Skip to main content
Log in

Effect of layered-coupling in twisted WSe2 moiré superlattices

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Recently, the discovery of a variety of moiré-related properties in the twisted vertical stacking of two different monolayers has attracted considerable attention. The introduction of small twist angles in transition metal dichalcogenide (TMD) heterostructures leads to the emergence of moiré potentials, which provide a fascinating platform for the study of strong interactions of electrons. While there has been extensive research on moiré excitons in twisted bilayer superlattices, the capture and study of moiré excitons in homostructure superlattices with layer-coupling effects remain elusive. Here, we present the observation of moiré excitons in the twisted 1L-WSe2/1L-WSe2 and 1L-WSe2/2L-WSe2 homostructures with various layer-coupling interactions. The results reveal that the moiré potential increases (~ 260%) as the number of underlying layers decreases, indicating the effect of layer coupling on the modulation of the moiré potential. The effects of the temperature and laser power dependence as well as valley polarization on moiré excitons were further demonstrated, and the crucial spectral features observed were explained. Our findings pave the way for exploring quantum phenomena and related applications of quantum information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cao, Y.; Fatemi, V.; Demir, A.; Fang, S. A.; Tomarken, S. L.; Luo, J. Y.; Sanchez-Yamagishi, J. D.; Watanabe, K.; Taniguchi, T.; Kaxiras, E. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 2018, 556, 80–84.

    Article  CAS  Google Scholar 

  2. Wang, L.; Shih, E. M.; Ghiotto, A.; Xian, L. D.; Rhodes, D. A.; Tan, C.; Claassen, M.; Kennes, D. M.; Bai, Y. S.; Kim, B. et al. Correlated electronic phases in twisted bilayer transition metal dichalcogenides. Nat. Mater. 2020, 19, 861–866.

    Article  CAS  Google Scholar 

  3. Nuckolls, K. P.; Oh, M.; Wong, D.; Lian, B.; Watanabe, K.; Taniguchi, T.; Bernevig, B. A.; Yazdani, A. Strongly correlated Chern insulators in magic-angle twisted bilayer graphene. Nature 2020, 588, 610–615.

    Article  CAS  Google Scholar 

  4. Cao, Y.; Fatemi, V.; Fang, S. A.; Watanabe, K.; Taniguchi, T.; Kaxiras, E.; Jarillo-Herrero, P. Unconventional superconductivity in magic-angle graphene superlattices. Nature 2018, 556, 43–50.

    Article  CAS  Google Scholar 

  5. Lu, X. B.; Stepanov, P.; Yang, W.; Xie, M.; Aamir, M. A.; Das, I.; Urgell, C.; Watanabe, K.; Taniguchi, T.; Zhang, G. Y. et al. Superconductors, orbital magnets and correlated states in magicangle bilayer graphene. Nature 2019, 574, 653–657.

    Article  CAS  Google Scholar 

  6. Sharpe, A. L.; Fox, E. J.; Barnard, A. W.; Finney, J.; Watanabe, K.; Taniguchi, T.; Kastner, M. A.; Goldhaber-Gordon, D. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science 2019, 365, 605–608.

    Article  CAS  Google Scholar 

  7. Tang, Y. H.; Li, L. Z.; Li, T. X.; Xu, Y.; Liu, S.; Barmak, K.; Watanabe, K.; Taniguchi, T.; MacDonald, A. H.; Shan, J. et al. Simulation of Hubbard model physics in WSe2/WS2 moiré superlattices. Nature 2020, 579, 353–358.

    Article  CAS  Google Scholar 

  8. Li, S. F.; Zheng, H. H.; Ding, J. N.; Wu, B.; He, J.; Liu, Z. W.; Liu, Y. P. Dynamic control of moiré potential in twisted WS2-WSe2 heterostructures. Nano Res. 2022, 15, 7688–7694.

    Article  CAS  Google Scholar 

  9. Wang, X.; Xiao, C. X.; Park, H.; Zhu, J. Y.; Wang, C.; Taniguchi, T.; Watanabe, K.; Yan, J. Q.; Xiao, D.; Gamelin, D. R. et al. Light-induced ferromagnetism in moiré superlattices. Nature 2022, 604, 468–473.

    Article  CAS  Google Scholar 

  10. Wu, B.; Zheng, H. H.; Li, S. F.; Ding, J. N.; Zeng, Y. J.; Liu, Z. W.; Liu, Y. P. Observation of moiré excitons in the twisted WS2/WS2 homostructure. Nanoscale 2022, 14, 12447–12454.

    Article  CAS  Google Scholar 

  11. Chen, Y. Z.; Cao, B. C.; Sun, C.; Wang, Z. D.; Zhou, H. Z.; Wang, L. J.; Zhu, H. M. Controlling exciton-exciton annihilation in WSe2 bilayers via interlayer twist. Nano Res. 2022, 15, 4661–4667.

    Article  CAS  Google Scholar 

  12. Wu, F. C.; Lovorn, T.; MacDonald, A. H. Topological exciton bands in moiré heterojunctions. Phys. Rev. Lett. 2017, 118, 147401.

    Article  Google Scholar 

  13. Wu, L. S.; Cong, C. X.; Shang, J. Z.; Yang, W. H.; Chen, Y.; Zhou, J. D.; Ai, W.; Wang, Y. L.; Feng, S.; Zhang, H. B. et al. Raman scattering investigation of twisted WS2/MoS2 heterostructures: Interlayer mechanical coupling versus charge transfer. Nano Res. 2021, 14, 2215–2223.

    Article  CAS  Google Scholar 

  14. Liu, Y. P.; Zeng, C.; Yu, J.; Zhong, J. H.; Li, B.; Zhang, Z. W.; Liu, Z. W.; Wang, Z. M.; Pan, A. L.; Duan, X. D. Moiré superlattices and related moire excitons in twisted van der Waals heterostructures. Chem. Soc. Rev. 2021, 50, 6401–6422.

    Article  CAS  Google Scholar 

  15. Tilak, N.; Lai, X. Y.; Wu, S.; Zhang, Z. Y.; Xu, M. Y.; De Almeida Ribeiro, R.; Canfield, P. C.; Andrei, E. Y. Flat band carrier confinement in magic-angle twisted bilayer graphene. Nat. Commun. 2021, 12, 4180.

    Article  CAS  Google Scholar 

  16. Naik, M. H.; Jain, M. Ultraflatbands and shear solitons in moiré patterns of twisted bilayer transition metal dichalcogenides. Phys. Rev. Lett. 2018, 121, 266401.

    Article  CAS  Google Scholar 

  17. Naik, M. H.; Kundu, S.; Maity, I.; Jain, M. Origin and evolution of ultraflat bands in twisted bilayer transition metal dichalcogenides: Realization of triangular quantum dots. Phys. Rev. B 2020, 102, 075413.

    Article  CAS  Google Scholar 

  18. Li, H. Y.; Li, S. W.; Naik, M. H.; Xie, J. X.; Li, X. Y.; Wang, J. Y.; Regan, E.; Wang, D. Q.; Zhao, W. Y.; Zhao, S. H. et al. Imaging moiré flat bands in three-dimensional reconstructed WSe2/WS2 superlattices. Nat. Mater. 2021, 20, 945–950.

    Article  CAS  Google Scholar 

  19. Liu, X. M.; Chiu, C. L.; Lee, J. Y.; Farahi, G.; Watanabe, K.; Taniguchi, T.; Vishwanath, A.; Yazdani, A. Spectroscopy of a tunable moiré system with a correlated and topological flat band. Nat. Commun. 2021, 12, 2732.

    Article  CAS  Google Scholar 

  20. Marcellina, E.; Liu, X.; Hu, Z. H.; Fieramosca, A.; Huang, Y. Q.; Du, W.; Liu, S.; Zhao, J. X.; Watanabe, K.; Taniguchi, T. et al. Evidence for moire trions in twisted MoSe2 homobilayers. Nano Lett. 2021, 21, 4461–4468.

    Article  CAS  Google Scholar 

  21. Lin, K. Q.; Junior, P. E. F.; Bauer, J. M.; Peng, B.; Monserrat, B.; Gmitra, M.; Fabian, J.; Bange, S.; Lupton, J. M. Twist-angle engineering of excitonic quantum interference and optical nonlinearities in stacked 2D semiconductors. Nat. Commun. 2021, 12, 1553.

    Article  CAS  Google Scholar 

  22. Zhang, L.; Zhang, Z.; Wu, F. C.; Wang, D. Q.; Gogna, R.; Hou, S. C.; Watanabe, K.; Taniguchi, T.; Kulkarni, K.; Kuo, T. et al. Twistangle dependence of moiré excitons in WS2/MoSe2 heterobilayers. Nat. Commun. 2020, 11, 5888.

    Article  CAS  Google Scholar 

  23. Jin, C. H.; Regan, E. C.; Yan, A. M.; Utama, M. I. B.; Wang, D. Q.; Zhao, S. H.; Qin, Y.; Yang, S. J.; Zheng, Z. R.; Shi, S. Y. et al. Observation of moiré excitons in WSe2/WS2 heterostructure superlattices. Nature 2019, 567, 76–80.

    Article  CAS  Google Scholar 

  24. Liu, E. F.; Barré, E.; Van Baren, J.; Wilson, M.; Taniguchi, T.; Watanabe, K.; Cui, Y. T.; Gabor, N. M.; Heinz, T. F.; Chang, Y. C. et al. Signatures of moiré trions in WSe2/MoSe2 heterobilayers. Nature 2021, 594, 46–50.

    Article  CAS  Google Scholar 

  25. Shinokita, K.; Miyauchi, Y.; Watanabe, K.; Taniguchi, T.; Matsuda, K. Resonant coupling of a moiré exciton to a phonon in a WSe2/MoSe2 heterobilayer. Nano Lett. 2021, 21, 5938–5944.

    Article  CAS  Google Scholar 

  26. Tran, K.; Moody, G.; Wu, F. C.; Lu, X. B.; Choi, J.; Kim, K.; Rai, A.; Sanchez, D. A.; Quan, J. M.; Singh, A. et al. Evidence for moiré excitons in van der Waals heterostructures. Nature 2019, 567, 71–75.

    Article  CAS  Google Scholar 

  27. Wu, F. C.; Lovorn, T.; MacDonald, A. H. Theory of optical absorption by interlayer excitons in transition metal dichalcogenide heterobilayers. Phys. Rev. B 2018, 97, 035306.

    Article  CAS  Google Scholar 

  28. Kim, K.; Yankowitz, M.; Fallahazad, B.; Kang, S.; Movva, H. C. P.; Huang, S. Q.; Larentis, S.; Corbet, C. M.; Taniguchi, T.; Watanabe, K. et al. van der Waals heterostructures with high accuracy rotational alignment. Nano Lett. 2016, 16, 1989–1995.

    Article  CAS  Google Scholar 

  29. Zeng, C.; Zhong, J. H.; Wang, Y. P.; Yu, J.; Cao, L. K.; Zhao, Z. L.; Ding, J. N.; Cong, C. X.; Yue, X. F.; Liu, Z. W. et al. Observation of split defect-bound excitons in twisted WSe2/WSe2 homostructure. Appl. Phys. Lett. 2020, 117, 153103.

    Article  CAS  Google Scholar 

  30. Wu, B.; Zheng, H. H.; Li, S. F.; Ding, J. N.; He, J.; Zeng, Y. J.; Chen, K. Q.; Liu, Z. W.; Chen, S. L.; Pan, A. L. et al. Evidence for moire intralayer excitons in twisted WSe2/WSe2 homobilayer superlattices. Light:Sci. Appl. 2022, 11, 166.

    Article  Google Scholar 

  31. Li, C. C.; Gong, M.; Chen, X. D.; Li, S.; Zhao, B. W.; Dong, Y.; Guo, G. C.; Sun, F. W. Temperature dependent energy gap shifts of single color center in diamond based on modified Varshni equation. Diamond Relat. Mater. 2017, 74, 119–124.

    Article  CAS  Google Scholar 

  32. Ross, J. S.; Wu, S. F.; Yu, H. Y.; Ghimire, N. J.; Jones, A. M.; Aivazian, G.; Yan, J. Q.; Mandrus, D. G.; Xiao, D.; Yao, W. et al. Electrical control of neutral and charged excitons in a monolayer semiconductor. Nat. Commun. 2013, 4, 1474.

    Article  Google Scholar 

  33. Wu, B.; Zheng, H. B.; Li, S. F.; Ding, J. N.; He, J.; Liu, Z. W.; Liu, Y. P. Enhanced interlayer neutral excitons and trions in MoSe2/MoS2/MoSe2 trilayer heterostructure. Nano Res. 2022, 15, 5640–5645.

    Article  CAS  Google Scholar 

  34. Liu, E. F.; Van Baren, J.; Lu, Z. G.; Altaiary, M. M.; Taniguchi, T.; Watanabe, K.; Smirnov, D.; Lui, C. H. Gate tunable dark trions in monolayer WSe2. Phys. Rev. Lett. 2019, 123, 027401.

    Article  CAS  Google Scholar 

  35. Yu, J.; Kuang, X. F.; Zhong, J. H.; Cao, L. K.; Zeng, C.; Ding, J. N.; Cong, C. X.; Wang, S. H.; Dai, P. F.; Yue, X. F. et al. Observation of double indirect interlayer exciton in WSe2/WS2 heterostructure. Opt. Express 2020, 28, 13260–13268.

    Article  CAS  Google Scholar 

  36. Wu, B.; Wang, Y. P.; Zhong, J. H.; Zeng, C.; Madoune, Y.; Zhu, W. T.; Liu, Z. W.; Liu, Y. P. Observation of double indirect interlayer exciton in MoSe2/WSe2 heterostructure. Nano Res. 2022, 15, 2661–2666.

    Article  CAS  Google Scholar 

  37. Zhu, S. X.; Li, D.; Hu, Y. B.; Wang, J. L.; Wang, X. J.; Lu, W. Enhancement of direct and indirect exciton emissions in few-layer WSe2 at high temperatures. Mater. Res. Express 2018, 5, 066209.

    Article  Google Scholar 

  38. Li, Z. D.; Lu, X. B.; Leon, D. F. C.; Lyu, Z. Y.; Xie, H. C.; Hou, J. Z.; Lu, Y. Z.; Guo, X. Y.; Kaczmarek, A.; Taniguchi, T. et al. Interlayer exciton transport in MoSe2/WSe2 heterostructures. ACS Nano 2021, 15, 1539–1547.

    Article  CAS  Google Scholar 

  39. Guo, H. L.; Zhang, X.; Lu, G. Shedding light on moiré excitons: A first-principles perspective. Sci. Adv. 2020, 6, eabc5638.

    Article  CAS  Google Scholar 

  40. Liu, Y. P.; Gao, Y. J.; Zhang, S. Y.; He, J.; Yu, J.; Liu, Z. W. Valleytronics in transition metal dichalcogenides materials. Nano Res. 2019, 12, 2695–2711.

    Article  CAS  Google Scholar 

  41. Tan, Q. H.; Rasmita A.; Li, S.; Liu, S.; Huang, Z. M.; Xiong, Q. H.; Yang, S. A.; Novoselov, K. S.; Gao, W. B. Layer-engineered interlayer excitons. Sci. Adv. 2021, 7, eabh0863.

    Article  CAS  Google Scholar 

  42. Yu, H. Y.; Wang, Y.; Tong, Q. J.; Xu, X. D.; Yao, W. Anomalous light cones and valley optical selection rules of interlayer excitons in twisted heterobilayers. Phys. Rev. Lett. 2015, 115, 187002.

    Article  Google Scholar 

  43. Xiao, D.; Liu, G. B.; Feng, W. X.; Xu, X. D.; Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 2012, 108, 196802.

    Article  Google Scholar 

  44. Cao, L. K.; Zhong, J. H.; Yu, J.; Zeng, C.; Ding, J. N.; Cong, C. X.; Yue, X. F.; Liu, Z. W.; Liu, Y. P. Valley-polarized local excitons in WSe2/WS2 vertical heterostructures. Opt. Express 2020, 28, 22135–22143.

    Article  CAS  Google Scholar 

  45. Rasmita, A.; Gao, W. B. Opto-valleytronics in the 2D van der Waals heterostructure. Nano Res. 2021, 14, 1901–1911.

    Article  CAS  Google Scholar 

  46. Zhang, W. F.; Hao, H.; Lee, Y.; Zhao, Y.; Tong, L. M.; Kim, K.; Liu, N. One-interlayer-twisted multilayer MoS2 moiré superlattices. Adv. Funct. Mater. 2022, 32, 2111529.

    Article  CAS  Google Scholar 

  47. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    Article  CAS  Google Scholar 

  48. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

    Article  Google Scholar 

  49. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  CAS  Google Scholar 

  50. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

    Article  Google Scholar 

  51. Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge support from the National Natural Science Foundation of China (No. 61775241), Hunan province key research and development project (No. 2019GK2233), Hunan Provincial Science Fund for Distinguished Young Scholars (No. 2020JJ2059), the Youth Innovation Team (No. 2019012) of CSU, the Science and Technology Innovation Basic Research Project of Shenzhen (No. JCYJ20190806144418859), the National Natural Science Foundation of China (Nos. 62090035 and U19A2090), and the Key Program of Science and Technology Department of Hunan Province (Nos. 2019XK2001 and 2020XK2001). The authors are also thankful for the support of the High-Performance Complex Manufacturing Key State Lab Project, Central South University (No. ZZYJKT2020-12). Z. W. L. thanks the support from the Australian Research Council (ARC Discovery Project, No. DP180102976). J.-T. W. acknowledge the support from the National Natural Science Foundation of China (No. 11974387), the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB33000000), and the National Key Research and Development Program of China (No. 2020YFA0711502). The authors acknowledge the Beijing Super Cloud Computing Center (BSCC, https://www.blsc.cn) for providing HPC resources that have contributed to the research results reported within this paper. Also, we are grateful for resources from the High-Performance Computing Center of Central South University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian-Tao Wang or Yanping Liu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, B., Zheng, H., Li, S. et al. Effect of layered-coupling in twisted WSe2 moiré superlattices. Nano Res. 16, 3435–3442 (2023). https://doi.org/10.1007/s12274-022-5007-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5007-x

Keywords

Navigation