Skip to main content
Log in

Dynamic control of moiré potential in twisted WS2—WSe2 heterostructures

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Moiré superlattices are formed by a lattice mismatch or twist angle in two-dimensional materials, which can generate periodical moiré potentials leading to strong changes in the band structure, resulting in new quantum phenomena. However, the experimental engineering of in-situ deformation of moiré heterostructures remains deficient. Here, we demonstrate a dynamic local deformation of the twisted heterostructures using a diamond anvil cell (DAC), enabling in-situ dynamic modulation of moiré potential in twisted WS2—WSe2 heterostructures at room temperature. Deformation of the twisted heterostructure increases the moiré potential, causing a red shift of the moiré exciton resonance, and observed the red shift of the intralayer exciton resonance up to 16.3 meV (less than 1.1 GPa). The blue shift of the interlayer excitons of twisted WS2—WSe2 heterostructures shows an evident transition of the pressure sensitive exciton, induced by the dominant effect of modifying the band structure on optical properties. Combined with the spectral changes of pressurized Raman, which further demonstrated that the DAC can efficiently regulate the interlayer coupling. Our results offer an effective strategy for in-situ dynamic modulation of moiré potential, providing a promising platform for the development of novel quantum devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rivera, P.; Seyler, K. L.; Yu, H. Y.; Schaibley, J. R.; Yan, J. Q.; Mandrus, D. G.; Yao, W.; Xu, X. D. Valley-polarized exciton dynamics in a 2D semiconductor heterostructure. Science 2016, 351, 688–691.

    Article  CAS  Google Scholar 

  2. Yu, J.; Kuang, X. F.; Zhong, J. H.; Cao, L. K.; Zeng, C.; Ding, J. N.; Cong, C. X.; Wang, S. H.; Dai, P. F.; Yue, X. F. et al. Observation of double indirect interlayer exciton in WSe2/WS2 heterostructure. Opt. Express 2020, 28, 13260–13268.

    Article  CAS  Google Scholar 

  3. Wu, B.; Wang, Y. P.; Zhong, J. H.; Zeng, C.; Madoune, Y.; Zhu, W. T.; Liu, Z. W.; Liu, Y. P. Observation of double indirect interlayer exciton in MoSe2/WSe2 heterostructure. Nano Res. 2022, 15, 2661–2666.

    Article  CAS  Google Scholar 

  4. Cao, L. K.; Zhong, J. H.; Yu, J.; Zeng, C.; Ding, J. N.; Cong, C. X.; Yue, X. F.; Liu, Z. W.; Liu, Y. P. Valley-polarized local excitons in WSe2/WS2 vertical heterostructures. Opt. Express 2020, 28, 22135–22143.

    Article  CAS  Google Scholar 

  5. Zeng, C.; Zhong, J. H.; Wang, Y. P.; Yu, J.; Cao, L. K.; Zhao, Z. L.; Ding, J. N.; Cong, C. X.; Yue, X. F.; Liu, Z. W. et al. Observation of split defect-bound excitons in twisted WSe2/WSe2 homostructure. Appl. Phys. Lett. 2020, 117, 153103.

    Article  CAS  Google Scholar 

  6. Abbas, G.; Li, Y.; Wang, H. D.; Zhang, W. X.; Wang, C.; Zhang, H. Recent advances in twisted structures of flatland materials and crafting moiré superlattices. Adv. Funct. Mater. 2020, 30, 2000878.

    Article  CAS  Google Scholar 

  7. Cao, Y.; Fatemi, V.; Demir, A.; Fang, S.; Tomarken, S. L.; Luo, J. Y.; Sanchez-Yamagishi, J. D.; Watanabe, K.; Taniguchi, T.; Kaxiras, E. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 2018, 556, 80–84.

    Article  CAS  Google Scholar 

  8. Chen, G. R.; Jiang, L. L.; Wu, S.; Lyu, B. S.; Li, H. Y.; Chittari, B. L.; Watanabe, K.; Taniguchi, T.; Shi, Z. W.; Jung, J. et al. Evidence of a gate-tunable Mott insulator in a trilayer graphene moiré superlattice. Nat. Phys. 2019, 15, 237–241.

    Article  CAS  Google Scholar 

  9. Regan, E. C.; Wang, D. Q.; Jin, C. H.; Utama, M. I. B.; Gao, B. N.; Wei, X.; Zhao, S. H.; Zhao, W. Y.; Zhang, Z. C.; Yumigeta, K. et al. Mott and generalized Wigner crystal states in WSe2/WS2 moiéé superlattices. Nature 2020, 579, 359–363.

    Article  CAS  Google Scholar 

  10. Zheng, Z. R.; Ma, Q.; Bi, Z.; de la Barrera, S.; Liu, M. H.; Mao, N. N.; Zhang, Y.; Kiper, N.; Watanabe, K.; Taniguchi, T. et al. Unconventional ferroelectricity in moiré heterostructures. Nature 2020, 588, 71–76.

    Article  CAS  Google Scholar 

  11. Ulstrup, S.; Koch, R. J.; Singh, S.; McCreary, K. M.; Jonker, B. T.; Robinson, J. T.; Jozwiak, C.; Rotenberg, E.; Bostwick, A.; Katoch, J. et al. Direct observation of minibands in a twisted graphene/WS2 bilayer. Sci. Adv. 2020, 6, eaay6104.

    Article  CAS  Google Scholar 

  12. Zhang, L.; Zhang, Z.; Wu, F. C.; Wang, D. Q.; Gogna, R.; Hou, S. C.; Watanabe, K.; Taniguchi, T.; Kulkarni, K.; Kuo, T. et al. Twistangle dependence of moiré excitons in WS2/MoSe2 heterobilayers. Nat. Commun. 2020, 11, 5888.

    Article  CAS  Google Scholar 

  13. Sung, J.; Zhou, Y.; Scuri, G.; Zólyomi, V.; Andersen, T. I.; Yoo, H.; Wild, D. S.; Joe, A. Y.; Gelly, R. J.; Heo, H. et al. Broken mirror symmetry in excitonic response of reconstructed domains in twisted MoSe2/MoSe2 bilayers. Nat. Nanotechnol. 2020, 15, 750–754.

    Article  CAS  Google Scholar 

  14. Tang, Y. H.; Li, L. Z.; Li, T. X.; Xu, Y.; Liu, S.; Barmak, K.; Watanabe, K.; Taniguchi, T.; MacDonald, A. H.; Shan, J. et al. Simulation of Hubbard model physics in WSe2/WS2 moiré superlattices. Nature 2020, 579, 353–358.

    Article  CAS  Google Scholar 

  15. Li, H.; Papadakis, R.; Hussain, T.; Karton, A.; Liu, J. W. Moiré patterns arising from bilayer graphone/graphene superlattice. Nano Res. 2020, 13, 1060–1064.

    Article  CAS  Google Scholar 

  16. Cai, L.; Duan, H. L.; Liu, Q. H.; Wang, C.; Tan, H.; Hu, W.; Hu, F. C.; Sun, Z. H.; Yan, W. S. Ultrahigh-temperature ferromagnetism in MoS2 Moiré superlattice/graphene hybrid heterostructures. Nano Res. 2021, 14, 4182–4187.

    Article  CAS  Google Scholar 

  17. Chen, Y. Z.; Cao, B. C.; Sun, C.; Wang, Z. D.; Zhou, H. Z.; Wang, L. J.; Zhu, H. M. Controlling exciton-exciton annihilation in WSe2 bilayers via interlayer twist. Nano Res. 2022, 15, 4661–4667.

    Article  CAS  Google Scholar 

  18. Yin, Y.; Wang, G. Y.; Liu, C.; Huang, H. L.; Chen, J. Y.; Liu, J. Y.; Guan, D. D.; Wang, S. Y.; Li, Y.; Liu, C. H. et al. Moiré-pattern-modulated electronic structures in Sb2Te3/graphene heterostructure. Nano Res. 2022, 15, 1115–1119.

    Article  CAS  Google Scholar 

  19. Liu, Y. P.; Zeng, C.; Yu, J.; Zhong, J. H.; Li, B.; Zhang, Z. W.; Liu, Z. W.; Wang, Z. M.; Pan, A. L.; Duan, X. D. Moiré superlattices and related moiré excitons in twisted van der Waals heterostructures. Chem. Soc. Rev. 2021, 50, 6401–6422.

    Article  CAS  Google Scholar 

  20. Cao, Y.; Fatemi, V.; Fang, S.; Watanabe, K.; Taniguchi, T.; Kaxiras, E.; Jarillo-Herrero, P. Unconventional superconductivity in magicangle graphene superlattices. Nature 2018, 556, 43–50.

    Article  CAS  Google Scholar 

  21. Chen, G. R.; Sharpe, A. L.; Gallagher, P.; Rosen, I. T.; Fox, E. J.; Jiang, L. L.; Lyu, B. S.; Li, H. Y.; Watanabe, K.; Taniguchi, T. et al. Signatures of tunable superconductivity in a trilayer graphene moiré superlattice. Nature 2019, 572, 215–219.

    Article  CAS  Google Scholar 

  22. Sharpe, A. L.; Fox, E. J.; Barnard, A. W.; Finney, J.; Watanabe, K.; Taniguchi, T.; Kastner, M. A.; Goldhaber-Gordon, D. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science 2019, 365, 605–608.

    Article  CAS  Google Scholar 

  23. Qu, L. L.; Lan, D.; Si, L.; Ma, C.; Wang, S. S.; Xu, L. Q.; Zhang, K. X.; Jin, F.; Zhang, Z. X.; Hua, E. D. et al. Asymmetric interfaces and high-TC ferromagnetic phase in La0.67Ca0.33MnO3/SrRuO3 superlattices. Nano Res. 2021, 14, 3621–3628.

    Article  CAS  Google Scholar 

  24. Parker, D. E.; Soejima, T.; Hauschild, J.; Zaletel, M. P.; Bultinck, N. Strain-induced quantum phase transitions in magic-angle graphene. Phys. Rev. Lett. 2021, 127, 027601.

    Article  CAS  Google Scholar 

  25. Guo, H. L.; Zhang, X.; Lu, G. Moiré excitons in defective van der Waals heterostructures. Proc. Natl. Acad. Sci. USA 2021, 32, e2105468118.

  26. Tran, K.; Moody, G.; Wu, F. C.; Lu, X. B.; Choi, J.; Kim, K.; Rai, A.; Sanchez, D. A.; Quan, J. M.; Singh, A. et al. Evidence for moiré excitons in van der Waals heterostructures. Nature 2019, 567, 71–75.

    Article  CAS  Google Scholar 

  27. Seyler, K. L.; Rivera, P.; Yu, H. Y.; Wilson, N. P.; Ray, E. L.; Mandrus, D. G.; Yan, J. Q.; Yao, W.; Xu, X. D. Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature 2019, 567, 66–70.

    Article  CAS  Google Scholar 

  28. Zhang, N.; Surrente, A.; Baranowski, M.; Maude, D. K.; Gant, P.; Castellanos-Gomez, A.; Plochocka, P. Moiré intralayer excitons in a MoSe2/MoS2 heterostructure. Nano Lett. 2018, 18, 7651–7657.

    Article  CAS  Google Scholar 

  29. Andersen, T. I.; Scuri, G.; Sushko, A.; De Greve, K.; Sung, J.; Zhou, Y.; Wild, D. S.; Gelly, R. J.; Heo, H.; Bérubé, D. et al. Excitons in a reconstructed moiré potential in twisted WSe2/WSe2 homobilayers. Nat. Mater. 2021, 20, 480–487.

    Article  CAS  Google Scholar 

  30. Yu, H. Y.; Liu, G. B.; Tang, J. J.; Xu, X. D.; Yao, W. Moiré excitons: From programmable quantum emitter arrays to spin-orbit-coupled artificial lattices. Sci. Adv. 2017, 3, e1701696.

    Article  Google Scholar 

  31. Alexeev, E. M.; Ruiz-Tijerina, D. A.; Danovich, M.; Hamer, M. J.; Terry, D. J.; Nayak, P. K.; Ahn, S.; Pak, S.; Lee, J.; Sohn, J. I. et al. Resonantly hybridized excitons in moiré superlattices in van der Waals heterostructures. Nature 2019, 567, 81–86.

    Article  CAS  Google Scholar 

  32. Zhao, W. Y.; Regan, E. C.; Wang, D. Q.; Jin, C. H.; Hsieh, S.; Wang, Z. Y.; Wang, J. L.; Wang, Z. L.; Yumigeta, K.; Blei, M. et al. Dynamic tuning of moiré excitons in a WSe2/WS2 heterostructure via mechanical deformation. Nano Lett. 2021, 21, 8910–8916.

    Article  CAS  Google Scholar 

  33. Wang, X.; Zhu, J. Y.; Seyler, K. L.; Rivera, P.; Zheng, H. Y.; Wang, Y. Q.; He, M. H.; Taniguchi, T.; Watanabe, K.; Yan, J. Q. et al. Moiré trions in MoSe2/WSe2 heterobilayers. Nat. Nanotechnol. 2021, 16, 1208–1213.

    Article  CAS  Google Scholar 

  34. Förg, M.; Baimuratov, A. S.; Kruchinin, S. Y.; Vovk, I. A.; Scherzer, J.; Förste, J.; Funk, V.; Watanabe, K.; Taniguchi, T.; Högele, A. Moiré excitons in MoSe2-WSe2 heterobilayers and heterotrilayers. Nat. Commun. 2021, 12, 1656.

    Article  Google Scholar 

  35. Shi, J.; Li, Y. Z.; Zhang, Z. P.; Feng, W. Q.; Wang, Q.; Ren, S. L.; Zhang, J.; Du, W. N.; Wu, X. X.; Sui, X. Y. et al. Twisted-angle-dependent optical behaviors of intralayer excitons and trions in WS2/WSe2 heterostructure. ACS Photonics 2019, 6, 3082–3091.

    Article  CAS  Google Scholar 

  36. Gutiérrez, H. R.; Perea-López, N.; Elías, A. L.; Berkdemir, A.; Wang, B.; Lv, R. T.; López-Urías, F.; Crespi, V. H.; Terrones, H.; Terrones, M. Extraordinary room-temperature photoluminescence in triangular WS2 monolayers. Nano Lett. 2013, 13, 3447–3454.

    Article  Google Scholar 

  37. Sahin, H.; Tongay, S.; Horzum, S.; Fan, W.; Zhou, J.; Li, J.; Wu, J.; Peeters, F. M. Anomalous Raman spectra and thickness-dependent electronic properties of WSe2. Phys. Rev. B 2013, 87, 165409.

    Article  Google Scholar 

  38. Hanbicki, A. T.; Currie, M.; Kioseoglou, G.; Friedman, A. L.; Jonker, B. T. Measurement of high exciton binding energy in the monolayer transition-metal dichalcogenides WS2 and WSe2. Solid State Commun. 2015, 203, 16–20.

    Article  CAS  Google Scholar 

  39. Zhao, W. J.; Ghorannevis, Z.; Amara, K. K.; Pang, J. R.; Toh, M.; Zhang, X.; Kloc, C.; Tan, P. H.; Eda, G. Lattice dynamics in mono- and few-layer sheets of WS2 and WSe2. Nanoscale 2013, 5, 9677–9683.

    Article  CAS  Google Scholar 

  40. Li, H.; Lu, G.; Wang, Y. L.; Yin, Z. Y.; Cong, C. X.; He, Q. Y.; Wang, L.; Ding, F.; Yu, T.; Zhang, H. Mechanical exfoliation and characterization of single- and few-layer nanosheets of WSe2, TaS2, and TaSe2. Small 2013, 9, 1974–1981.

    Article  CAS  Google Scholar 

  41. Chiu, M. H.; Li, M. Y.; Zhang, W. J.; Hsu, W. T.; Chang, W. H.; Terrones, M.; Terrones, H.; Li, L. J. Spectroscopic signatures for interlayer coupling in MoS2-WSe2 van der Waals stacking. ACS Nano 2014, 8, 9649–9656.

    Article  CAS  Google Scholar 

  42. Wang, K.; Huang, B.; Tian, M. K.; Ceballos, F.; Lin, M. W.; Mahjouri-Samani, M.; Boulesbaa, A.; Puretzky, A. A.; Rouleau, C. M.; Yoon, M. et al. Interlayer coupling in twisted WSe2/WS2 bilayer heterostructures revealed by optical spectroscopy. ACS Nano 2016, 10, 6612–6622.

    Article  CAS  Google Scholar 

  43. Xia, J.; Yan, J. X.; Wang, Z. H.; He, Y. M.; Gong, Y. J.; Chen, W. Q.; Sum, T. C.; Liu, Z.; Ajayan, P. M.; Shen, Z. X. Strong coupling and pressure engineering in WSe2-MoSe2 heterobilayers. Nat. Phys. 2021, 17, 92–98.

    Article  CAS  Google Scholar 

  44. Dybała, F.; Polak, M. P.; Kopaczek, J.; Scharoch, P.; Wu, K.; Tongay, S.; Kudrawiec, R. Pressure coefficients for direct optical transitions in MoS2, MoSe2, WS2, and WSe2 crystals and semiconductor to metal transitions. Sci. Rep. 2016, 6, 26663.

    Article  Google Scholar 

  45. Wu, F. C.; Lovorn, T.; MacDonald, A. H. Theory of optical absorption by interlayer excitons in transition metal dichalcogenide heterobilayers. Phys. Rev. B 2018, 97, 035306.

    Article  CAS  Google Scholar 

  46. Wu, F. C.; Lovorn, T.; MacDonald, A. H. Topological exciton bands in moiré heterojunctions. Phys. Rev. Lett. 2017, 118, 147401.

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge support from the National Natural Science Foundation of China (No. 61775241), Hunan province key research and development project (No. 2019GK2233), Hunan Provincial Science Fund for Distinguished Young Scholars (No. 2020JJ2059), the Youth Innovation Team (No. 2019012) of CSU, the Science and Technology Innovation Basic Research Project of Shenzhen (No. JCYJ20190806144418859), the National Natural Science Foundation of China (Nos. 62090035 and U19A2090), and the Key Program of Science and Technology Department of Hunan Province (Nos. 2019XK2001 and 2020XK2001). The authors are also thankful for the support of the High-Performance Complex Manufacturing Key State Lab Project, Central South University (No. ZZYJKT2020-12). Z. W. L. thanks the support from the Australian Research Council (ARC Discovery Project, DP180102976).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanping Liu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Zheng, H., Ding, J. et al. Dynamic control of moiré potential in twisted WS2—WSe2 heterostructures. Nano Res. 15, 7688–7694 (2022). https://doi.org/10.1007/s12274-022-4579-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4579-9

Keywords

Navigation