Skip to main content
Log in

Controlling exciton-exciton annihilation in WSe2 bilayers via interlayer twist

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The twist angle between two van der Waals coupled monolayers has emerged as a new and powerful degree of freedom for engineering physical properties of semiconductor homo- and hetero-bilayers. While the interlayer twist has shown prominent effect on electronic and optical properties of transition metal dichalcogenide (TMD) bilayers, it remains unclear how it could be used to manipulate the exciton dynamics, especially exciton-exciton annihilation (EEA) process which is the dominant energy loss channel in TMDs under moderate to high exciton density due to strong Coulomb interaction. Herein, we show that the twist angle in TMD bilayers can act as an effective knob to control the EEA process. Specifically, EEA rate constant increases from 1° twisted WSe2 bilayers (0.026 cm2/s) by more than twice to 32° twisted bilayers (0.053 cm2/s) and then drops again in 60° twisted bilayers (0.019 cm2/s). This twist-angle dependence can be attributed to the energy difference between indirect and direct excitons arising from the interlayer interaction. Our work opens up the possibility of artificially managing the exciton dynamics in TMD materials for optoelectronic applications via interlayer twist angle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu, Y.; Huang, Y.; Duan, X. F. Van der Waals integration before and beyond two-dimensional materials. Nature 2019, 567, 323–333.

    Article  CAS  Google Scholar 

  2. Geim, A. K.; Grigorieva, I. V. Van der Waals heterostructures. Nature 2013, 499, 419–425.

    Article  CAS  Google Scholar 

  3. Rivera, P.; Seyler, K. L.; Yu, H.; Schaibley, J. R.; Yan, J. Q.; Mandrus, D. G.; Yao, W.; Xu, X. D. Valley-polarized exciton dynamics in a 2D semiconductor heterostructure. Science 2016, 351, 688–691.

    Article  CAS  Google Scholar 

  4. Yankowitz, M.; Chen, S. W.; Polshyn, H.; Zhang, Y. X.; Watanabe, K.; Taniguchi, T.; Graf, D.; Young, A. F.; Dean, C. R. Tuning superconductivity in twisted bilayer graphene. Science 2019, 363, 1059–1064.

    Article  CAS  Google Scholar 

  5. Eisenstein, J. P.; Macdonald, A. H. Bose-einstein condensation of excitons in bilayer electron systems. Nature 2004, 432, 691–694.

    Article  CAS  Google Scholar 

  6. Koppens, F. H. L.; Mueller, T.; Avouris, P.; Ferrari, A. C.; Vitiello, M. S.; Polini, M. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 2014, 9, 780–793.

    Article  CAS  Google Scholar 

  7. Wu, F. C.; Lovorn, T.; MacDonald, A. H. Topological exciton bands in moiré heterojunctions. Phys. Rev. Lett. 2017, 118, 147401.

    Article  Google Scholar 

  8. Wu, F. C.; Lovorn, T.; MacDonald, A. H. Theory of optical absorption by interlayer excitons in transition metal dichalcogenide heterobilayers. Phys. Rev. B 2018, 97, 035036.

    Article  Google Scholar 

  9. Kim, K.; DaSilva, A.; Huang, S. Q.; Fallahazad, B.; Larentis, S.; Taniguchi, T.; Watanabe, K.; LeRoy, B. J.; MacDonald, A. H.; Tutuc, E. Tunable moiré bands and strong correlations in small-twist-angle bilayer graphene. Proc. Natl. Acad. Sci. USA 2017, 114, 3364–3369.

    Article  CAS  Google Scholar 

  10. Cao, Y.; Fatemi, V.; Demir, A.; Fang, S. A.; Tomarken, S. L.; Luo, J. Y.; Sanchez-Yamagishi, J. D.; Watanabe, K.; Taniguchi, T.; Kaxiras, E. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 2018, 556, 80–84.

    Article  CAS  Google Scholar 

  11. Naik, M. H.; Jain, M. Ultraflatbands and shear solitons in moire patterns of twisted bilayer transition metal dichalcogenides. Phys. Rev. Lett. 2018, 121, 266401.

    Article  CAS  Google Scholar 

  12. Morell, E. S.; Correa, J. D.; Vargas, P.; Pacheco, M.; Barticevic, Z. Flat bands in slightly twisted bilayer graphene: Tight-binding calculations. Phys. Rev. B 2010, 82, 121407(R).

    Article  Google Scholar 

  13. Bistritzer, R.; MacDonald, A. H. Moiré bands in twisted double-layer graphene. Proc. Natl. Acad. Sci. USA 2011, 108, 12233–12237.

    Article  CAS  Google Scholar 

  14. Song, J. C. W.; Samutpraphoot, P.; Levitov, L. S. Topological bloch bands in graphene superlattices. Proc. Natl. Acad. Sci. USA 2015, 112, 10879–10883.

    Article  CAS  Google Scholar 

  15. Carr, S.; Massatt, D.; Fang, S. A.; Cazeaux, P.; Luskin, M.; Kaxiras, E. Twistronics: Manipulating the electronic properties of two-dimensional layered structures through their twist angle. Phys. Rev. B 2017, 95, 075420.

    Article  Google Scholar 

  16. Shi, J.; Li, Y. Z.; Zhang, Z. P.; Feng, W. Q.; Wang, Q.; Ren, S. L.; Zhang, J.; Du, W. N.; Wu, X. X.; Sui, X. Y. et al. Twisted-angle-dependent optical behaviors of intralayer excitons and trions in WS2/WSe2 heterostructure. ACS Photonics 2019, 6, 3082–3091.

    Article  CAS  Google Scholar 

  17. Merkl, P.; Mooshammer, F.; Brem, S.; Girnghuber, A.; Lin, K. Q.; Weigl, L.; Liebich, M.; Yong, C. K.; Gillen, R.; Maultzsch, J. et al. Twist-tailoring coulomb correlations in van der Waals homobilayers. Nat. Commun. 2020, 11, 2167.

    Article  CAS  Google Scholar 

  18. Liu, K. H.; Zhang, L. M.; Cao, T.; Jin, C. H.; Qiu, D. A.; Zhou, Q.; Zettl, A.; Yang, P. D.; Louie, S. G.; Wang, F. Evolution of interlayer coupling in twisted molybdenum disulfide bilayers. Nat. Commun. 2014, 5, 4966.

    Article  CAS  Google Scholar 

  19. Yeh, P. C.; Jin, W. C.; Zaki, N.; Kunstmann, J.; Chenet, D.; Arefe, G.; Sadowski, J. T.; Dadap, J. I.; Sutter, P.; Hone, J. et al. Direct measurement of the tunable electronic structure of bilayer MoS2 by interlayer twist. Nano Lett. 2016, 16, 953–959.

    Article  CAS  Google Scholar 

  20. Van Der Zande, A. M.; Kunstmann, J.; Chernikov, A.; Chenet, D. A.; You, Y. M.; Zhang, X. X.; Huang, P. Y.; Berkelbach, T. C.; Wang, L.; Zhang, F. et al. Tailoring the electronic structure in bilayer molybdenum disulfide via interlayer twist. Nano Lett. 2014, 14, 3869–3875.

    Article  CAS  Google Scholar 

  21. Campos-Delgado, J.; Cançado, L. G.; Achete, C. A.; Jorio, A.; Raskin, J. P. Raman scattering study of the phonon dispersion in twisted bilayer graphene. Nano Res. 2013, 6, 269–274.

    Article  CAS  Google Scholar 

  22. Cao, Y.; Fatemi, V.; Fang, S. A.; Watanabe, K.; Taniguchi, T.; Kaxiras, E.; Jarillo-Herrero, P. Unconventional superconductivity in magic-angle graphene superlattices. Nature 2018, 556, 43–50.

    Article  CAS  Google Scholar 

  23. Seyler, K. L.; Rivera, P.; Yu, H. Y.; Wilson, N. P.; Ray, E. L.; Mandrus, D. G.; Yan, J. Q.; Yao, W.; Xu, X. D. Signatures of moire-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature 2019, 567, 66–70.

    Article  CAS  Google Scholar 

  24. Alexeev, E. M.; Ruiz-Tijerina, D. A.; Danovich, M.; Hamer, M. J.; Terry, D. J.; Nayak, P. K.; Ahn, S.; Pak, S.; Lee, J.; Sohn, J. I. et al. Resonantly hybridized excitons in moire superlattices in van der Waals heterostructures. Nature 2019, 567, 81–86.

    Article  CAS  Google Scholar 

  25. Jin, C. H.; Regan, E. C.; Yan, A. M.; Iqbal Bakti Utama, M.; Wang, D. Q.; Zhao, S. H.; Qin, Y.; Yang, S. J.; Zheng, Z. R.; Shi, S. Y. et al. Observation of moire excitons in WSe2/WS2 heterostructure superlattices. Nature 2019, 567, 76–80.

    Article  CAS  Google Scholar 

  26. Dean, C. R.; Wang, L.; Maher, P.; Forsythe, C.; Ghahari, F.; Gao, Y.; Katoch, J.; Ishigami, M.; Moon, P.; Koshino, M. et al. Hofstadter’s butterfly and the fractal quantum hall effect in moire superlattices. Nature 2013, 497, 598–602.

    Article  CAS  Google Scholar 

  27. Tran, K.; Moody, G.; Wu, F. C.; Lu, X. B.; Choi, J.; Kim, K.; Rai, A.; Sanchez, D. A.; Quan, J. M.; Singh, A. et al. Evidence for moire excitons in van der Waals heterostructures. Nature 2019, 567, 71–75.

    Article  CAS  Google Scholar 

  28. Regan, E. C.; Wang, D. Q.; Jin, C. H.; Iqbal Bakti Utama, M.; Gao, B. N.; Wei, X.; Zhao, S. H.; Zhao, W. Y.; Zhang, Z. C.; Yumigeta, K. et al. Mott and generalized Wigner crystal states in WSe2/WS2 moire superlattices. Nature 2020, 579, 359–363.

    Article  CAS  Google Scholar 

  29. Ramasubramaniam, A. Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides. Phys. Rev. B 2012, 86, 115409.

    Article  Google Scholar 

  30. Sharma, A.; Yan, H.; Zhang, L. L.; Sun, X. Q.; Liu, B. Q.; Lu, Y. R. Highly enhanced many-body interactions in anisotropic 2D semiconductors. Acc. Chem. Res. 2018, 51, 1164–1173.

    Article  CAS  Google Scholar 

  31. Komsa, H. P.; Krasheninnikov, A. V. Effects of confinement and environment on the electronic structure and exciton binding energy of MoS2 from first principles. Phys. Rev. B 2012, 86, 241201(R).

    Article  Google Scholar 

  32. Chen, J.; Zhang, Q.; Shi, J.; Zhang, S.; Du, W. N.; Mi, Y.; Shang, Q. Y.; Liu, P. C.; Sui, X. Y.; Wu, X. X. et al. Room temperature continuous-wave excited biexciton emission in perovskite nanoplatelets via plasmonic nonlinear fano resonance. Commun. Phys. 2019, 2, 80.

    Article  Google Scholar 

  33. Kumar, N.; Cui, Q. N.; Ceballos, F.; He, D. W.; Wang, Y. S.; Zhao, H. Exciton-exciton annihilation in MoSe2 monolayers. Phys. Rev. B 2014, 89, 125427.

    Article  Google Scholar 

  34. Yuan, L.; Huang, L. B. Exciton dynamics and annihilation in WS2 2D semiconductors. Nanoscale 2015, 7, 7402–7408.

    Article  CAS  Google Scholar 

  35. Sun, D. Z.; Rao, Y.; Reider, G. A.; Chen, G. G.; You, Y. M.; Brézin, L.; Harutyunyan, A. R.; Heinz, T. F. Observation of rapid exciton-exciton annihilation in monolayer molybdenum disulfide. Nano Lett. 2014, 14, 5625–5629.

    Article  CAS  Google Scholar 

  36. Mueller, T.; Malic, E. Exciton physics and device application of two-dimensional transition metal dichalcogenide semiconductors. npj 2D Mater. Appl. 2018, 2, 29.

    Article  Google Scholar 

  37. Kumar, N.; Najmaei, S.; Cui, Q. N.; Ceballos, F.; Ajayan, P. M.; Lou, J.; Zhao, H. Second harmonic microscopy of monolayer MoS2. Phys. Rev. B 2013, 87, 161403(R).

    Article  Google Scholar 

  38. Li, Y. L.; Rao, Y.; Mak, K. F.; You, Y. M.; Wang, S. Y.; Dean, C. R.; Heinz, T. F. Probing symmetry properties of few-layer MoS2 and h-BN by optical second-harmonic generation. Nano Lett. 2013, 13, 3329–3333.

    Article  CAS  Google Scholar 

  39. Kim, C. J.; Brown, L.; Graham, M. W.; Hovden, R.; Havener, R. W.; McEuen, P. L.; Muller, D. A.; Park, J. Stacking order dependent second harmonic generation and topological defects in h-BN bilayers. Nano Lett. 2013, 13, 5660–5665.

    Article  CAS  Google Scholar 

  40. Hsu, W. T.; Zhao, Z. A.; Li, L. J.; Chen, C. H.; Chiu, M. H.; Chang, P. S.; Chou, Y. C.; Chang, W. H. Second harmonic generation from artificially stacked transition metal dichalcogenide twisted bilayers. ACS Nano 2014, 8, 2951–2958.

    Article  CAS  Google Scholar 

  41. Zhao, W. J.; Ribeiro, R. M.; Toh, M.; Carvalho, A.; Kloc, C.; Neto, A. H. C.; Eda, G. Origin of indirect optical transitions in few-layer MoS2, WS2, and WSe2. Nano Lett. 2013, 13, 5627–5634.

    Article  CAS  Google Scholar 

  42. Zhao, W. J.; Ghorannevis, Z.; Chu, L. Q.; Toh, M.; Kloc, C.; Tan, P. H.; Eda, G. Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. ACS Nano 2013, 7, 791–797.

    Article  CAS  Google Scholar 

  43. Yun, W. S.; Han, S. W.; Hong, S. C.; Kim, I. G.; Lee, J. D. Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX2 semiconductors (M = Mo, W; X = S, Se, Te). Phys. Rev. B 2012, 85, 033305.

    Article  Google Scholar 

  44. He, J. G.; Hummer, K.; Franchini, C. Stacking effects on the electronic and optical properties of bilayer transition metal dichalcogenides MoS2, MoSe2, WS2, and WSe2. Phys. Rev. B 2014, 89, 075409.

    Article  Google Scholar 

  45. Wang, Z. L.; Chen, Q.; Wang, J. L. Electronic structure of twisted bilayers of graphene/MoS2 and MoS2/MoS2. J. Phys. Chem. C 2015, 119, 4752–4758.

    Article  CAS  Google Scholar 

  46. Wang, G.; Marie, X.; Bouet, L.; Vidal, M.; Balocchi, A.; Amand, T.; Lagarde, D.; Urbaszek, B. Exciton dynamics in WSe2 bilayers. Appl. Phys. Lett. 2014, 105, 182105.

    Article  Google Scholar 

  47. He, Z. Y.; Xu, W. S.; Zhou, Y. Q.; Wang, X. C.; Sheng, Y. W.; Rong, Y. M.; Guo, S. Q.; Zhang, J. Y.; Smith, J. M.; Warner, J. H. Biexciton formation in bilayer tungsten disulfide. ACS Nano 2016, 10, 2176–2183.

    Article  CAS  Google Scholar 

  48. Courtade, E.; Semina, M.; Manca, M.; Glazov, M. M.; Robert, C.; Cadiz, F.; Wang, G.; Taniguchi, T.; Watanabe, K.; Pierre, M. et al. Charged excitons in monolayer WSe2: Experiment and theory. Phys. Rev. B 2017, 96, 085302.

    Article  Google Scholar 

  49. Ceballos, F.; Cui, Q. N.; Bellus, M. Z.; Zhao, H. Exciton formation in monolayer transition metal dichalcogenides. Nanoscale 2016, 8, 11681–11688.

    Article  CAS  Google Scholar 

  50. Steinleitner, P.; Merkl, P.; Nagler, P.; Mornhinweg, J.; Schüller, C.; Korn, T.; Chernikov, A.; Huber, R. Direct observation of ultrafast exciton formation in a monolayer of WSe2. Nano Lett. 2017, 17, 1455–1460.

    Article  CAS  Google Scholar 

  51. Li, Z.; Zeng, Y.; Ou, Z. W.; Zhang, T. Z.; Du, R. G.; Wu, K.; Guo, Q. B.; Jiang, W.; Xu, Y. H.; Li, T. et al. Defects inducing anomalous exciton kinetics in monolayer WS2. Nano Res. 2022, 15, 1616–1622.

    Article  CAS  Google Scholar 

  52. Schmidt, R.; Berghäuser, G.; Schneider, R.; Selig, M.; Tonndorf, P.; Malic, E.; Knorr, A.; De Vasconcellos, S. M.; Bratschitsch, R. Ultrafast coulomb-induced intervalley coupling in atomically thin WS2. Nano Lett. 2016, 16, 2945–2950.

    Article  CAS  Google Scholar 

  53. Zhao, J. X.; Zhao, W. J.; Du, W.; Su, R.; Xiong, Q. H. Dynamics of exciton energy renormalization in monolayer transition metal disulfides. Nano Res. 2020, 13, 1399–1405.

    Article  CAS  Google Scholar 

  54. Surrente, A.; Mitioglu, A. A.; Galkowski, K.; Klopotowski, L.; Tabis, W.; Vignolle, B.; Maude, D. K.; Plochocka, P. Onset of exciton-exciton annihilation in single-layer black phosphorus. Phys. Rev. B 2016, 94, 075425.

    Article  Google Scholar 

  55. Li, Z. P.; Wang, T. M.; Lu, Z. G.; Jin, C. H.; Chen, Y. W.; Meng, Y. Z.; Lian, Z.; Taniguchi, T.; Watanabe, K.; Zhang, S. B. et al. Revealing the biexciton and trion-exciton complexes in BN encapsulated WSe2. Nat. Commun. 2018, 9, 3719.

    Article  Google Scholar 

  56. Sim, S.; Lee, D.; Lee, J.; Cha, M.; Cha, S.; Heo, W.; Cho, S.; Shim, W.; Lee, K.; Yoo, J. et al. Role of weak interlayer coupling in ultrafast exciton-exciton annihilation in two-dimensional rhenium dichalcogenides. Phys. Rev. B 2020, 101, 174309.

    Article  CAS  Google Scholar 

  57. Mak, K. F.; Lee, C. G.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 115, 136805.

    Article  Google Scholar 

  58. Zhang, Y.; Chang, T. R.; Zhou, B.; Cui, Y. T.; Yan, H.; Liu, Z. K.; Schmitt, F.; Lee, J.; Moore, R.; Chen, Y. L. et al. Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. Nat. Nanotechnol. 2014, 9, 111–115.

    Article  CAS  Google Scholar 

  59. Robel, I.; Gresback, R.; Kortshagen, U.; Schaller, R. D.; Klimov, V. I. Universal size-dependent trend in auger recombination in direct-gap and indirect-gap semiconductor nanocrystals. Phys. Rev. Lett. 2009, 112, 177404.

    Article  Google Scholar 

  60. Haug, A. Band-to-band auger recombination in semiconductors. J. Phys. Chem. Solids 1988, 49, 599–605.

    Article  Google Scholar 

  61. Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I. et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 2009, 21, 395502.

    Article  Google Scholar 

  62. Schutte, W. J.; De Boer, J. L.; Jellinek, F. Crystal structures of tungsten disulfide and diselenide. J. Solid State Chem. 1987, 70, 207–209.

    Article  CAS  Google Scholar 

  63. Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the financial support from the National Natural Science Foundation of China (Nos. 22022305, 21773208, 21922305, and 21873080), the Fundamental Research Funds for the Central Universities (No. 2020XZZX002-06), and National Key Research and Development Program of China (No. 2017YFA0207700).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Linjun Wang or Haiming Zhu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Cao, B., Sun, C. et al. Controlling exciton-exciton annihilation in WSe2 bilayers via interlayer twist. Nano Res. 15, 4661–4667 (2022). https://doi.org/10.1007/s12274-022-4087-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4087-y

Keywords

Navigation