Skip to main content
Log in

Observation of double indirect interlayer exciton in MoSe2/WSe2 heterostructure

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Interlayer excitons (IXS) are electron-hole pairs bound in the spatial separation layer by the Coulomb effect, and their lifetime is several orders of magnitude longer than that of direct excitons, providing an essential platform for long-lived exciton devices. The recent emergence of the van der Waals heterostructure (HS), which combines two layers of different transitional metal dichalcogenides (TMDs), has created new opportunities for IX research. Herein, we demonstrate the observation of double indirect interlayer excitons in the MoSe2/WSe2 HS using photoluminescence (PL) spectroscopy. The intensities of the two peaks are essentially the same, and the energy difference is 22 meV, which is perfectly in line with the calculation result of density functional theory. Furthermore, the experience of variable excitation power also proves that the splitting of the IXs originates from the conduction band spin-splitting of MoSe2. The observation results provide a promising platform for further exploring the new physical properties and optoelectronic phenomena of TMD HS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Okada, M.; Kutana, A.; Kureishi, Y.; Kobayashi, Y.; Saito, Y.; Saito, T.; Watanabe, K.; Taniguchi, T.; Gupta, S.; Miyata, Y. et al. Direct and indirect interlayer excitons in a van der waals heterostructure of hBN/WS2/MoS2/hBN. ACS Nano 2018, 12, 2498–2505.

    Article  CAS  Google Scholar 

  2. Liu, Y. P.; Gao, Y. J.; Zhang, S. Y.; He, J.; Yu, J.; Liu, Z. W. Valleytronics in transition metal dichalcogenides materials. Nano Res. 2019, 12, 2695–2711.

    Article  CAS  Google Scholar 

  3. Zhong, J. H.; Yu, J.; Cao, L. K.; Zeng, C.; Ding, J. N.; Cong, C. X.; Liu, Z. W.; Liu, Y. P. High-performance polarization-sensitive photodetector based on a few-layered PdSe2 nanosheet. Nano Res. 2020, 13, 1780–1786.

    Article  CAS  Google Scholar 

  4. Sun, Z.; Beaumariage, J.; Cao, Q. R.; Watanabe, K.; Taniguchi, T.; Hunt, B. M.; Snoke, D. Observation of the interlayer exciton gases in WSe2-p: WSe2 heterostructures. ACS Photonics 2020, 7, 1622–1627.

    Article  CAS  Google Scholar 

  5. Yu, J.; Kuang, X. F.; Gao, Y. J.; Wang, Y. P.; Chen, K. Q.; Ding, Z. K.; Liu, J.; Cong, C. X.; He, J.; Liu, Z. W. et al. Direct observation of the linear dichroism transition in two-dimensional palladium diselenide. Nano Lett. 2020, 20, 1172–1182.

    Article  CAS  Google Scholar 

  6. Choi, C.; Huang, J. H.; Cheng, H. C.; Kim, H.; Vinod, A. K.; Bae, S. H.; Özçelik, V. O.; Grassi, R.; Chae, J.; Huang, S. W. et al. Enhanced interlayer neutral excitons and trions in trilayer van der Waals heterostructures. npj 2D Mater. Appl. 2018, 2, 30.

    Article  Google Scholar 

  7. Liu, Y. P.; Zhang, S. Y.; He, J.; Wang, Z. M.; Liu, Z. W. Recent progress in the fabrication, properties, and devices of heterostructures based on 2D materials. Nano-Micro Lett. 2019, 11, 13.

    Article  CAS  Google Scholar 

  8. Zeng, C.; Zhong, J. H.; Wang, Y. P.; Yu, J.; Cao, L. K.; Zhao, Z. L.; Ding, J. N.; Cong, C. X.; Yue, X. F.; Liu, Z. W. et al. Observation of split defect-bound excitons in twisted WSe2/WSe2 homostructure. Appl. Phys. Lett. 2020, 117, 153103.

    Article  CAS  Google Scholar 

  9. Yu, J.; Kuang, X. F.; Li, J. Z.; Zhong, J. H.; Zeng, C.; Cao, L. K.; Liu, Z. W.; Zeng, Z. X. S.; Luo, Z. Y.; He, T. C. et al. Giant nonlinear optical activity in two-dimensional palladium diselenide. Nat. Commun. 2021, 12, 1083.

    Article  CAS  Google Scholar 

  10. Liu, Y. P.; Zeng, C.; Zhong, J. H.; Ding, J. N.; Wang, Z. M.; Liu, Z. W. Spintronics in two-dimensional materials. Nano-Micro Lett. 2020, 12, 93.

    Article  CAS  Google Scholar 

  11. Schaibley, J. R.; Yu, H. Y.; Clark, G.; Rivera, P.; Ross, J. S.; Seyler, K. L.; Yao, W.; Xu, X. D. Valleytronics in 2D materials. Nat. Rev. Mater. 2016, 1, 16055.

    Article  CAS  Google Scholar 

  12. Shi, J. W.; Zhu, J. R.; Wu, X. X.; Zheng, B. Y.; Chen, J.; Sui, X. Y.; Zhang, S.; Shi, J.; Du, W. N.; Zhong, Y. G. et al. Enhanced trion emission and carrier dynamics in monolayer WS2 coupled with plasmonic nanocavity. Adv. Opt. Mater. 2020, 8, 2001147.

    Article  CAS  Google Scholar 

  13. Massicotte, M.; Schmidt, P.; Vialla, F.; Schadler, K. G.; Reserbat-Plantey, A.; Watanabe, K.; Taniguchi, T.; Tielrooij, K. J.; Koppens, F. H. L. Picosecond photoresponse in van der Waals heterostructures. Nat. Nanotechnol. 2016, 11, 42–46.

    Article  CAS  Google Scholar 

  14. Ma, Q.; Andersen, T. I.; Nair, N. L.; Gabor, N. M.; Massicotte, M.; Lui, C. H.; Young, A. F.; Fang, W. J.; Watanabe, K.; Taniguchi, T. et al. Tuning ultrafast electron thermalization pathways in a van der Waals heterostructure. Nat. Phys. 2016, 12, 455–459.

    Article  CAS  Google Scholar 

  15. Withers, F.; Del Pozo-Zamudio, O.; Mishchenko, A.; Rooney, A. P.; Gholinia, A.; Watanabe, K.; Taniguchi, T.; Haigh, S. J.; Geim, A. K.; Tartakovskii, A. I. et al. Light-emitting diodes by band-structure engineering in van der Waals heterostructures. Nat. Mater. 2015, 14, 301–306.

    Article  CAS  Google Scholar 

  16. Lukman, S.; Ding, L.; Xu, L.; Tao, Y.; Riis-Jensen, A. C.; Zhang, G.; Wu, Q. Y. S.; Yang, M.; Luo, S.; Hsu, C. et al. High oscillator strength interlayer excitons in two-dimensional heterostructures for mid-infrared photodetection. Nat. Nanotechnol. 2020, 15, 675–682.

    Article  CAS  Google Scholar 

  17. Molina-Mendoza, A. J.; Giovanelli, E.; Paz, W. S.; Niño, M. A.; Island, J. O.; Evangeli, C.; Aballe, L.; Foerster, M.; Van Der Zant, H. S. J.; Rubio-Bollinger, G. et al. Franckeite as a naturally occurring van der Waals heterostructure. Nat. Commun. 2017, 8, 14409.

    Article  CAS  Google Scholar 

  18. Paul, K. K.; Kim, J. H.; Lee, Y. H. Hot carrier photovoltaics in van der Waals heterostructures. Nat. Rev. Phys. 2021, 3, 178–192.

    Article  CAS  Google Scholar 

  19. Zhong, J. H.; Zeng, C.; Yu, J.; Cao, L. K.; Ding, J. N.; Liu, Z. W.; Liu, Y. P. Direct observation of enhanced performance in suspended ReS2 photodetectors. Opt. Express 2021, 29, 3567–3574.

    Article  CAS  Google Scholar 

  20. Calman, E. V.; Fowler-Gerace, L. H.; Choksy, D. J.; Butov, L. V.; Nikonov, D. E.; Young, I. A.; Hu, S.; Mishchenko, A.; Geim, A. K. Indirect excitons and trions in MoSe2/WSe2 van der waals heterostructures. Nano Lett. 2020, 20, 1869–1875.

    Article  CAS  Google Scholar 

  21. Ross, J. S.; Klement, P.; Jones, A. M.; Ghimire, N. J.; Yan, J. Q.; Mandrus, D. G.; Taniguchi, T.; Watanabe, K.; Kitamura, K.; Yao, W. et al. Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions. Nat. Nanotechnol. 2014, 9, 268–272.

    Article  CAS  Google Scholar 

  22. Koperski, M.; Nogajewski, K.; Arora, A.; Cherkez, V.; Mallet, P.; Veuillen, J. Y.; Marcus, J.; Kossacki, P.; Potemski, M. Single photon emitters in exfoliated WSe2 structures. Nat. Nanotechnol. 2015, 10, 503–506.

    Article  CAS  Google Scholar 

  23. Xu, X. D.; Yao, W.; Xiao, D.; Heinz, T. F. Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys. 2014, 10, 343–350.

    Article  CAS  Google Scholar 

  24. Miller, B.; Steinhoff, A.; Pano, B.; Klein, J.; Jahnke, F.; Holleitner, A.; Wurstbauer, U. Long-lived direct and indirect interlayer excitons in van der waals heterostructures. Nano Lett. 2017, 17, 5229–5237.

    Article  CAS  Google Scholar 

  25. Jin, C. H.; Regan, E. C.; Yan, A. M.; Utama, M. I. B.; Wang, D. Q.; Zhao, S. H.; Qin, Y.; Yang, S. J.; Zheng, Z. R.; Shi, S. Y. et al. Observation of moiré excitons in WSe2/WS2 heterostructure superlattices. Nature 2019, 567, 76–80.

    Article  CAS  Google Scholar 

  26. Yu, J.; Kuang, X. F.; Zhong, J. H.; Cao, L. K.; Zeng, C.; Ding, J. N.; Cong, C. X.; Wang, S. H.; Dai, P. F.; Yue, X. F. et al. Observation of double indirect interlayer exciton in WSe2/WS2 heterostructure. Opt. Express 2020, 28, 13260–13268.

    Article  CAS  Google Scholar 

  27. Yuan, L.; Zheng, B. Y.; Kunstmann, J.; Brumme, T.; Kuc, A. B.; Ma, C.; Deng, S. B.; Blach, D.; Pan, A. L.; Huang, L. B. Twist-angle-dependent interlayer exciton diffusion in WS2-WSe2 heterobilayers. Nat. Mater. 2020, 19, 617–623.

    Article  CAS  Google Scholar 

  28. Cao, L. K.; Zhong, J. H.; Yu, J.; Zeng, C.; Ding, J. N.; Cong, C. X.; Yue, X. F.; Liu, Z. W.; Liu, Y. P. Valley-polarized local excitons in WSe2/WS2 vertical heterostructures. Opt. Express 2020, 28, 22135–22143.

    Article  CAS  Google Scholar 

  29. Shi, J.; Li, Y. Z.; Zhang, Z. P.; Feng, W. Q.; Wang, Q.; Ren, S. L.; Zhang, J.; Du, W. N.; Wu, X. X.; Sui, X. Y. et al. Twisted-angle-dependent optical behaviors of intralayer excitons and trions in WS2/WSe2 heterostructure. ACS Photonics 2019, 6, 3082–3091.

    Article  CAS  Google Scholar 

  30. Ceballos, F.; Bellus, M. Z.; Chiu, H. Y.; Zhao, H. Ultrafast charge separation and indirect exciton formation in a MoS2-MoSe2 van der waals heterostructure. ACS Nano 2014, 8, 12717–12724.

    Article  CAS  Google Scholar 

  31. Zhang, N.; Surrente, A.; Baranowski, M.; Maude, D. K.; Gant, P.; Castellanos-Gomez, A.; Plochocka, P. Moiré intralayer excitons in a MoSe2/MoS2 heterostructure. Nano Lett. 2018, 18, 7651–7657.

    Article  CAS  Google Scholar 

  32. Deilmann, T.; Thygesen, K. S. Interlayer trions in the MoS2/WS2 van der waals heterostructure. Nano Lett. 2018, 18, 1460–1465.

    Article  CAS  Google Scholar 

  33. Chen, K.; Wan, X.; Wen, J. X.; Xie, W. G.; Kang, Z. W.; Zeng, X. L.; Chen, H. J.; Xu, J. B. Electronic properties of MoS2-WS2 heterostructures synthesized with two-step lateral epitaxial strategy. ACS Nano 2015, 9, 9868–9876.

    Article  CAS  Google Scholar 

  34. Doan, M. H.; Jin, Y.; Adhikari, S.; Lee, S.; Zhao, J.; Lim, S. C.; Lee, Y. H. Charge transport in MoS2/WSe2 van der waals heterostructure with tunable inversion layer. ACS Nano 2017, 11, 3832–3840.

    Article  CAS  Google Scholar 

  35. Zhu, X. Y.; Monahan, N. R.; Gong, Z. Z.; Zhu, H. M.; Williams, K. W.; Nelson, C. A. Charge transfer excitons at van der waals interfaces. J. Am. Chem. Soc. 2015, 137, 8313–8320.

    Article  CAS  Google Scholar 

  36. Nagler, P.; Plechinger, G.; Ballottin, M. V.; Mitioglu, A.; Meier, S.; Paradiso, N.; Strunk, C.; Chernikov, A.; Christianen, P. C. M.; Schüller, C. et al. Interlayer exciton dynamics in a dichalcogenide monolayer heterostructure. 2D Mater. 2017, 4, 025112.

    Article  Google Scholar 

  37. Rivera, P.; Seyler, K. L.; Yu, H. Y.; Schaibley, J. R.; Yan, J. Q.; Mandrus, D. G.; Yao, W.; Xu, X. D. Valley-polarized exciton dynamics in a 2D semiconductor heterostructure. Science 2016, 351, 688–691.

    Article  CAS  Google Scholar 

  38. Nayak, P. K.; Horbatenko, Y.; Ahn, S.; Kim, G.; Lee, J. U.; Ma, K. Y.; Jang, A. R.; Lim, H.; Kim, D.; Ryu, S. et al. Probing evolution of twist-angle-dependent interlayer excitons in MoSe2/WSe2 van der waals heterostructures. ACS Nano 2017, 11, 4041–4050.

    Article  CAS  Google Scholar 

  39. Hanbicki, A. T.; Currie, M.; Kioseoglou, G.; Friedman, A. L.; Jonker, B. T. Measurement of high exciton binding energy in the monolayer transition-metal dichalcogenides WS2 and WSe2. Solid State Commun. 2015, 203, 16–20.

    Article  CAS  Google Scholar 

  40. Tonndorf, P.; Schmidt, R.; Böttger, P.; Zhang, X.; Börner, J.; Liebig, A.; Albrecht, M.; Kloc, C.; Gordan, O.; Zahn, D. R. T. et al. Photoluminescence emission and Raman response of monolayer MoS2, MoSe2, and WSe2. Opt. Express 2013, 21, 4908–4916.

    Article  CAS  Google Scholar 

  41. Ross, J. S.; Wu, S. F.; Yu, H. Y.; Ghimire, N. J.; Jones, A. M.; Aivazian, G.; Yan, J. Q.; Mandrus, D. G.; Xiao, D.; Yao, W. et al. Electrical control of neutral and charged excitons in a monolayer semiconductor. Nat. Commun. 2013, 4, 1474.

    Article  Google Scholar 

  42. Jones, A. M.; Yu, H. Y.; Ghimire, N. J.; Wu, S. F.; Aivazian, G.; Ross, J. S.; Zhao, B.; Yan, J. Q.; Mandrus, D. G.; Xiao, D. et al. Optical generation of excitonic valley coherence in monolayer WSe2. Nat. Nanotechnol. 2013, 8, 634–638.

    Article  CAS  Google Scholar 

  43. Li, C. C.; Gong, M.; Chen, X. D.; Li, S.; Zhao, B. W.; Dong, Y.; Guo, G. C.; Sun, F. W. Temperature dependent energy gap shifts of single color center in diamond based on modified Varshni equation. Diam. Relat. Mater. 2017, 74, 119–124.

    Article  CAS  Google Scholar 

  44. Joshi, J.; Zhou, T.; Krylyuk, S.; Davydov, A. V.; Žutić, I.; Vora, P. M. Localized excitons in NbSe2-MoSe2 heterostructures. ACS Nano 2020, 14, 8528–8538.

    Article  CAS  Google Scholar 

  45. Venanzi, T.; Arora, H.; Erbe, A.; Pashkin, A.; Winnerl, S.; Helm, M.; Schneider, H. Exciton localization in MoSe2 monolayers induced by adsorbed gas molecules. Appl. Phys. Lett. 2019, 114, 172106.

    Article  Google Scholar 

  46. Rivera, P.; Schaibley, J. R.; Jones, A. M.; Ross, J. S.; Wu, S. F.; Aivazian, G.; Klement, P.; Seyler, K.; Clark, G.; Ghimire, N. J. et al. Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures. Nat. Commun. 2015, 6, 6242.

    Article  CAS  Google Scholar 

  47. Hanbicki, A. T.; Chuang, H. J.; Rosenberger, M. R.; Hellberg, C. S.; Sivaram, S. V.; McCreary, K. M.; Mazin, I. I.; Jonker, B. T. Double indirect interlayer exciton in a MoSe2/WSe2 van der waals heterostructure. ACS Nano 2018, 12, 4719–4726.

    Article  CAS  Google Scholar 

  48. Kormányos, A.; Zólyomi, V.; Drummond, N. D.; Burkard, G. Spinorbit coupling, quantum dots, and qubits in monolayer transition metal dichalcogenides. Phys. Rev. X 2014, 4, 011034.

    Google Scholar 

  49. Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561.

    Article  CAS  Google Scholar 

  50. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

    Article  CAS  Google Scholar 

  51. Klimeš, J.; Bowler, D. R.; Michaelides, A. Van der waals density functionals applied to solids. Phys. Rev. B 2011, 83, 195131.

    Article  Google Scholar 

  52. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful for the support from the National Natural Science Foundation of China (No. 61775241), Hunan province key research and development project (No. 2019GK2233), the Hunan Science Fund for Distinguished Young Scholar (No. 2020JJ2059), Youth Innovation Team of Central South University (No. 2019012), Hunan Province Graduate Research and Innovation Project (No. CX20190177), and the Science and Technology Innovation Basic Research Project of Shenzhen (No. JCYJ20180307151237242). Also, Y. P. L. acknowledges the support provided by the Central South University of the State Key Laboratory of High-Performance Complex Manufacturing Project (No. ZZYJKT2020-12). Z. W. L. thanks the funding support from the Australian Research Council (ARC Discovery Projects) (Nos. DP210103539 and DP180102976).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanping Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, B., Wang, Y., Zhong, J. et al. Observation of double indirect interlayer exciton in MoSe2/WSe2 heterostructure. Nano Res. 15, 2661–2666 (2022). https://doi.org/10.1007/s12274-021-3728-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3728-x

Keywords

Navigation