022.01.042

    Article  Google Scholar 

  91. Hwang, S.W., Yoon, W.Y.: Effect of Li powder-coated separator on irreversible behavior of SiOx-C anode in lithium-ion batteries. J. Electrochem. Soc. 161, A1753–A1758 (2014). https://doi.org/10.1149/2.0031412jes

    Article  CAS  Google Scholar 

  92. Wang, G., Lu, Z.L., Li, Y., et al.: Electroceramics for high-energy density capacitors: current status and future perspectives. Chem. Rev. 121, 6124–6172 (2021). https://doi.org/10.1021/acs.chemrev.0c01264

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Zhang, Y.L., Mu, Z.J., Lai, J.P., et al.: MXene/Si@SiOx@C layer-by-layer superstructure with autoadjustable function for superior stable lithium storage. ACS Nano (2019). https://doi.org/10.1021/acsnano.8b08821

    Article  PubMed  PubMed Central  Google Scholar 

  94. Li, P., Hwang, J.Y., Sun, Y.K.: Nano/microstructured silicon-graphite composite anode for high-energy-density Li-ion battery. ACS Nano (2019). https://doi.org/10.1021/acsnano.9b00169

    Article  PubMed  PubMed Central  Google Scholar 

  95. Kwon, H.J., Hwang, J.Y., Shin, H.J., et al.: Nano/microstructured silicon-carbon hybrid composite particles fabricated with corn starch biowaste as anode materials for Li-ion batteries. Nano Lett. 20, 625–635 (2020). https://doi.org/10.1021/acs.nanolett.9b04395

    Article  ADS  PubMed  CAS  Google Scholar 

  96. Zeng, W.W., Wang, L., Peng, X., et al.: Enhanced ion conductivity in conducting polymer binder for high-performance silicon anodes in advanced lithium-ion batteries. Adv. Energy Mater. 8, 1702314 (2018). https://doi.org/10.1002/aenm.201702314

    Article  CAS  Google Scholar 

  97. Cao, L., Huang, T., Cui, M.Y., et al.: Facile and efficient fabrication of branched Si@C anode with superior electrochemical performance in LIBs. Small 17, e2005997 (2021). https://doi.org/10.1002/smll.202005997

    Article  PubMed  CAS  Google Scholar 

  98. Zhao, H.S., Qi, Y.L., Liang, K., et al.: Interface-driven pseudocapacitance endowing sandwiched CoSe2/N-doped carbon/TiO2 microcubes with ultra-stable sodium storage and long-term cycling stability. ACS Appl. Mater. Interfaces 13, 61555–61564 (2021). https://doi.org/10.1021/acsami.1c20154

    Article  PubMed  CAS  Google Scholar 

  99. Liang, K., Zhao, H.S., Li, J.B., et al.: Engineering crystal growth and surface modification of Na3V2(PO4)2F3 cathode for high-energy-density sodium-ion batteries. Small 19, e2207562 (2023). https://doi.org/10.1002/smll.202207562

    Article  PubMed  CAS  Google Scholar 

  100. Wang, Z.H., Zhao, H.S., Zhou, B., et al.: In situ surface coating and oxygen vacancy dual strategy endowing a Li-rich Li1.2Mn0.55Ni0.11Co0.14O2 cathode with superior lithium storage performance. ACS Appl. Energy Mater. 6, 387–396 (2023). https://doi.org/10.1021/acsaem.2c03301

    Article  CAS  Google Scholar 

  101. Liang, K., Wu, D.X., Ren, Y.R., et al.: Research progress on Na3V2(PO4)2F3-based cathode materials for sodium-ion batteries. Chin. Chem. Lett. 34, 107978 (2023). https://doi.org/10.1016/j.cclet.2022.107978

    Article  CAS  Google Scholar 

  102. Chen, C.G., Zhou, T., Danilov, D.L., et al.: Impact of dual-layer solid-electrolyte interphase inhomogeneities on early-stage defect formation in Si electrodes. Nat. Commun. 11, 3283 (2020). https://doi.org/10.1038/s41467-020-17104-9

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  103. Zhao, H.S., Liang, K., Wang, S.J., et al.: A stress self-adaptive silicon/carbon “ordered structures” to suppress the electro-chemo-mechanical failure: piezo-electrochemistry and piezo-ionic dynamics. Adv. Sci. 10, 2303696 (2023). https://doi.org/10.1002/advs.202303696

    Article  CAS  Google Scholar 

  104. Peled, E., Menkin, S.: Review—SEI: past, present and future. J. Electrochem. Soc. 164, A1703–A1719 (2017). https://doi.org/10.1149/2.1441707jes

    Article  CAS  Google Scholar 

  105. Zhao, H.S., Zhong, J.J., Qi, Y.L., et al.: 90 C fast-charge Na-ion batteries for pseudocapacitive faceted TiO2 anodes based on robust interface chemistry. Chem. Eng. J. 465, 143032 (2023). https://doi.org/10.1016/j.cej.2023.143032

    Article  CAS  Google Scholar 

  106. Zhao, H.S., Qi, Y.L., Liang, K., et al.: Phosphorus-doping and oxygen vacancy endowing anatase TiO2 with excellent sodium storage performance. Rare Met. 41, 1284–1293 (2022). https://doi.org/10.1007/s12598-021-01864-4

    Article  CAS  Google Scholar 

  107. Yang, G., Frisco, S., Tao, R.M., et al.: Robust solid/electrolyte interphase (SEI) formation on Si anodes using glyme-based electrolytes. ACS Energy Lett. 6, 1684–1693 (2021). https://doi.org/10.1021/acsenergylett.0c02629

    Article  CAS  Google Scholar 

  108. Nie, M.Y., Abraham, D.P., Chen, Y.J., et al.: Silicon solid electrolyte interphase (SEI) of lithium ion battery characterized by microscopy and spectroscopy. J. Phys. Chem. C 117, 13403–13412 (2013). https://doi.org/10.1021/jp404155y

    Article  CAS  Google Scholar 

  109. Wu, H., Chan, G., Choi, J.W., et al.: Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nat. Nanotechnol. 7, 310–315 (2012). https://doi.org/10.1038/nnano.2012.35

    Article  ADS  PubMed  CAS  Google Scholar 

  110. Chen, Z.D., Soltani, A., Chen, Y.G., et al.: Emerging organic surface chemistry for Si anodes in lithium-ion batteries: advances, prospects, and beyond. Adv. Energy Mater. 12, 2200924 (2022). https://doi.org/10.1002/aenm.202200924

    Article  CAS  Google Scholar 

  111. Kumar, R., Tokranov, A., Sheldon, B.W., et al.: In situ and operando investigations of failure mechanisms of the solid electrolyte interphase on silicon electrodes. ACS Energy Lett. 1, 689–697 (2016). https://doi.org/10.1021/acsenergylett.6b00284

    Article  CAS  Google Scholar 

  112. Dou, F., Weng, Y.H., Wang, Q.Y., et al.: In situ imaging analysis of the inhibition effect of functional coating on the volume expansion of silicon anodes. Chem. Eng. J. 417, 128122 (2021). https://doi.org/10.1016/j.cej.2020.128122

    Article  CAS  Google Scholar 

  113. Parekh, M.H., Sediako, A.D., Naseri, A., et al.: In situ mechanistic elucidation of superior Si-C-graphite Li-ion battery anode formation with thermal safety aspects. Adv. Energy Mater. 10, 1902799 (2020). https://doi.org/10.1002/aenm.201902799

    Article  CAS  Google Scholar 

  114. Liu, X.H., Huang, J.Y.: In situ TEM electrochemistry of anode materials in lithium ion batteries. Energy Environ. Sci. 4, 3844 (2011). https://doi.org/10.1039/c1ee01918j

    Article  CAS  Google Scholar 

  115. Liu, J., Yuan, H., Liu, H., et al.: Unlocking the failure mechanism of solid state lithium metal batteries. Adv. Energy Mater. 12, 2100748 (2022). https://doi.org/10.1002/aenm.202100748

    Article  CAS  Google Scholar 

  116. Zhou, Y.Z., Yang, Y.J., Hou, G.L., et al.: Stress-relieving defects enable ultra-stable silicon anode for Li-ion storage. Nano Energy 70, 104568 (2020). https://doi.org/10.1016/j.nanoen.2020.104568

    Article  CAS  Google Scholar 

  117. Finegan, D.P., Vamvakeros, A., Cao, L., et al.: Spatially resolving lithiation in silicon-graphite composite electrodes via in situ high-energy X-ray diffraction computed tomography. Nano Lett. 19, 3811–3820 (2019). https://doi.org/10.1021/acs.nanolett.9b00955

    Article  ADS  PubMed  CAS  Google Scholar 

  118. Zhang, Z.Q., Wang, H.Q., Cheng, M.J., et al.: Confining invasion directions of Li+ to achieve efficient Si anode material for lithium-ion batteries. Energy Storage Mater. 42, 231–239 (2021). https://doi.org/10.1016/j.ensm.2021.07.036

    Article  Google Scholar 

  119. Zhou, J., Zhao, H.Y., Lin, N., et al.: Silicothermic reduction reaction for fabricating interconnected Si-Ge nanocrystals with fast and stable Li-storage. J. Mater. Chem. A 8, 6597–6606 (2020). https://doi.org/10.1039/d0ta00109k

    Article  CAS  Google Scholar 

  120. Wang, J., Yang, Z., Mao, B.G., et al.: Transgenic engineering on silicon surfaces enables robust interface chemistry. ACS Energy Lett. 7, 2781–2791 (2022). https://doi.org/10.1021/acsenergylett.2c01202

    Article  CAS  Google Scholar 

  121. Liu, J., Lee, S.Y., Yoo, J., et al.: Real-time observation of mechanical evolution of micro-sized Si anodes by in situ atomic force microscopy. ACS Mater. Lett. 4, 840–846 (2022). https://doi.org/10.1021/acsmaterialslett.2c00059

    Article  CAS  Google Scholar 

  122. Lindgren, F., Xu, C., Niedzicki, L., et al.: SEI formation and interfacial stability of a Si electrode in a LiTDI-salt based electrolyte with FEC and VC additives for Li-ion batteries. ACS Appl. Mater. Interfaces 8, 15758–15766 (2016). https://doi.org/10.1021/acsami.6b02650

    Article  PubMed  CAS  Google Scholar 

  123. Young, B.T., Nguyen, C.C., Lobach, A., et al.: Role of binders in solid electrolyte interphase formation in lithium ion batteries studied with hard X-ray photoelectron spectroscopy. J. Mater. Res. 34, 97–106 (2019). https://doi.org/10.1557/jmr.2018.363

    Article  ADS  CAS  Google Scholar 

  124. Mu, T.S., Zhao, Y., Zhao, C.T., et al.: Stable silicon anodes by molecular layer deposited artificial zincone coatings. Adv. Funct. Mater. 31, 2010526 (2021). https://doi.org/10.1002/adfm.202010526

    Article  CAS  Google Scholar 

  125. Zhou, J.G., Hu, Y.F., Li, X.L., et al.: Chemical bonding in amorphous Si-coated carbon nanotubes as anodes for Li ion batteries: a XANES study. RSC Adv. 4, 20226–20229 (2014). https://doi.org/10.1039/c4ra01332h

    Article  ADS  CAS  Google Scholar 

  126. Xu, S., Zhou, J.G., Wang, J., et al.: In situ synthesis of graphene-coated silicon monoxide anodes from coal-derived humic acid for high-performance lithium-ion batteries. Adv. Funct. Mater. 31, 2101645 (2021). https://doi.org/10.1002/adfm.202101645

    Article  CAS  Google Scholar 

  127. Jeschull, F., Lindgren, F., Lacey, M.J., et al.: Influence of inactive electrode components on degradation phenomena in nano-Si electrodes for Li-ion batteries. J. Power Sources 325, 513–524 (2016). https://doi.org/10.1016/j.jpowsour.2016.06.059

    Article  ADS  CAS  Google Scholar 

  128. Hirata, A., Kohara, S., Asada, T., et al.: Atomic-scale disproportionation in amorphous silicon monoxide. Nat. Commun. 7, 11591 (2016). https://doi.org/10.1038/ncomms11591

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  129. Kitada, K., Pecher, O., Magusin, P.C.M.M., et al.: Unraveling the reaction mechanisms of SiO anodes for Li-ion batteries by combining in situ 7Li and ex situ 7Li/29Si solid-state NMR spectroscopy. J. Am. Chem. Soc. 141, 7014–7027 (2019). https://doi.org/10.1021/jacs.9b01589

    Article  PubMed  CAS  Google Scholar 

  130. Huang, W., Wang, J.Y., Braun, M.R., et al.: Dynamic structure and chemistry of the silicon solid-electrolyte interphase visualized by cryogenic electron microscopy. Matter 1, 1232–1245 (2019). https://doi.org/10.1016/j.matt.2019.09.020

    Article  Google Scholar 

  131. Zhang, X., Weng, S.T., Yang, G.J., et al.: Interplay between solid-electrolyte interphase and (in)active LixSi in silicon anode. Cell Rep. Phys. Sci. 2, 100668 (2021). https://doi.org/10.1016/j.xcrp.2021.100668

    Article  CAS  Google Scholar 

  132. Zhu, R.Y., Wang, Z.H., Hu, X.J., et al.: Silicon in hollow carbon nanospheres assembled microspheres cross-linked with N-doped carbon fibers toward a binder free, high performance, and flexible anode for lithium-ion batteries. Adv. Funct. Mater. 31, 2101487 (2021). https://doi.org/10.1002/adfm.202101487

    Article  CAS  Google Scholar 

  133. Ren, Y., Yin, X.C., Xiao, R., et al.: Layered porous silicon encapsulated in carbon nanotube cage as ultra-stable anode for lithium-ion batteries. Chem. Eng. J. 431, 133982 (2022). https://doi.org/10.1016/j.cej.2021.133982

    Article  CAS  Google Scholar 

  134. Kang, M.S., Heo, I., Kim, S., et al.: High-areal-capacity of micron-sized silicon anodes in lithium-ion batteries by using wrinkled-multilayered-graphenes. Energy Storage Mater. 50, 234–242 (2022). https://doi.org/10.1016/j.ensm.2022.05.025

    Article  Google Scholar 

  135. Qi, Y., Wang, G., Li, S., et al.: Recent progress of structural designs of silicon for performance-enhanced lithium-ion batteries. Chem. Eng. J. 397, 125380 (2020). https://doi.org/10.1016/j.cej.2020.125380

    Article  CAS  Google Scholar 

  136. Zhang, J., Zuo, S.L., Wang, Y.Q., et al.: Scalable synthesis of interconnected hollow Si/C nanospheres enabled by carbon dioxide in magnesiothermic reduction for high-performance lithium energy storage. J. Power Sources 495, 229803 (2021). https://doi.org/10.1016/j.jpowsour.2021.229803

    Article  CAS  Google Scholar 

  137. Gao, J.F., Zuo, S.L., Liu, H., et al.: An interconnected and scalable hollow Si-C nanospheres/graphite composite for high-performance lithium-ion batteries. J. Colloid Interface Sci. 624, 555–563 (2022). https://doi.org/10.1016/j.jcis.2022.05.135

    Article  ADS  PubMed  CAS  Google Scholar 

  138. Zhou, X.M., Liu, Y., Ren, Y., et al.: Engineering molecular polymerization for template-free SiOx/C hollow spheres as ultrastable anodes in lithium-ion batteries. Adv. Funct. Mater. 31, 2101145 (2021). https://doi.org/10.1002/adfm.202101145

    Article  CAS  Google Scholar 

  139. Chae, S., Xu, Y.B., Yi, R., et al.: A micrometer-sized silicon/carbon composite anode synthesized by impregnation of petroleum pitch in nanoporous silicon. Adv. Mater. 33, 2103095 (2021). https://doi.org/10.1002/adma.202103095

    Article  CAS  Google Scholar 

  140. Liu, Q., Ji, Y.X., Yin, X.M., et al.: Magnesiothermic reduction improved route to high-yield synthesis of interconnected porous Si@C networks anode of lithium ions batteries. Energy Storage Mater. 46, 384–393 (2022). https://doi.org/10.1016/j.ensm.2021.12.017

    Article  Google Scholar 

  141. Kim, H., Baek, J., Son, D.K., et al.: Hollow porous N and Co dual-doped silicon@carbon nanocube derived by ZnCo-bimetallic metal-organic framework toward advanced lithium-ion battery anodes. ACS Appl. Mater. Interfaces 14, 45458–45475 (2022). https://doi.org/10.1021/acsami.2c13607

    Article  PubMed  CAS  Google Scholar 

  142. Yang, Z.W., Wu, C., Li, S., et al.: A unique structure of highly stable interphase and self-consistent stress distribution radial-gradient porous for silicon anode. Adv. Funct. Mater. 32, 2107897 (2022). https://doi.org/10.1002/adfm.202107897

    Article  CAS  Google Scholar 

  143. Shi, J.W., Gao, H.Y., Hu, G.X., et al.: Interfacial self-assembled Si@SiO@C microclusters with high tap density for high-performance Li-ion batteries. Mater. Today Energy 29, 101090 (2022). https://doi.org/10.1016/j.mtener.2022.101090

    Article  CAS  Google Scholar 

  144. Liu, Z.G., Lu, D.Z., Wang, W., et al.: Integrating dually encapsulated Si architecture and dense structural engineering for ultrahigh volumetric and areal capacity of lithium storage. ACS Nano 16, 4642–4653 (2022). https://doi.org/10.1021/acsnano.1c11298

    Article  PubMed  CAS  Google Scholar 

  145. Tian, Y.F., Li, G., Xu, D.X., et al.: Micrometer-sized SiMgyOx with stable internal structure evolution for high-performance Li-ion battery anodes. Adv. Mater. 34, 2200672 (2022). https://doi.org/10.1002/adma.202200672

    Article  CAS  Google Scholar 

  146. An, W.L., He, P., Che, Z.Z., et al.: Scalable synthesis of pore-rich Si/C@C core-shell-structured microspheres for practical long-life lithium-ion battery anodes. ACS Appl. Mater. Interfaces 14, 10308–10318 (2022). https://doi.org/10.1021/acsami.1c22656

    Article  PubMed  CAS  Google Scholar 

  147. An, Y.L., Tian, Y., Liu, C.K., et al.: One-step, vacuum-assisted construction of micrometer-sized nanoporous silicon confined by uniform two-dimensional N-doped carbon toward advanced Li ion and MXene-based Li metal batteries. ACS Nano 16, 4560–4577 (2022). https://doi.org/10.1021/acsnano.1c11098

    Article  PubMed  CAS  Google Scholar 

  148. Fan, Z.Q., Wang, Y.T., Zheng, S.S., et al.: A submicron Si@C core-shell intertwined with carbon nanowires and graphene nanosheet as a high-performance anode material for lithium ion battery. Energy Storage Mater. 39, 1–10 (2021). https://doi.org/10.1016/j.ensm.2021.04.005

    Article  CAS  Google Scholar 

  149. Luo, H., Zhang, X.M., Xu, C., et al.: Constructing a yolk-shell structure SiOx/C@C composite for long-life lithium-ion batteries. ACS Appl. Energy Mater. 5, 8982–8989 (2022). https://doi.org/10.1021/acsaem.2c01463

    Article  CAS  Google Scholar 

  150. Wang, J., Gao, C.H., Yang, Z., et al.: Carbon-coated mesoporous silicon shell-encapsulated silicon nano-grains for high performance lithium-ion batteries anode. Carbon 192, 277–284 (2022). https://doi.org/10.1016/j.carbon.2022.02.063

    Article  CAS  Google Scholar 

  151. Li, J.X., Huang, Y.C., Huang, W.J., et al.: Simple designed micro-nano Si-graphite hybrids for lithium storage. Small 17, 2006373 (2021). https://doi.org/10.1002/smll.202006373

    Article  CAS  Google Scholar 

  152. Dai, X.Q., Liu, H.T., Liu, X., et al.: Silicon nanoparticles encapsulated in multifunctional crosslinked nano-silica/carbon hybrid matrix as a high-performance anode for Li-ion batteries. Chem. Eng. J. 418, 129468 (2021). https://doi.org/10.1016/j.cej.2021.129468

    Article  CAS  Google Scholar 

  153. Zhou, Y., Feng, S.H., Zhu, P.F., et al.: Self-sacrificial-reaction guided formation of hierarchical electronic/ionic conductive shell enabling high-performance nano-silicon anode. Chem. Eng. J. 415, 128998 (2021). https://doi.org/10.1016/j.cej.2021.128998

    Article  CAS  Google Scholar 

  154. Zhang, J.Y., Hou, Z.L., Zhang, X.M., et al.: Si@Cu composite anode material prepared by magnetron sputtering for high-capacity lithium-ion batteries. Int. J. Hydrog. Energy 47, 4766–4771 (2022). https://doi.org/10.1016/j.ijhydene.2021.11.080

    Article  CAS  Google Scholar 

  155. Wang, Z.Y., Xu, Z.G., Yuan, Y.P., et al.: Microspheres comprise Si nanoparticles modified with TiO2 and wrapped by graphene as high-performance anode for lithium-ion batteries. Appl. Surf. Sci. 598, 153790 (2022). https://doi.org/10.1016/j.apsusc.2022.153790

    Article  CAS  Google Scholar 

  156. Li, X.D., Zhao, Y.M., Tian, Y.F., et al.: Lithium/boron Co-doped micrometer SiOx as promising anode materials for high-energy-density Li-ion batteries. ACS Appl. Mater. Interfaces 14, 27854–27860 (2022). https://doi.org/10.1021/acsami.2c04983

    Article  PubMed  CAS  Google Scholar 

  157. Chen, J.Y., Zhao, H.S., Li, J.B., et al.: Piezoelectric-driven self-accelerated anion migration for SiOX-C/PbZr0.52Ti0.48O3 with durable lithium storage performance. Ceram. Int. 48, 11257–11264 (2022). https://doi.org/10.1016/j.ceramint.2021.12.346

    Article  CAS  Google Scholar 

  158. Zhong, J., Wang, T., Wang, L., et al.: A silicon monoxide lithium-ion battery anode with ultrahigh areal capacity. Nano Micro Lett. 14, 50 (2022). https://doi.org/10.1007/s40820-022-00790-z

    Article  ADS  CAS  Google Scholar 

  159. Jeong, W.J., Chung, D.J., Youn, D., et al.: Double-buffer-phase embedded Si/TiSi2/Li2SiO3 nanocomposite lithium storage materials by phase-selective reaction of SiO with metal hydrides. Energy Storage Mater. 50, 740–750 (2022). https://doi.org/10.1016/j.ensm.2022.06.023

    Article  Google Scholar 

  160. Adhitama, E., Dias Brandao, F., Dienwiebel, I., et al.: Pre-lithiation of silicon anodes by thermal evaporation of lithium for boosting the energy density of lithium ion cells. Adv. Funct. Mater. 32, 2201455 (2022). https://doi.org/10.1002/adfm.202201455

    Article  CAS  Google Scholar 

  161. Ai, Q., Li, D.P., Guo, J.G., et al.: Artificial solid electrolyte interphase coating to reduce lithium trapping in silicon anode for high performance lithium-ion batteries. Adv. Mater. Interfaces 6, 1901187 (2019). https://doi.org/10.1002/admi.201901187

    Article  CAS  Google Scholar 

  162. Yan, J.W., Zhao, X.L., He, S.G., et al.: Artificial solid electrolyte interphase coating to reduce lithium trapping in silicon anode for highly stable lithium storage. Surf. Interfaces 31, 102029 (2022). https://doi.org/10.1016/j.surfin.2022.102029

    Article  CAS  Google Scholar 

  163. Wu, K., Yi, J., Liu, X.Y., et al.: Regulating Zn deposition via an artificial solid-electrolyte interface with aligned dipoles for long life Zn anode. Nano Micro Lett. 13, 79 (2021). https://doi.org/10.1007/s40820-021-00599-2

    Article  ADS  CAS  Google Scholar 

  164. Li, Y.Z., Lu, J.M., Wang, Z.Y., et al.: Suppressing continuous volume expansion of Si nanoparticles by an artificial solid electrolyte interphase for high-performance lithium-ion batteries. ACS Sustain. Chem. Eng. 9, 8059–8068 (2021). https://doi.org/10.1021/acssuschemeng.0c08964

    Article  CAS  Google Scholar 

  165. Chen, C.C., Fu, L.J., Maier, J.: Synergistic, ultrafast mass storage and removal in artificial mixed conductors. Nature 536, 159–164 (2016). https://doi.org/10.1038/nature19078

    Article  ADS  PubMed  CAS  Google Scholar 

  166. Cao, Z., Zheng, X.Y., Wang, Y., et al.: Tailoring a multifunctional, boron and fluoride-enriched solid-electrolyte interphase precursor towards high-rate and stable-cycling silicon anodes. Nano Energy 93, 106811 (2022). https://doi.org/10.1016/j.nanoen.2021.106811

    Article  CAS  Google Scholar 

  167. Deng, L., Deng, S.S., Pan, S.Y., et al.: Multivalent amide-hydrogen-bond supramolecular binder enhances the cyclic stability of silicon-based anodes for lithium-ion batteries. ACS Appl. Mater. Interfaces 13, 22567–22576 (2021). https://doi.org/10.1021/acsami.1c04501

    Article  PubMed  CAS  Google Scholar 

  168. Ling, L.M., Bai, Y., Wang, Z.H., et al.: Remarkable effect of sodium alginate aqueous binder on anatase TiO2 as high-performance anode in sodium ion batteries. ACS Appl. Mater. Interfaces 10, 5560–5568 (2018). https://doi.org/10.1021/acsami.7b17659

    Article  PubMed  CAS  Google Scholar 

  169. Bhati, M., Nguyen, Q.A., Biswal, S.L., et al.: Combining ReaxFF simulations and experiments to evaluate the structure-property characteristics of polymeric binders in Si-based Li-ion batteries. ACS Appl. Mater. Interfaces 13, 41956–41967 (2021). https://doi.org/10.1021/acsami.1c08484

    Article  PubMed  CAS  Google Scholar 

  170. Kim, J., Park, Y.K., Kim, H., et al.: Ambidextrous polymeric binder for silicon anodes in lithium-ion batteries. Chem. Mater. 34, 5791–5798 (2022). https://doi.org/10.1021/acs.chemmater.2c00220

    Article  CAS  Google Scholar 

  171. Rajeev, K.K., Jang, W., Kim, S., et al.: Chitosan-grafted-gallic acid as a nature-inspired multifunctional binder for high-performance silicon anodes in lithium-ion batteries. ACS Appl. Energy Mater. 5, 3166–3178 (2022). https://doi.org/10.1021/acsaem.1c03791

    Article  CAS  Google Scholar 

  172. Xue, S.D., Fu, Y.D., Song, Z.B., et al.: Coil-to-stretch transition of binder chains enabled by “nano-combs” to facilitate highly stable SiOx anode. Energy Environ. Mater. 5, 1310–1316 (2022). https://doi.org/10.1002/eem2.12248

    Article  CAS  Google Scholar 

  173. Zhang, S., Xu, X., Tu, J., et al.: Cross-linked binder enables reversible volume changes of Si-based anodes from sustainable photovoltaic waste silicon. Mater. Today Sustain. 19, 100178 (2022). https://doi.org/10.1016/j.mtsust.2022.100178

    Article  Google Scholar 

  174. Xiao, H.Y., Qiu, J.C., Wu, S.X., et al.: Cross-linked γ-polyglutamic acid as an aqueous SiOx anode binder for long-term lithium-ion batteries. ACS Appl. Mater. Interfaces 14, 18625–18633 (2022). https://doi.org/10.1021/acsami.2c03458

    Article  PubMed  CAS  Google Scholar 

  175. Lin, S., Wang, F.F., Hong, R.Y.: Polyacrylic acid and β-cyclodextrin polymer cross-linking binders to enhance capacity performance of silicon/carbon composite electrodes in lithium-ion batteries. J. Colloid Interface Sci. 613, 857–865 (2022). https://doi.org/10.1016/j.jcis.2022.01.040

    Article  ADS  PubMed  CAS  Google Scholar 

  176. Weng, Z., Di, S.H., Chen, L., et al.: Random copolymer hydrogel as elastic binder for the SiOx microparticle anode in lithium-ion batteries. ACS Appl. Mater. Interfaces 14, 42494–42503 (2022). https://doi.org/10.1021/acsami.2c12128

    Article  PubMed  CAS  Google Scholar 

  177. Pan, H.W., Xu, Z.S., Wei, Z.Y., et al.: Synergistic double cross-linked dynamic network of epoxidized natural rubber/glycinamide modified polyacrylic acid for silicon anode in lithium ion battery: high peel strength and super cycle stability. ACS Appl. Mater. Interfaces 14, 33315–33327 (2022). https://doi.org/10.1021/acsami.2c08038

    Article  CAS  Google Scholar 

  178. Chen, H., Ling, M., Hencz, L., et al.: Exploring chemical, mechanical, and electrical functionalities of binders for advanced energy-storage devices. Chem. Rev. 118, 8936–8982 (2018). https://doi.org/10.1021/acs.chemrev.8b00241

    Article  PubMed  CAS  Google Scholar 

  179. Wang, H.L., Wu, B.Z., Wu, X.K., et al.: Key factors for binders to enhance the electrochemical performance of silicon anodes through molecular design. Small 18, 2101680 (2022). https://doi.org/10.1002/smll.202101680

    Article  CAS  Google Scholar 

  180. Jiang, M.F., Mu, P.Z., Zhang, H.R., et al.: An endotenon sheath-inspired double-network binder enables superior cycling performance of silicon electrodes. Nano Micro Lett. 14, 87 (2022). https://doi.org/10.1007/s40820-022-00833-5

    Article  ADS  CAS  Google Scholar 

  181. Xiong, J.H., Dupré, N., Moreau, P., et al.: From the direct observation of a PAA-based binder using STEM-VEELS to the ageing mechanism of silicon/graphite anode with high areal capacity cycled in an FEC-rich and EC-free electrolyte. Adv. Energy Mater. 12, 2103348 (2022). https://doi.org/10.1002/aenm.202103348

    Article  CAS  Google Scholar 

  182. Kim, J., Choi, J., Park, K., et al.: Host-guest interlocked complex binder for silicon-graphite composite electrodes in lithium ion batteries. Adv. Energy Mater. 12, 2103718 (2022). https://doi.org/10.1002/aenm.202103718

    Article  CAS  Google Scholar 

  183. Gendensuren, B., Sugartseren, N., Kim, M., et al.: Incorporation of aniline tetramer into alginate-grafted-polyacrylamide as polymeric binder for high-capacity silicon/graphite anodes. Chem. Eng. J. 433, 133553 (2022). https://doi.org/10.1016/j.cej.2021.133553

    Article  CAS  Google Scholar 

  184. Pan, S.Y., Han, J.W., Wang, Y.Q., et al.: Integrating SEI into layered conductive polymer coatings for ultrastable silicon anodes. Adv. Mater. 34, 2203617 (2022). https://doi.org/10.1002/adma.202203617

    Article  CAS  Google Scholar 

  185. Liu, H.M., Wu, Q.P., Guan, X., et al.: Ionically conductive self-healing polymer binders with poly(ether-thioureas) segments for high-performance silicon anodes in lithium-ion batteries. ACS Appl. Energy Mater. 5, 4934–4944 (2022). https://doi.org/10.1021/acsaem.2c00329

    Article  CAS  Google Scholar 

  186. Jang, W., Rajeev, K.K., Thorat, G.M., et al.: Lambda carrageenan as a water-soluble binder for silicon anodes in lithium-ion batteries. ACS Sustain. Chem. Eng. 10, 12620–12629 (2022). https://doi.org/10.1021/acssuschemeng.2c03313

    Article  CAS  Google Scholar 

  187. Niesen, S., Fox, A., Murugan, S., et al.: Multifunctional self-cross-linked copolymer binder for high-loading silicon anodes. ACS Appl. Energy Mater. 5, 11386–11391 (2022). https://doi.org/10.1021/acsaem.2c01867

    Article  CAS  Google Scholar 

  188. Chen, H., Wu, Z.Z., Su, Z., et al.: A hydrophilic poly(methyl vinyl ether-alt-maleic acid) polymer as a green, universal, and dual-functional binder for high-performance silicon anode and sulfur cathode. J. Energy Chem. 62, 127–135 (2021). https://doi.org/10.1016/j.jechem.2021.03.015

    Article  ADS  CAS  Google Scholar 

  189. Deng, L., Zheng, Y., Zheng, X.M., et al.: Design criteria for silicon-based anode binders in half and full cells. Adv. Energy Mater. 12, 2200850 (2022). https://doi.org/10.1002/aenm.202200850

    Article  MathSciNet  CAS  Google Scholar 

  190. Song, Z.B., Zhang, T.H., Wang, L., et al.: Bio-inspired binder design for a robust conductive network in silicon-based anodes. Small Meth. 6, 2101591 (2022). https://doi.org/10.1002/smtd.202101591

    Article  CAS  Google Scholar 

  191. Li, Z.H., Wu, G., Yang, Y.J., et al.: An ion-conductive grafted polymeric binder with practical loading for silicon anode with high interfacial stability in lithium-ion batteries. Adv. Energy Mater. 12, 2201197 (2022). https://doi.org/10.1002/aenm.202201197

    Article  CAS  Google Scholar 

  192. Kim, J., Kim, M.S., Lee, Y., et al.: Hierarchically structured conductive polymer binders with silver nanowires for high-performance silicon anodes in lithium-ion batteries. ACS Appl. Mater. Interfaces 14, 17340–17347 (2022). https://doi.org/10.1021/acsami.2c00844

    Article  PubMed  CAS  Google Scholar 

  193. Shi, Z.X., Liu, Q., Yang, Z.Z., et al.: A chemical switch enabled autonomous two-stage crosslinking polymeric binder for high performance silicon anodes. J. Mater. Chem. A 10, 1380–1389 (2022). https://doi.org/10.1039/d1ta07112b

    Article  CAS  Google Scholar 

  194. Hu, L.L., Jin, M.H., Zhang, Z., et al.: Interface-adaptive binder enabled by supramolecular interactions for high-capacity Si/C composite anodes in lithium-ion batteries. Adv. Funct. Mater. 32, 2111560 (2022). https://doi.org/10.1002/adfm.202111560

    Article  CAS  Google Scholar 

  195. Liu, Z.M., Fang, C., He, X., et al.: In situ-formed novel elastic network binder for a silicon anode in lithium-ion batteries. ACS Appl. Mater. Interfaces 13, 46518–46525 (2021). https://doi.org/10.1021/acsami.1c09607

    Article  ADS  PubMed  CAS  Google Scholar 

  196. Zhao, J.K., Wei, D.N., Wang, J.J., et al.: Inorganic crosslinked supramolecular binder with fast self-healing for high performance silicon based anodes in lithium-ion batteries. J. Colloid Interface Sci. 625, 373–382 (2022). https://doi.org/10.1016/j.jcis.2022.06.002

    Article  ADS  PubMed  CAS  Google Scholar 

  197. Lee, H.A., Shin, M., Kim, J., et al.: Designing adaptive binders for microenvironment settings of silicon anode particles. Adv. Mater. 33, 2007460 (2021). https://doi.org/10.1002/adma.202007460

    Article  CAS  Google Scholar 

  198. Parfeneva, A.V., Rumyantsev, A.M., Lozhkina, D.A., et al.: Influence of fluoroethylene carbonate in the composition of an aprotic electrolyte on the electrochemical characteristics of LIB’s anodes based on carbonized nanosilicon. Batteries 8, 91 (2022). https://doi.org/10.3390/batteries8080091

    Article  CAS  Google Scholar 

  199. Cao, X., Jia, H., Xu, W., et al.: Review—localized high-concentration electrolytes for lithium batteries. J. Electrochem. Soc. 168, 010522 (2021). https://doi.org/10.1149/1945-7111/abd60e

    Article  ADS  CAS  Google Scholar 

  200. Huang, W.B., Wang, Y., Lv, L.Z., et al.: 1-Hydroxyethylidene-1,1-diphosphonic acid: a multifunctional interface modifier for eliminating HF in silicon anode. Energy Storage Mater. 42, 493–501 (2021). https://doi.org/10.1016/j.ensm.2021.08.010

    Article  Google Scholar 

  201. Tan, T., Lee, P.K., Marium, M., et al.: (3-Aminopropyl)triethoxysilane as an electrolyte additive for enhancing the thermal stability of silicon anode in lithium-ion batteries. ACS Appl. Energy Mater. 5, 11254–11262 (2022). https://doi.org/10.1021/acsaem.2c01816

    Article  CAS  Google Scholar 

  202. Chen, H., Adekoya, D., Hencz, L., et al.: Stable seamless interfaces and rapid ionic conductivity of Ca-CeO2/LiTFSI/PEO composite electrolyte for high-rate and high-voltage all-solid-state battery. Adv. Energy Mater. 10, 2000049 (2020). https://doi.org/10.1002/aenm.202000049

    Article  CAS  Google Scholar 

  203. Salah, M., Pathirana, T., de Eulate, E.A., et al.: Effect of vinylene carbonate electrolyte additive and battery cycling protocol on the electrochemical and cyclability performance of silicon thin-film anodes. J. Energy Storage 46, 103868 (2022). https://doi.org/10.1016/j.est.2021.103868

    Article  Google Scholar 

  204. Ha, Y., Martin, T.R., Frisco, S., et al.: Evaluating the effect of electrolyte additive functionalities on NMC622/Si cell performance. J. Electrochem. Soc. 169, 070515 (2022). https://doi.org/10.1149/1945-7111/ac7e75

    Article  ADS  CAS  Google Scholar 

  205. Chen, H., Zheng, M.T., Qian, S.S., et al.: Functional additives for solid polymer electrolytes in flexible and high-energy-density solid-state lithium-ion batteries. Carbon Energy 3, 929–956 (2021). https://doi.org/10.1002/cey2.146

    Article  CAS  Google Scholar 

  206. Wen, Z.Y., Wu, F., Li, L., et al.: Electrolyte design enabling stable solid electrolyte interface for high-performance silicon/carbon anodes. ACS Appl. Mater. Interfaces 14, 38807–38814 (2022). https://doi.org/10.1021/acsami.2c09997

    Article  PubMed  CAS  Google Scholar 

  207. Duan, K.J., Ning, J.R., Zhou, L., et al.: Synergistic inorganic-organic dual-additive electrolytes enable practical high-voltage lithium-ion batteries. ACS Appl. Mater. Interfaces 14, 10447–10456 (2022). https://doi.org/10.1021/acsami.1c24808

    Article  PubMed  CAS  Google Scholar 

  208. He, S.G., Huang, S.M., Zhao, Y., et al.: Design of a dual-electrolyte battery system based on a high-energy NCM811-Si/C full battery electrode-compatible electrolyte. ACS Appl. Mater. Interfaces 13, 54069–54078 (2021). https://doi.org/10.1021/acsami.1c17841

    Article  PubMed  CAS  Google Scholar 

  209. Li, Q., Li, Y., Wang, Y.W., et al.: Achieving fast ionic conductivity and high electrochemical stability through polyhedral structure design. Energy Storage Mater. 47, 70–78 (2022). https://doi.org/10.1016/j.ensm.2022.01.050

    Article  Google Scholar 

  210. Fuller, E.J., Strelcov, E., Weaver, J.L., et al.: Spatially resolved potential and Li-ion distributions reveal performance-limiting regions in solid-state batteries. ACS Energy Lett. 6, 3944–3951 (2021). https://doi.org/10.1021/acsenergylett.1c01960

    Article  CAS  Google Scholar 

  211. Yu, Z.Z., Zhou, L.H., Cheng, Y., et al.: Preset lithium source electrolyte boosts SiO anode performance for lithium-ion batteries. ACS Sustain. Chem. Eng. 10, 10351–10360 (2022). https://doi.org/10.1021/acssuschemeng.2c03081

    Article  CAS  Google Scholar 

  212. Kwon, J., Kim, J., Bae, S.Y., et al.: Polyanion-assisted ionic-electronic conductive agents designed for high density Si-based anodes. J. Power Sources 541, 231728 (2022). https://doi.org/10.1016/j.jpowsour.2022.231728

    Article  CAS  Google Scholar 

  213. Haridas, A.K., Nguyen, Q.A., Terlier, T., et al.: Investigating the compatibility of TTMSP and FEC electrolyte additives for LiNi0.5Mn0.3Co0.2O2 (NMC)-silicon lithium-ion batteries. ACS Appl. Mater. Interfaces 13, 2662–2673 (2021). https://doi.org/10.1021/acsami.0c19347

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Grant Nos. U22A20420, 22078029, 22208029, and 52203292), Postgraduate Research & Practice Innovation Program of Jiangsu Province (Grant No. KYCX23_3027) and the “333 high-level talent training project” young and middle-aged leading talent project of Jiangsu Province. The authors thank the Jiangsu Development and Reform Commission for their support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianmin Ma or Yurong Ren.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, H., Li, J., Zhao, Q. et al. Si-Based Anodes: Advances and Challenges in Li-Ion Batteries for Enhanced Stability. Electrochem. Energy Rev. 7, 11 (2024). https://doi.org/10.1007/s41918-024-00214-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41918-024-00214-z

Keywords

Navigation