Skip to main content
Log in

Carbon-coated LiMn0.8Fe0.2PO4 cathodes for high-rate lithium-ion batteries

  • Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Electrode materials are a decisive factor in determining the specific energy of lithium batteries. Lithium iron phosphate/graphite systems are among the most widely used and safest lithium batteries currently available. However, due to the lower voltage plateau of lithium iron phosphate and the near-theoretical limit of specific capacity achieved by the lithium iron phosphate/graphite system, it is challenging to meet the demands of high energy density lithium batteries. Lithium manganese iron phosphate (LiMn0.8Fe0.2PO4) emerges as a promising next-generation cathode material to replace lithium iron phosphate. However, its low electronic conductivity necessitates improvements through surface coating and carbon compositing to enhance the material's conductivity. This paper presents the synthesis of carbon-coated LiMn0.8Fe0.2PO4 electrode materials via a solid-state method. By adding a conductive carbon layer on the material's surface and nanosizing, the electronic conductivity of the electrode is significantly enhanced, improving lithium-ion diffusion, and thereby boosting the charge–discharge efficiency and power output of the battery. This technique offers an effective pathway for optimizing and advancing lithium-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1 
Fig. 1 
Fig. 2 
Fig. 3 
Fig. 4 
Fig. 5 

Similar content being viewed by others

Data availability 

All data included in this study are available upon request by contact with the corresponding author.

References 

  1. Li M, Lu J, Chen Z, Amine K (2018) 30 Years of lithium-ion batteries. Adv Mater 30(33):1800561. https://doi.org/10.1002/adma.201800561

    Article  CAS  Google Scholar 

  2. Jiang X, Chen Y, Cao W, Liu C et al (2022) The impact of electrode with carbon materials on safety performance of lithium-ion batteries: A review. Carbon 191:448–470. https://doi.org/10.1016/j.carbon.2022.02.011

    Article  CAS  Google Scholar 

  3. Wang K, Xu Y, Wu H, Yuan R (2021) A hybrid lithium storage mechanism of hard carbon enhances its performance as anodes for lithium-ion batteries  Carbon 178:443–450. https://doi.org/10.1016/j.carbon.2020.11.095

    Article  CAS  Google Scholar 

  4. Ding C, Zhu N, Wang X, Alhadhrami A et al (2022) Experimental study on the burning behaviors of 21700 lithium-ion batteries with high specific energy after different immersion duration. Adv Compos Hybrid Mater 5:2575–2588. https://doi.org/10.1007/s42114-022-00536-w

    Article  CAS  Google Scholar 

  5. Ghadi BM, Yuan M, Ardebili H (2019) Stretchable fabric-based LiCoO2, electrode for lithium ion batteries. Extreme Mech Lett 32:100532. https://doi.org/10.1016/j.eml.2019.100532

    Article  Google Scholar 

  6. Lyu Y, Wu X, Wang K, Feng Z, Cheng T, Liu Y, Wang M, Chen R, Xu L, Zhou J et al (2020) An overview on the advances of LiCoO2 cathodes for lithium-ion batteries. Adv Energy Mater 11(2):2000982. https://doi.org/10.1002/aenm.202000982

    Article  CAS  Google Scholar 

  7. Hagberg J, Maples HA, Alvim KSP, Xu J, Johannisson W, Bismarck A, Zenkert D, Lindbergh G (2018) Lithium iron phosphate coated carbon fiber electrodes for structural lithium ion batteries. Compos Sci Technol 162:235–243. https://doi.org/10.1016/j.compscitech.2018.04.041

    Article  CAS  Google Scholar 

  8. Chen Z, Guan M, Cheng Y, Li H et al (2023) Boehmite-enhanced poly(vinylidene fluoride-co-hexafluoropropylene)/polyacrylonitrile (PVDF-HFP/PAN) coaxial electrospun nanofiber hybrid membrane: a superior separator for lithium-ion batteries. Adv Compos Hybrid Mater 6219. https://doi.org/10.1007/s42114-023-00794-2

    Article  CAS  Google Scholar 

  9. Sharma L, Nakamoto K, Okada S, Barpanda P (2019) Tavorite LiFePO4OH hydroxyphosphate as an anode for aqueous lithium-ion batteries. J Power Sources 429:17–21. https://doi.org/10.1016/j.jpowsour.2019.04.110

    Article  CAS  Google Scholar 

  10. Kim J-K, Choi J-W, Cheruvally G, Kim J-U, Ahn J-H, Cho G-B, Kim K-W, Ahn H-J (2007) A modified mechanical activation synthesis for carbon-coated LiFePO4 cathode in lithium batteries. Mater Lett 61(18):3822–3825. https://doi.org/10.1016/j.matlet.2006.12.038

    Article  CAS  Google Scholar 

  11. Chen X, Gong Y, Li X, Zhan F, Liu X, Ma J (2023) Perspective on Low-Temperature Electrolytes for LiFePO4-based Lithium-Ion Batteries. Int J Min Met Mater 30:1–13. https://doi.org/10.1007/s12613-022-2541-1

    Article  CAS  Google Scholar 

  12. Gangaja B, Nair S, Santhanagopalan D (2021) Reuse, recycle, and regeneration of LiFePO4 cathode from spent lithium-ion batteries for rechargeable lithium- and sodium-ion batteries. ACS Sustainable Chemistry & Engineering 9(13):4711–4721.   https://doi.org/10.1021/acssuschemeng.0c08487

    Article  CAS  Google Scholar 

  13. Liu Z, Zhang R, Xu F, Gao Y, Zhao J (2022) Structure and electrochemical performance of LiFePO4 cathode materials modified with carbon coating and metal doping. J Solid State Electrochem 26(8):1655–1665. https://doi.org/10.1007/s10008-022-05198-8

    Article  CAS  Google Scholar 

  14. Guo L, Ren L, Wan L, Li J (2019) Heterogeneous carbon/N-doped reduced graphene oxide wrapping LiMn0.8Fe0.2PO4 composite for higher performance of lithium ion batteries. Appl Surf Sci 476:513–520. https://doi.org/10.1016/j.apsusc.2018.12.227

    Article  CAS  Google Scholar 

  15. Li W, Song B, Manthiram A (2017) High-voltage positive electrode materials for lithium-ion batteries. Chem Soc Rev 46(10):3006–3059. https://doi.org/10.1039/c6cs00875e

    Article  CAS  PubMed  Google Scholar 

  16. Martha SK, Grinblat J, Haik O, Zinigrad E, Drezen T, Miners JH, Exnar I, Kay A, Markovsky B, Aurbach D (2009) LiMn0.8Fe0.2PO4: An advanced cathode material for rechargeable lithium batteries. Angew Chem Int Ed 48(45):8559–8563. https://doi.org/10.1002/anie.200903587

    Article  CAS  Google Scholar 

  17. Lv Z, Li M, Lin J, Luo J, Wu B, Hong R, Cao SC (2023) First-principles study on LiMn0.5Fe0.5PO4 doping to decrease the jahn-teller effect. J Solid State Electrochem 28:577–587. https://doi.org/10.1007/s10008-023-05705-5

    Article  CAS  Google Scholar 

  18. Ding X-K, Zhang L-L, Yang X-L, Fang H, Zhou Y-X, Wang J-Q, Ma D (2017) Anthracite-derived dual-phase carbon-coated Li3V2(PO4)3 as high-performance cathode material for lithium ion batteries. ACS Appl Mater Interfaces 9(49):42788–42796. https://doi.org/10.1021/acsami.7b14117

    Article  CAS  PubMed  Google Scholar 

  19. Li J, Zhu Y, Pang B, Gao P (2022) Research on nb doping-coating composite modification of LiNiO2 cathode material for lithium-ion batteries. J Mater Sci 57(37):17722–17734. https://doi.org/10.1007/s10853-022-07777-6

    Article  CAS  Google Scholar 

  20. Hou C, Xie H, Qu Y, Tian H et al (2023) Rigid-flexible double coating silicon oxide composed of pitch pyrolytic carbon and polyvinyl alcohol/polyethyleneimine/carbon nanotubes as high-performance anode material for lithium-ion battery. Adv Compos Hybrid Mater 6:143. https://doi.org/10.1007/s42114-023-00715-3

    Article  CAS  Google Scholar 

  21. Mu Q, Liu R, Kimura H, Li J et al (2023) Supramolecular self-assembly synthesis of hemoglobin-like amorphous CoP@N, P-doped carbon composites enable ultralong stable cycling under high-current density for lithium-ion battery anodes. Adv Compos Hybrid Mater :23.  https://doi.org/10.1007/s42114-022-00607-y

    Article  CAS  Google Scholar 

  22. Jin H, Zhang J, Qin L, Hu Y, Jiang H, Li C (2023) Dual modification of olivine LiFe0.5Mn0.5PO4 cathodes with accelerated kinetics for high-rate lithium-ion batteries. Ind Eng Chem Res 62(2):1029–1034. https://doi.org/10.1021/acs.iecr.2c04303

    Article  CAS  Google Scholar 

  23. Ruan T, Wang B, Wang F, Song R, Jin F, Zhou Y, Wang D, Dou S (2019) Stabilizing the structure of LiMn0.5Fe0.5PO4 via the formation of concentration-gradient hollow spheres with fe-rich surfaces. Nanoscale 11(9):3933–3944. https://doi.org/10.1039/c8nr10224d

    Article  CAS  PubMed  Google Scholar 

  24. Hu Q, Liao J, Xiao X, Wang X, Liu J, Song Y, Ren D, Zhang H, Wang L, Chen Z et al (2022) Ultrahigh rate capability of manganese based olivine cathodes enabled by interfacial electron transport enhancement. Nano Energy 104:107895.  https://doi.org/10.1016/j.nanoen.2022.107895

    Article  CAS  Google Scholar 

  25. Meng Y, Wang Y, Zhang Z, Chen X, Guo Y, Xiao D (2019) A phytic acid derived LiMn0.5Fe0.5PO4/carbon compositea of high energy density for lithium rechargeable batteries. Sci Rep 9:6665. https://doi.org/10.1038/s41598-019-43140-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yan X, Sun D, Wang Y, Zhang Z, Yan W, Jiang J, Ma F, Liu J, Jin Y, Kanamura K (2017) Enhanced electrochemical performance of LiMn0.75Fe0.25PO4 nanoplates from multiple interface modification by using fluorine-doped carbon coating. ACS Sustainable Chem Eng 5(6):4637–4644. https://doi.org/10.1021/acssuschemeng.6b03163

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the research on safety and high volume energy density lithium ion battery technology (No. 50XX10XX202), natural science foundation of shanxi province (202203021221116). The authors extend their appreciation to the Deanship of Scientific Research at Northern Border University, Arar, KSA for funding this research work through the project number “NBU-FFR-2023-0183“.

Author information

Authors and Affiliations

Authors

Contributions

Xi Yao: Formal analysis, Investigation, Writing. Dan Li:, Writing–review&editing, Funding acquisition, Validation. Li Guo: Resources, Supervision. Mohamed Kallel: Investigation, Review&editing. Saeed D. Alahmari: Resources, Supervision. Juanna Ren: Investigation, Formal analysis. Ilwoo Seok: Investigation, Review&editing. Gourisankar Roymahapatra: Resources, Supervision. Chao Wang: Conceptualization, Resources, Supervision.

Corresponding author

Correspondence to Chao Wang.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note 

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, X., Li, D., Guo, L. et al. Carbon-coated LiMn0.8Fe0.2PO4 cathodes for high-rate lithium-ion batteries. Adv Compos Hybrid Mater 7, 63 (2024). https://doi.org/10.1007/s42114-024-00870-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-024-00870-1

Keywords

Navigation