Skip to main content
Log in

Valleytronics in transition metal dichalcogenides materials

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Valley degree of freedom in the first Brillouin zone of Bloch electrons offers an innovative approach to information storage and quantum computation. Broken inversion symmetry together with the presence of time-reversal symmetry endows Bloch electrons non-zero Berry curvature and orbital magnetic moment, which contribute to the valley Hall effect and optical selection rules in valleytronics. Furthermore, the emerging transition metal dichalcogenides (TMDs) materials naturally become the ideal candidates for valleytronics research attributable to their novel structural, photonic and electronic properties, especially the direct bandgap and broken inversion symmetry in the monolayer. However, the mechanism of inter-valley relaxation remains ambiguous and the complicated manipulation of valley predominantly incumbers the realization of valleytronic devices. In this review, we systematically demonstrate the fundamental properties and tuning strategies (optical, electrical, magnetic and mechanical tuning) of valley degree of freedom, summarize the recent progress of TMD-based valleytronic devices. We also highlight the conclusion of present challenges as well as the perspective on the further investigations in valleytronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wunderlich, J.; Park, B. G.; Irvine, A. C.; Zârbo, L. P.; Rozkotová, E.; Nemec, P.; Novák, V.; Sinova, J.; Jungwirth, T. Spin hall effect transistor. Science2010, 330, 1801–1804.

    CAS  Google Scholar 

  2. Roche, S.; Åkerman, J.; Beschoten, B.; Charlier, J. C.; Chshiev, M.; Prasad Dash, S.; Dlubak, B.; Fabian, J.; Fert, A.; Guimarães, M. et al. Graphene spintronics: The E+uropean Flagship perspective. 2D Mater.2015, 2, 030202.

    Google Scholar 

  3. Parkin, S. S. P.; Hayashi, M.; Thomas, L. Magnetic domain-wall racetrack memory. Science2008, 320, 190–194.

    CAS  Google Scholar 

  4. Han, W.; Kawakami, R. K.; Gmitra, M.; Fabian, J. Graphene spintronics. Nat. Nanotechnol.2014, 9, 794–807.

    CAS  Google Scholar 

  5. Gurram, M.; Omar, S.; Van Wees, B. J. Electrical spin injection, transport, and detection in graphene-hexagonal boron nitride van der Waals heterostructures: Progress and perspectives. 2D Mater.2018, 5, 032004.

    Google Scholar 

  6. Feng, Y. P.; Shen, L.; Yang, M.; Wang, A. Z.; Zeng, M. G.; Wu, Q. Y.; Chintalapati, S.; Chang, C. R. Prospects of spintronics based on 2D materials. Wiley Interdiscip. Rev.: Comput. Mol. Sci.2017, 7, e1313.

    Google Scholar 

  7. Dankert, A.; Dash, S. P. Electrical gate control of spin current in van der Waals heterostructures at room temperature. Nat. Commun.2017, 8, 16093.

    CAS  Google Scholar 

  8. Cheng, L.; Wang, X. B.; Yang, W. F.; Chai, J. W.; Yang, M.; Chen, M. J.; Wu, Y.; Chen, X. X.; Chi, D. Z.; Goh, K. E. J. et al. Far out-of-equilibrium spin populations trigger giant spin injection into atomically thin MoS2. Nat. Phys.2019, 15, 347–351.

    CAS  Google Scholar 

  9. Liu, Y. P.; Idzuchi, H.; Fukuma, Y.; Rousseau, O.; Otani, Y.; Lew, W. S. Spin injection properties in trilayer graphene lateral spin valves. Appl. Phys. Lett.2013, 102, 033105.

    Google Scholar 

  10. Li, M. J.; Zhang, D.; Gao, Y. L.; Cao, C.; Long, M. Q. Half-metallicity and spin-polarization transport properties in transition-metal atoms single-edge-terminated zigzag a-graphyne nanoribbons. Org. Electron.2017, 44, 168–175.

    CAS  Google Scholar 

  11. Zhu, Z. W.; Collaudin, A.; Fauqué, B.; Kang, W.; Behnia, K. Field-induced polarization of Dirac valleys in bismuth. Nat. Phys.2012, 8, 89–94.

    CAS  Google Scholar 

  12. Yu, H. Y.; Cui, X. D.; Xu, X. D.; Yao, W. Valley excitons in two-dimensional semiconductors. Nat. Sci. Rev.2015, 2, 57–70.

    CAS  Google Scholar 

  13. Xu, X. D.; Yao, W.; Xiao, D.; Heinz, T. F. Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys.2014, 10, 343–350.

    CAS  Google Scholar 

  14. Nebel, C. E. Valleytronics: Electrons dance in diamond. Nat. Mater.2013, 12, 690–691.

    CAS  Google Scholar 

  15. Isberg, J.; Gabrysch, M.; Hammersberg, J.; Majdi, S.; Kovi, K. K.; Twitchen, D. J. Generation, transport and detection of valley-polarized electrons in diamond. Nat. Mater.2013, 12, 760–764.

    CAS  Google Scholar 

  16. Gunlycke, D.; White, C. T. Graphene valley filter using a line defect. Phys. Rev. Lett.2011, 106, 136806.

    CAS  Google Scholar 

  17. Guinea, F.; Katsnelson, M. I.; Geim, A. K. Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering. Nat. Phys.2010, 6, 30–33.

    CAS  Google Scholar 

  18. Friesen, M.; Rugheimer, P.; Savage, D. E.; Lagally, M. G.; Van Der Weide, D. W.; Joynt, R.; Eriksson, M. A. Practical design and simulation of silicon-based quantum-dot qubits. Phys. Rev. B2003, 67, 121301(R).

    Google Scholar 

  19. Sun, J. T.; Meng, S. The valley degree of freedom of an electron. Acta Phys. Sin.2015, 64, 187301.

    Google Scholar 

  20. Liu, Y. P.; Lew, W. S.; Liu, Z. W. Observation of anomalous resistance behavior in bilayer graphene. Nanoscale Res. Lett.2017, 12, 48.

    Google Scholar 

  21. Liu, Y. M.; Zhou, X. Y.; Zhou, M.; Long, M. Q.; Zhou, G. H. Electric field induced spin and valley polarization within a magnetically confined silicene channel. J. Appl. Phys.2014, 116, 244312.

    Google Scholar 

  22. Xiao, J.; Zhao, M.; Wang, Y.; Zhang, X. Excitons in atomically thin 2D semiconductors and their applications. Nanophotonics2017, 6, 1309–1328.

    CAS  Google Scholar 

  23. Schaibley, J. R.; Yu, H. Y.; Clark, G.; Rivera, P.; Ross, J. S.; Seyler, K. L.; Yao, W.; Xu, X. D. Valleytronics in 2D materials. Nat. Rev. Mater.2016, 1, 16055.

    CAS  Google Scholar 

  24. Mak, K. F.; Xiao, D.; Shan, J. Light-valley interactions in 2D semiconductors. Nat. Photonics2018, 12, 451–460.

    CAS  Google Scholar 

  25. Wang, J.; Long, M. Q.; Zhao, W. S.; Hu, Y.; Wang, G. F.; Chan, K. S. A valley and spin filter based on gapped graphene. J. Phys.: Condens. Matter2016, 28, 285302.

    Google Scholar 

  26. Vitale, S. A.; Nezich, D.; Varghese, J. O.; Kim, P.; Gedik, N.; Jarillo-Herrero, P.; Xiao, D.; Rothschild, M. Valleytronics: Opportunities, challenges, and paths forward. Small2018, 14, 1801483.

    Google Scholar 

  27. Wang, P.; Zhou, M.; Liu, G.; Liu, Y. M.; Long, M. Q.; Zhou, G. H. Spinand valley-dependent transport properties for metal-silicene-metal junctions. Eur. Phys. J. B2015, 88, 243.

    Google Scholar 

  28. Ye, J. L.; Niu, B. H.; Li, Y.; Li, T.; Zhang, X. H. Exciton valley dynamics in monolayer Mo1−xWxSe2 (x = 0, 0.5, 1). Appl. Phys. Lett.2017, 111, 152106.

    Google Scholar 

  29. Zhang, Q. T.; Chan, K. S.; Long, M. Q. Nearly perfect valley filter in silicene. J. Phys.: Condens. Matter2016, 28, 055301.

    Google Scholar 

  30. Zeng, H. L.; Dai, J. F.; Yao, W.; Xiao, D.; Cui, X. D. Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotechnol.2012, 7, 490–493.

    CAS  Google Scholar 

  31. Rivera, P.; Yu, H. Y.; Seyler, K. L.; Wilson, N. P.; Yao, W.; Xu, X. D. Interlayer valley excitons in heterobilayers of transition metal dichalcogenides. Nat. Nanotechnol.2018, 13, 1004–1015.

    CAS  Google Scholar 

  32. Seyler, K. L.; Zhang, D.; Huang, B.; Linpeng, X. Y.; Wilson, N. P.; Taniguchi, T.; Watanabe, K.; Yao, W.; Xiao, D.; McGuire, M. A. et al. Valley manipulation by optically tuning the magnetic proximity effect in WSe2/CrI3 heterostructures. Nano Lett.2018, 18, 3823–3828.

    CAS  Google Scholar 

  33. Mak, K. F.; He, K. L.; Shan, J.; Heinz, T. F. Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol.2012, 7, 494–498.

    CAS  Google Scholar 

  34. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science2004, 306, 666–669.

    CAS  Google Scholar 

  35. Castro Neto, A. H.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys.2009, 81, 109–162.

    CAS  Google Scholar 

  36. Xiao, D.; Yao, W.; Niu, Q. Valley-contrasting physics in graphene: Magnetic moment and topological transport. Phys. Rev. Lett.2007, 99, 236809.

    Google Scholar 

  37. Xiao, D.; Chang, M. C.; Niu, Q. Berry phase effects on electronic properties. Rev. Mod. Phys.2010, 82, 1959–2007.

    CAS  Google Scholar 

  38. Chang, M. C.; Niu, Q. Berry phase, hyperorbits, and the Hofstadter spectrum: Semiclassical dynamics in magnetic Bloch bands. Phys. Rev. B1996, 53, 7010–7023.

    CAS  Google Scholar 

  39. Gorbachev, R. V.; Song, J. C. W.; Yu, G. L.; Kretinin, A. V.; Withers, F.; Yao, W.; Mishchenko, A.; Grigorieva, I. V.; Novoselov, K. S.; Levitov, L. S. et al. Detecting topological currents in graphene superlattices. Science2014, 346, 448–451.

    CAS  Google Scholar 

  40. Zhang, Z. W.; Chen, P.; Duan, X. D.; Zang, K. T.; Luo, J.; Duan, X. F. Robust epitaxial growth of two-dimensional heterostructures, multiheterostructures, and superlattices. Science2017, 357, 788–792.

    CAS  Google Scholar 

  41. Xie, L. M. Two-dimensional transition metal dichalcogenide alloys: Preparation, characterization and applications. Nanoscale2015, 7, 18392–18401.

    CAS  Google Scholar 

  42. Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol.2012, 7, 699–712.

    CAS  Google Scholar 

  43. Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett.2010, 105, 136805.

    Google Scholar 

  44. Lopez-Sanchez, O.; Lembke, D.; Kayci, M.; Radenovic, A.; Kis, A. Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol.2013, 8, 497–501.

    CAS  Google Scholar 

  45. Liu, Y. P.; Zhang, S. Y.; He, J.; Wang, Z. M.; Liu, Z. W. Recent progress in the fabrication, properties, and devices of heterostructures based on 2D materials. Nano-Micro Lett.2019, 11, 13.

    CAS  Google Scholar 

  46. Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. J.; Loh, K. P.; Zhang, H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem.2013, 5, 263–275.

    Google Scholar 

  47. Liu, Y. P.; Cao, L. K.; Zhong, J. H.; Yu, J.; He, J.; Liu, Z. W. Synthesis of bismuth selenide nanoplates by solvothermal methods and its stacking optical properties. J. Appl. Phys.2019, 125, 035302.

    Google Scholar 

  48. Liu, Y. P.; Tom, K.; Zhang, X. W.; Lou, S.; Liu, Y.; Yao, J. Alloying effect on bright-dark exciton states in ternary monolayer MoxW1−xSe2. New J. Phys.2017, 19, 073018.

    Google Scholar 

  49. Mak, K. F.; Shan, J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photonics2016, 10, 216–226.

    CAS  Google Scholar 

  50. Splendiani, A.; Sun, L.; Zhang, Y. B.; Li, T. S.; Kim, J.; Chim, C. Y.; Galli, G.; Wang, F. Emerging photoluminescence in monolayer MoS2. Nano Lett.2010, 10, 1271–1275.

    CAS  Google Scholar 

  51. Cao, T.; Wang, G.; Han, W. P.; Ye, H. Q.; Zhu, C. R.; Shi, J. R.; Niu, Q.; Tan, P. H.; Wang, E. G.; Liu, B. L. et al. Valley-selective circular dichroism of monolayer molybdenum disulphide. Nat. Commun.2012, 3, 887.

    Google Scholar 

  52. High, A. A.; Novitskaya, E. E.; Butov, L. V.; Hanson, M.; Gossard, A. C. Control of exciton fluxes in an excitonic integrated circuit. Science2008, 321, 229–231.

    CAS  Google Scholar 

  53. Mak, K. F.; He, K. L.; Lee, C.; Lee, G. H.; Hone, J.; Heinz, T. F.; Shan, J. Tightly bound trions in monolayer MoS2. Nat. Mater.2013, 12, 207–211.

    CAS  Google Scholar 

  54. Zhang, C. D.; Johnson, A.; Hsu, C. L.; Li, L. J.; Shih, C. K. Direct imaging of band profile in single layer MoS2 on graphite: Quasiparticle energy gap, metallic edge states, and edge band bending. Nano Lett.2014, 14, 2443–2447.

    CAS  Google Scholar 

  55. Ross, J. S.; Wu, S. F.; Yu, H. Y.; Ghimire, N. J.; Jones, A. M.; Aivazian, G.; Yan, J. Q.; Mandrus, D. G.; Xiao, D.; Yao, W. et al. Electrical control of neutral and charged excitons in a monolayer semiconductor. Nat. Commun.2013, 4, 1474.

    Google Scholar 

  56. Liu, H. J.; Jiao, L.; Yang, F.; Cai, Y.; Wu, X. X.; Ho, W.; Gao, C. L.; Jia, J. F.; Wang, N.; Fan, H. et al. Dense network of one-dimensional midgap metallic modes in monolayer MoSe2 and their spatial undulations. Phys. Rev. Lett.2014, 113, 066105.

    Google Scholar 

  57. Mitioglu, A. A.; Plochocka, P.; Jadczak, J. N.; Escoffier, W.; Rikken, G. L. J. A.; Kulyuk, L.; Maude, D. K. Optical manipulation of the exciton charge state in single-layer tungsten disulfide. Phys. Rev. B2013, 88, 245403.

    Google Scholar 

  58. Zhu, B. R.; Chen, X.; Cui, X. D. Exciton binding energy of monolayer WS2. Sci. Rep.2015, 5, 9218.

    Google Scholar 

  59. Jones, A. M.; Yu, H. Y.; Ghimire, N. J.; Wu, S. F.; Aivazian, G.; Ross, J. S.; Zhao, B; Yan, J. Q.; Mandrus, D. G.; Xiao, D. et al. Optical generation of excitonic valley coherence in monolayer WSe2. Nat. Nanotechnol.2013, 8, 634–638.

    CAS  Google Scholar 

  60. He, K. L.; Kumar, N.; Zhao, L.; Wang, Z. F.; Mak, K. F.; Zhao, H.; Shan, J. Tightly bound excitons in monolayer WSe2. Phys. Rev. Lett.2014, 113, 026803.

    Google Scholar 

  61. Liu, Y. P.; Tom, K.; Wang, X.; Huang, C. M.; Yuan, H. T.; Ding, H.; Ko, C.; Suh, J.; Pan, L.; Persson, K. A. et al. Dynamic control of optical response in layered metal chalcogenide nanoplates. Nano Lett.2016, 16, 488–496.

    CAS  Google Scholar 

  62. Yamamoto, M.; Shimazaki, Y.; Borzenets, I. V.; Tarucha, S. Valley hall effect in two-dimensional hexagonal lattices. J. Phys. Soc. Jpn.2015, 84, 121006.

    Google Scholar 

  63. Xiao, D.; Liu, G. B.; Feng, W. X.; Xu, X. D.; Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett.2012, 108, 196802.

    Google Scholar 

  64. Tong, W. Y; Duan, C. G. Electrical control of the anomalous valley Hall effect in antiferrovalley bilayers. npj Quantum Mater.2017, 2, 47.

    Google Scholar 

  65. Mak, K. F.; McGill, K. L.; Park, J.; McEuen, P. L. The valley Hall effect in MoS2 transistors. Science2014, 344, 1489–1492.

    CAS  Google Scholar 

  66. Onga, M.; Zhang, Y. J.; Ideue, T.; Iwasa, Y. Exciton Hall effect in monolayer MoS2. Nat. Mater.2017, 16, 1193–1197.

    CAS  Google Scholar 

  67. Wang, Y. L.; Cong, C. X.; Shang, J. Z.; Eginligil, M.; Jin, Y. Q.; Li, G.; Chen, Y.; Peimyoo, N.; Yu, T. Unveiling exceptionally robust valley contrast in AA- and AB-stacked bilayer WS2. Nanoscale Horiz.2019, 4, 396–403.

    CAS  Google Scholar 

  68. Manca, M.; Glazov, M. M.; Robert, C.; Cadiz, F.; Taniguchi, T.; Watanabe, K.; Courtade, E.; Amand, T.; Renucci, P.; Marie, X. et al. Enabling valley selective exciton scattering in monolayer WSe2 through upconversion. Nat. Commun.2017, 8, 14927.

    CAS  Google Scholar 

  69. Jiang, C. Y.; Xu, W. G.; Rasmita, A.; Huang, Z. M.; Li, K.; Xiong, Q. H.; Gao, W. B. Microsecond dark-exciton valley polarization memory in two-dimensional heterostructures. Nat. Commun.2018, 9, 753.

    Google Scholar 

  70. Ye, Y.; Xiao, J.; Wang, H. L.; Ye, Z. L.; Zhu, H. Y.; Zhao, M.; Wang, Y.; Zhao, J. H.; Yin, X. B.; Zhang, X. Electrical generation and control of the valley carriers in a monolayer transition metal dichalcogenide. Nat. Nanotechnol.2016, 11, 598–602.

    CAS  Google Scholar 

  71. Wang, Z. F.; Chiu, Y. H.; Honz, K.; Mak, K. F.; Shan, J. Electrical tuning of interlayer exciton gases in WSe2 bilayers. Nano Lett.2018, 18, 137–143.

    CAS  Google Scholar 

  72. Unuchek, D.; Ciarrocchi, A.; Avsar, A.; Watanabe, K.; Taniguchi, T.; Kis, A. Room-temperature electrical control of exciton flux in a van der Waals heterostructure. Nature2018, 560, 340–344.

    CAS  Google Scholar 

  73. Sundaram, R. S.; Engel, M.; Lombardo, A.; Krupke, R.; Ferrari, A. C.; Avouris, P.; Steiner, M. Electroluminescence in single layer MoS2. Nano Lett.2013, 13, 1416–1421.

    CAS  Google Scholar 

  74. Ross, J. S.; Rivera, P.; Schaibley, J.; Lee-Wong, E.; Yu, H. Y.; Taniguchi, T.; Watanabe, K.; Yan, J. Q.; Mandrus, D.; Cobden, D. et al. Interlayer exciton optoelectronics in a 2D heterostructure p-n junction. Nano Lett.2017, 17, 638–643.

    CAS  Google Scholar 

  75. Ross, J. S.; Klement, P.; Jones, A. M.; Ghimire, N. J.; Yan, J. Q.; Mandrus, D. G.; Taniguchi, T.; Watanabe, K.; Kitamura, K.; Yao, W. et al. Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions. Nat. Nanotechnol.2014, 9, 268–272.

    CAS  Google Scholar 

  76. Wu, S. F.; Ross, J. S.; Liu, G. B.; Aivazian, G.; Jones, A.; Fei, Z. Y.; Zhu, W. G.; Xiao, D.; Yao, W.; Cobden, D. et al. Electrical tuning of valley magnetic moment through symmetry control in bilayer MoS2. Nat. Phys.2013, 9, 149–153.

    CAS  Google Scholar 

  77. Lee, J.; Mak, K. F.; Shan, J. Electrical control of the valley Hall effect in bilayer MoS2 transistors. Nat. Nanotechnol.2016, 11, 421–425.

    CAS  Google Scholar 

  78. Stier, A. V.; McCreary, K. M.; Jonker, B. T.; Kono, J.; Crooker, S. A. Exciton diamagnetic shifts and valley Zeeman effects in monolayer WS2 and MoS2 to 65 Tesla. Nat. Commun.2016, 7, 10643.

    CAS  Google Scholar 

  79. Nagler, P.; Ballottin, M. V.; Mitioglu, A. A.; Mooshammer, F.; Paradiso, N.; Strunk, C.; Huber, R.; Chernikov, A.; Christianen, P. C. M.; Schüller, C. et al. Giant magnetic splitting inducing near-unity valley polarization in van der Waals heterostructures. Nat. Commun.2017, 8, 1551.

    Google Scholar 

  80. MacNeill, D.; Heikes, C.; Mak, K. F.; Anderson, Z.; Kormányos, A.; Zólyomi, V.; Park, J.; Ralph, D. C. Breaking of valley degeneracy by magnetic field in monolayer MoSe2. Phys. Rev. Lett.2015, 114, 037401.

    Google Scholar 

  81. Cai, T. Y.; Yang, S. A.; Li, X.; Zhang, F.; Shi, J. R.; Yao, W.; Niu, Q. Magnetic control of the valley degree of freedom of massive Dirac fermions with application to transition metal dichalcogenides. Phys. Rev. B2013, 88, 115140.

    Google Scholar 

  82. Aivazian, G.; Gong, Z. R.; Jones, A. M.; Chu, R. L.; Yan, J.; Mandrus, D. G.; Zhang, C. W.; Cobden, D.; Yao, W.; Xu, X. Magnetic control of valley pseudospin in monolayer WSe2. Nat. Phys.2015, 11, 148–152.

    CAS  Google Scholar 

  83. Li, Y. L.; Ludwig, J.; Low, T.; Chernikov, A.; Cui, X.; Arefe, G.; Kim, Y. D.; Van Der Zande, A. M.; Rigosi, A.; Hill, H. M. et al. Valley splitting and polarization by the Zeeman effect in monolayer MoSe2. Phys. Rev. Lett.2014, 113, 266804.

    Google Scholar 

  84. Srivastava, A.; Sidler, M.; Allain, A. V.; Lembke, D. S.; Kis, A.; Imamoglu, A. Valley Zeeman effect in elementary optical excitations of monolayer WSe2. Nat. Phys.2015, 11, 141–147.

    CAS  Google Scholar 

  85. Zhu, C. R.; Wang, G.; Liu, B. L.; Marie, X.; Qiao, X. F.; Zhang, X.; Wu, X. X.; Fan, H.; Tan, P. H.; Amand, T. et al. Strain tuning of optical emission energy and polarization in monolayer and bilayer MoS2. Phys. Rev. B2013, 88, 121301.

    Google Scholar 

  86. Kim, S. J.; Choi, K.; Lee, B.; Kim, Y.; Hong, B. H. Materials for flexible, stretchable electronics: Graphene and 2D materials. Annu. Rev. Mater. Res.2015, 45, 63–84.

    CAS  Google Scholar 

  87. He, K. L.; Poole, C.; Mak, K. F.; Shan, J. Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2. Nano Lett.2013, 13, 2931–2936.

    CAS  Google Scholar 

  88. Conley, H. J.; Wang, B.; Ziegler, J. I.; Haglund, R. F. Jr.; Pantelides, S. T.; Bolotin, K. I. Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett.2013, 13, 3626–3630.

    CAS  Google Scholar 

  89. Akinwande, D.; Petrone, N.; Hone, J. Two-dimensional flexible nanoelectronics. Nat. Commun.2014, 5, 5678.

    CAS  Google Scholar 

  90. Rivera, P.; Seyler, K. L.; Yu, H. Y.; Schaibley, J. R.; Yan, J. Q.; Mandrus, D. G.; Yao, W.; Xu, X. D. Valley-polarized exciton dynamics in a 2D semiconductor heterostructure. Science2016, 351, 688–691.

    CAS  Google Scholar 

  91. Zhang, C. D.; Chuu, C. P.; Ren, X. B.; Li, M. Y.; Li, L. J.; Jin, C. H.; Chou, M. Y.; Shin, C. K. Interlayer couplings, moire patterns, and 2D electronic superlattices in MoS2/WSe2 hetero-bilayers. Sci. Adv.2017, 3, e1601459.

    Google Scholar 

  92. Xu, W. S.; Kozawa, D.; Liu, Y.; Sheng, Y. W.; Wei, K.; Koman, V. B.; Wang, S. S.; Wang, X. C.; Jiang, T.; Strano, M. S. et al. Determining the optimized interlayer separation distance in vertical stacked 2D WS2:hBN:MoS2 heterostructures for exciton energy transfer. Small2018, 14, 1703727.

    Google Scholar 

  93. Withers, F.; Del Pozo-Zamudio, O.; Mishchenko, A.; Rooney, A. P.; Gholinia, A.; Watanabe, K.; Taniguchi, T.; Haigh, S. J.; Geim, A. K.; Tartakovskii, A. I. et al. Light-emitting diodes by band-structure engineering in van der Waals heterostructures. Nat. Mater.2015, 14, 301–306.

    CAS  Google Scholar 

  94. Novoselov, K. S.; Mishchenko, A.; Carvalho, A.; Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science2016, 353, aac9439.

    CAS  Google Scholar 

  95. Jin, C. H.; Ma, E. Y.; Karni, O.; Regan, E. C.; Wang, F.; Heinz, T. F. Ultrafast dynamics in van der Waals heterostructures. Nat. Nanotechnol.2018, 13, 994–1003.

    CAS  Google Scholar 

  96. Hsu, W. T.; Lu, L. S.; Wu, P. H.; Lee, M. H.; Chen, P. J.; Wu, P. Y.; Chou, Y. C.; Jeng, H. T.; Li, L. J.; Chu, M. W. et al. Negative circular polarization emissions from WSe2/MoSe2 commensurate heterobilayers. Nat. Commun.2018, 9, 1356.

    Google Scholar 

  97. Chen, H. L.; Wen, X. W.; Zhang, J.; Wu, T. M.; Gong, Y. J.; Zhang, X.; Yuan, J. T.; Yi, C. Y.; Lou, J.; Ajayan, P. M. et al. Ultrafast formation of interlayer hot excitons in atomically thin MoS2/WS2 heterostructures. Nat. Commun.2016, 7, 12512.

    CAS  Google Scholar 

  98. Cha, S.; Noh, M.; Kim, J.; Son, J.; Bae, H.; Lee, D.; Kim, H.; Lee, J.; Shin, H. S.; Sim, S. et al. Generation, transport and detection of valley- locked spin photocurrent in WSe2-graphene-Bi2Se3 heterostructures. Nat. Nanotechnol.2018, 13, 910–914.

    CAS  Google Scholar 

  99. Kim, J.; Jin, C. H.; Chen, B.; Cai, H.; Zhao, T.; Lee, P.; Kahn, S.; Watanabe, K.; Taniguchi, T.; Tongay, S. et al. Observation of ultralong valley lifetime in WSe2/MoS2 heterostructures. Sci. Adv.2017, 3, e1700518.

    Google Scholar 

  100. Ceballos, F.; Bellus, M. Z.; Chiu, H. Y.; Zhao, H. Ultrafast charge separation and indirect exciton formation in a MoS2-MoSe2 van der Waals heterostructure. Acs Nano2014, 8, 12717–12724.

    CAS  Google Scholar 

  101. Baranowski, M.; Surrente, A.; Klopotowski, L.; Urban, J. M.; Zhang, N.; Maude, D. K.; Wiwatowski, K.; Mackowski, S.; Kung, Y. C.; Dumcenco, D. et al. Probing the interlayer exciton physics in a MoS2/MoSe2/MoS2 van der Waals heterostructure. Nano Lett.2017, 17, 6360–6365.

    CAS  Google Scholar 

  102. Mai, C.; Barrette, A.; Yu, Y. F.; Semenov, Y. G.; Kim, K. W.; Cao, L. Y.; Gundogdu, K. Many-body effects in valleytronics: Direct measurement of valley lifetimes in single-layer MoS2. Nano Lett.2014, 14, 202–206.

    CAS  Google Scholar 

  103. Moody, G.; Tran, K.; Lu, X. B.; Autry, T.; Fraser, J. M.; Mirin, R. P.; Yang, L.; Li, X. Q.; Silverman, K. L. Microsecond valley lifetime of defect-bound excitons in monolayer WSe2. Phys. Rev. Lett.2018, 121, 057403.

    CAS  Google Scholar 

  104. Hsu, W. T.; Chen, Y. L.; Chen, C. H.; Liu, P. S.; Hou, T. H.; Li, L. J.; Chang, W. H. Optically initialized robust valley-polarized holes in monolayer WSe2. Nat. Commun.2015, 6, 8963.

    CAS  Google Scholar 

  105. Rivera, P.; Schaibley, J. R.; Jones, A. M.; Ross, J. S.; Wu, S. F.; Aivazian, G.; Klement, P.; Seyler, K.; Clark, G.; Ghimire, N. J. et al. Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures. Nat. Commun.2015, 6, 6242.

    CAS  Google Scholar 

  106. Wan, Y.; Xiao, J.; Li, J. Z.; Fang, X.; Zhang, K.; Fu, L.; Li, P.; Song, Z. G.; Zhang, H.; Wang, Y. L. et al. Epitaxial single-layer MoS2 on GaN with enhanced valley helicity. Adv. Mater.2018, 30, 1703888.

    Google Scholar 

  107. Zhang, Y. J.; Oka, T.; Suzuki, R.; Ye, J. T.; Iwasa, Y. Electrically switchable chiral light-emitting transistor. Science2014, 344, 725–728.

    CAS  Google Scholar 

  108. Yang, W. H.; Shang, J. Z.; Wang, J. P.; Shen, X. N.; Cao, B. C.; Peimyoo, N.; Zou, C. J.; Chen, Y.; Wang, Y. L.; Cong, C. X. et al. Electrically tunable valley-light emitting diode (vLED) based on CVD-grown monolayer WS2. Nano Lett.2016, 16, 1560–1567.

    CAS  Google Scholar 

  109. Ciarrocchi, A.; Unuchek, D.; Avsar, A.; Watanabe, K.; Taniguchi, T.; Kis, A. Polarization switching and electrical control of interlayer excitons in two-dimensional van der Waals heterostructures. Nat. Photonics2019, 13, 131–136.

    CAS  Google Scholar 

  110. Tong, W. Y.; Gong, S. J.; Wan, X. G.; Duan, C. G. Concepts of ferrovalley material and anomalous valley Hall effect. Nat. Commun.2016, 7, 13612.

    CAS  Google Scholar 

Download references

Acknowledgements

Y. P. L would like to acknowledge Prof. Zhu for valuable discussions. This work is supported by the Innovation-driven Project (No. 2017CX019) and Youth Innovation Team (No. 2019012) of CSU, Hunan Key Research and Development Project (No. 2019GK233), and partially by the National Natural Science Foundation of China (No. 61775241).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanping Liu or Zongwen Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Gao, Y., Zhang, S. et al. Valleytronics in transition metal dichalcogenides materials. Nano Res. 12, 2695–2711 (2019). https://doi.org/10.1007/s12274-019-2497-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2497-2

Keywords

Navigation