Skip to main content
Log in

Transgenic microalgae expressing Escherichia coli AppA phytase as feed additive to reduce phytate excretion in the manure of young broiler chicks

  • Biotechnological Products and Process Engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Microbial phytases are widely used as feed additive to increase phytate phosphorus utilization and to reduce fecal phytates and inorganic phosphate (iP) outputs. To facilitate the process of application, we engineered an Escherichia coli appA phytase gene into the chloroplast genome of the model microalga, Chlamydomonas reinhardtii, and isolated homoplasmic plastid transformants. The catalytic activity of the recombinant E. coli AppA can be directly detected in the whole-cell lysate, termed Chlasate, prepared by freeze-drying the transgenic cell paste with liquid nitrogen. The E. coli AppA in the Chlasate has a pH and temperature optima of 4.5 and 60°C, respectively, which are similar to those described in the literature. The phytase-expressed Chlasate contains 10 phytase units per gram dry matter at pH 4.5 and 37°C. Using this transgenic Chlasate at 500 U/kg of diet for young broiler chicks, the fecal phytate excretion was reduced, and the iP was increased by 43% and 41%, respectively, as compared to those of the chicks fed with only the basal diet. The effectiveness of the Chlasate to break down the dietary phytates is compatible with the commercial Natuphos fungal phytase. Our data provide the first evidence of functional expression of microbial phytase in microalgae and demonstrate the proof of concept of using transgenic microalgae as a food additive to deliver dietary enzymes with no need of protein purification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Barnes D, Franklin S, Schultz J, Henry R, Brown E, Coragliotti A, Mayfield SP (2005) Contribution of 5 ′- and 3 ′-untranslated regions of plastid mRNAs to the expression of Chlamydomonas reinhardtii chloroplast genes. Mol Genet Genomics 274(6):625–636. doi:10.1007/s00438-005-0055-y

    Article  CAS  Google Scholar 

  • Beena K, Udgaonkar JB, Varadarajan R (2004) Effect of signal peptide on the stability and folding kinetics of maltose binding protein. Biochemist 43(12):3608–3619. doi:10.1021/bi0360509

    Article  CAS  Google Scholar 

  • Chen PS, Toribara TY, Warner H (1956) Microdetermination of phosphorus. Anal Chem 28(11):1756–1758. doi:10.1021/ac60119a033

    Article  CAS  Google Scholar 

  • Crea F, De Stefano C, Milea D, Sammartano S (2008) Formation and stability of phytate complexes in solution. Coord Chem Rev 252(10–11):1108–1120

    Article  CAS  Google Scholar 

  • Dassa J, Marck C, Boquet PL (1990) The complete nucleotide sequence of the Escherichia coli gene appA reveals significant homology between pH 2.5 acid phosphatase and glucose-1-phosphatase. J Bacteriol 172(9):5497–5500

    CAS  Google Scholar 

  • Franklin S, Ngo B, Efuet E, Mayfield SP (2002) Development of a GFP reporter gene for Chlamydomonas reinhardtii chloroplast. Plant J 30(6):733–744. doi:10.1046/j.1365-313X.2002.01319.x

    Article  CAS  Google Scholar 

  • Gao Y, Shang C, Maroof MAS, Biyashev RM, Grabau EA, Kwanyuen P, Burton JW, Buss GR (2007) A modified colorimetric method for phytic acid analysis in soybean. Crop Sci 47(5):1797–1803. doi:10.2135/cropsci2007.03.0122

    Article  CAS  Google Scholar 

  • Golovan S, Wang G, Zhang J, Forsberg CW (2000) Characterization and overproduction of the Escherichia coli appA encoded bifunctional enzyme that exhibits both phytase and acid phosphatase activites. Can J Microbiol 46:59–71

    Article  CAS  Google Scholar 

  • Golovan SP, Hayes MA, Phillips JP, Forsberg CW (2001a) Transgenic mice expressing bacterial phytase as a model for phosphorus pollution control. Nat Biotechnol 19(5):429–433

    Article  CAS  Google Scholar 

  • Golovan SP, Meidinger RG, Ajakaiye A, Cottrill M, Wiederkehr MZ, Barney DJ, Plante C, Pollard JW, Fan MZ, Hayes MA, Laursen J, Hjorth JP, Hacker RR, Phillips JP, Forsberg CW (2001b) Pigs expressing salivary phytase produce low-phosphorus manure. Nat Biotechnol 19(8):741–745

    Article  CAS  Google Scholar 

  • Greiner R, Konietzny U (2006) Phytase for food application. Food Technol Biotechnol 44(2):125–140

    CAS  Google Scholar 

  • Greiner R, Konietzny U, Jany KD (1993) Purification and characterization of two phytases from Escherichia coli. Arch Biochem Biophys 303(1):107–113

    Article  CAS  Google Scholar 

  • Haefner S, Knietsch A, Scholten E, Braun J, Lohscheidt M, Zelder O (2005) Biotechnological production and applications of phytases. Appl Microbiol Biotechnol 68(5):588–597. doi:10.1007/s00253-005-0005-y

    Article  CAS  Google Scholar 

  • Harris EH, Burkhart BD, Gillham NW, Boynton JE (1989) Antibiotic resistance mutations in the chloroplast 16S and 23S rRNA genes of Chlamydomonas reinhardtii: correlation of genetic and physical maps of the chloroplast genome. Genetics 123:281–292

    CAS  Google Scholar 

  • Huang H, Luo H, Yang P, Meng K, Wang Y, Yuan T, Bai Y, Yao B (2006) A novel phytase with preferable characteristics from Yersinia intermedia. Biochem Biophys Res Commun 350(4):884–889

    Article  CAS  Google Scholar 

  • Khan Z, Bhadouria P, Bisen PS (2005) Nutritional and therapeutic potential of Spirulina. Curr Pharm Biotechnol 6(5):373–379

    Article  CAS  Google Scholar 

  • Kim Y, Lee J, Kim H, Yu J, Oh T (1998) Cloning of the thermostable phytase gene (phy) from Bacillus sp. DS11 and its overexpression in Escherichia coli. FEMS Microbiol Lett 162:185–191

    Article  CAS  Google Scholar 

  • Kim Y, Kim H, Lee J, Kim K, Lee S (2006) Molecular cloning of the phytase gene from Citrobacter braakii and its expression in Saccharomyces cerevisiae. Biotechnol Lett 28:33–38

    Article  CAS  Google Scholar 

  • Kindle KL, Richards KL, Stern DB (1991) Engineering the chloroplast genome: techniques and capabilities for chloroplast transformation in Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 88(5):1721–1725

    Article  CAS  Google Scholar 

  • Kulshreshtha A, Zacharia JA, Jarouliya U, Bhadauriya P, Prasad G, Bisen PS (2008) Spirulina in health care management. Curr Pharm Biotechnol 9(5):400–405

    Article  CAS  Google Scholar 

  • Kumar V, Sinha AK, Makkar HPS, Becker K (2010) Dietary roles of phytate and phytase in human nutrition: a review. Food Chem 120(4):945–959

    Article  CAS  Google Scholar 

  • Li J, Hegeman CE, Hanlon RW, Lacy GH, Denbow DM, Grabau EA (1997) Secretion of active recombinant phytase from soybean cell-suspension cultures. Plant Physiol 114(3):1103–1111. doi:10.1104/pp.114.3.1103

    Article  CAS  Google Scholar 

  • Luo H, Huang H, Yang P, Wang Y, Yuan T, Wu N, Yao B, Fan Y (2007) A novel phytase appA from Citrobacter amalonaticus CGMCC 1696: gene cloning and overexpression in Pichia pastoris. Curr Microbiol 55:185–192

    Article  CAS  Google Scholar 

  • Mayfield SP, Manuell AL, Chen S, Wu J, Tran M, Siefker D, Muto M, Marin-Navarro J (2007) Chlamydomonas reinhardtii chloroplasts as protein factories. Curr Opin Biotechnol 18(2):126–133. doi:10.1016/j.copbio.2007.02.001

    Article  CAS  Google Scholar 

  • Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ, Witman GB, Terry A, Salamov A, Fritz-Laylin LK, Maréchal-Drouard L, Marshall WF, Qu L-H, Nelson DR, Sanderfoot AA, Spalding MH, Kapitonov VV, Ren Q, Ferris P, Lindquist E, Shapiro H, Lucas SM, Grimwood J, Schmutz J, Cardol P, Cerutti H, Chanfreau G, Chen C-L, Cognat Vr, Croft MT, Dent R, Dutcher S, Fernández E, Fukuzawa H, González-Ballester D, González-Halphen D, Hallmann A, Hanikenne M, Hippler M, Inwood W, Jabbari K, Kalanon M, Kuras R, Lefebvre PA, Lemaire SpD, Lobanov AV, Lohr M, Manuell A, Meier I, Mets L, Mittag M, Mittelmeier T, Moroney JV, Moseley J, Napoli C, Nedelcu AM, Niyogi K, Novoselov SV, Paulsen IT, Pazour G, Purton S, Ral J-P, Riaño-Pachón DM, Riekhof W, Rymarquis L, Schroda M, Stern D, Umen J, Willows R, Wilson N, Zimmer SL, Allmer J, Balk J, Bisova K, Chen C-J, Elias M, Gendler K, Hauser C, Lamb MR, Ledford H, Long JC, Minagawa J, Page MD, Pan J, Pootakham W, Roje S, Rose A, Stahlberg E, Terauchi AM, Yang P, Ball S, Bowler C, Dieckmann CL, Gladyshev VN, Green P, Jorgensen R, Mayfield S, Mueller-Roeber B, Rajamani S, Sayre RT, Brokstein P, Dubchak I, Goodstein D, Hornick L, Huang YW, Jhaveri J, Luo Y, Martínez D, Ngau WCA, Otillar B, Poliakov A, Porter A, Szajkowski L, Werner G, Zhou K, Grigoriev IV, Rokhsar DS, Grossman AR (2007) The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318(5848):245–250. doi:10.1126/science.1143609

    Article  CAS  Google Scholar 

  • Miksch G, Kleist S, Friehs K, Flaschel E (2002) Overexpression of the phytase from Escherichia coli and its extracellular production in bioreactors. Appl Microbiol Biotechnol 59(6):685–694. doi:10.1007/s00253-002-1071-z

    Article  CAS  Google Scholar 

  • Mullaney EJ, Ullah AHJ (2003) The term phytase comprises several different classes of enzymes. Biochem Biophys Res Commun 312(1):179–184. doi:10.1016/j.bbrc.2003.09.176

    Article  CAS  Google Scholar 

  • Nyannor EKD, Williams P, Bedford MR, Adeola O (2007) Corn expressing an Escherichia coli-derived phytase gene: a proof-of-concept nutritional study in pigs. J Anim Sci 85(8):1946–1952. doi:10.2527/jas.2007-0037

    Article  CAS  Google Scholar 

  • Peng R-H, Yao Q-H, Xiong A-S, Cheng Z-M, Li Y (2006) Codon-modifications and an endoplasmic reticulum-targeting sequence additively enhance expression of an Aspergillus phytase gene in transgenic canola. Plant Cell Rep 25(2):124–132. doi:10.1007/s00299-005-0036-y

    Article  CAS  Google Scholar 

  • Raboy V (2002) Progress in breeding low phytate crops. J Nutr 132(3):503S–505S

    Google Scholar 

  • Rao DE, Rao KV, Reddy TP, Reddy VD (2009) Molecular characterization, physicochemical properties, known and potential applications of phytases: an overview. Crit Rev Biotechol 29(2):182–198

    Article  CAS  Google Scholar 

  • Rasala B, Muto M, Lee P, Jager M, Cardoso R, Behnke C, Kirk P, Hokanson C, Crea R, Mendez M, Mayfield S (2010) Production of therapeutic proteins in algae, analysis of expression of seven human proteins in the chloroplast of Chlamydomonas reinhardtii. Plant Biotechnol J 8(6):719–733

    Article  CAS  Google Scholar 

  • Reddy NR (2002) Occurrence, distribution, content, and dietary intake of phytate. In: Reddy NR, Sathe SK (eds) Food phytates, 1st edn. CRC Press, Boca Raton, pp 25–51

    Google Scholar 

  • Rimbach G, Pallauf J, Moehring J, Kraemer K, Minihane AM (2008) Effect of dietary phytate and microbial phytase on mineral and trace element bioavailability. Curr Top Nutraceut R 6(3):131–144

    CAS  Google Scholar 

  • Rosenberg JN, Oyler GA, Wilkinson L, Betenbaugh MJ (2008) A green light for engineered algae: redirecting metabolism to fuel a biotechnology revolution. Curr Opin Biotechnol 19(5):430–436

    Article  CAS  Google Scholar 

  • Specht E, Miyake-Stoner S, Mayfield S (2010) Micro-algae come of age as a platform for recombinant protein production. Biotechnol Lett 32(10):1373–1383

    Article  CAS  Google Scholar 

  • Surzycki R, Greenham K, Kitayama K, Dibal F, Wagner R, Rochaix J-D, Ajam T, Surzycki S (2009) Factors effecting expression of vaccines in microalgae. Biologicals 37(3):133–138

    Article  CAS  Google Scholar 

  • Tran M, Zhou B, Pettersson PL, Gonzalez MJ, Mayfield SP (2009) Synthesis and assembly of a full-length human monoclonal antibody in algal chloroplasts. Biotechnol Bioeng 104(4):663–673. doi:10.1002/bit.22446

    CAS  Google Scholar 

  • Ullah AHJ, Sethumadhavan K, Mullaney EJ, Ziegelhoffer T, Austin-Phillips S (2002) Cloned and expressed fungal phyA gene in alfalfa produces a stable phytase. Biochem Biophys Res Commun 290(4):1343–1348

    Article  CAS  Google Scholar 

  • Ullah AHJ, Sethumadhavan K, Mullaney EJ, Ziegelhoffer T, Austin-Phillips S (2003) Fungal phyA gene expressed in potato leaves produces active and stable phytase. Biochem Biophys Res Commun 306(2):603–609

    Article  CAS  Google Scholar 

  • van Hartingsveldt W, van Zeijl CMJ, Harteveld GM, Gouka RJ, Suykerbuyk MEG, Luiten RGM, van Paridon PA, Selten GCM, Veenstra AE, van Gorcom RFM, van den Hondel CAMJJ (1993) Cloning, characterization and overexpression of the phytase-encoding gene (phyA) of Aspergillus niger. Gene 127(1):87–94

    Article  Google Scholar 

  • Vats P, Bhattacharyya MS, Banerjee UC (2005) Use of phytases (myo-inositolhexakisphosphate phosphohydrolases) for combatting environmental pollution: a biological approach. Crit Rev Environ Sci Technol 35(5):469–486. doi:10.1080/10643380590966190

    Article  CAS  Google Scholar 

  • Wang X, Brandsma M, Tremblay R, Maxwell D, Jevnikar AM, Huner N, Ma S (2008) A novel expression platform for the production of diabetes-associated autoantigen human glutamic acid decarboxylase (hGAD65). BMC Biotechnol 8:87. doi:10.1186/1472-6750-1188-1187

    Article  Google Scholar 

  • Watanabe F, Takenaka S, Kittaka-Katsura H, Ebara S, Miyamoto E (2002) Characterization and bioavailability of vitamin B-12-compounds from edible algae. J Nutr Sci Vitaminol 48(5):325–331

    CAS  Google Scholar 

Download references

Acknowledgments

James Umen, Shyh-Forng Guo and Kara Valz are acknowledged for discussion, assistance, and various comments on experimental design and execution. We also thank Byung-Chul Oh for phytase activity assay of the Bacillus BPP transformants, Kofavet Special for the contribution of Natuphos 5,000® L, and Young Kyo Yoon and Sang-Eun Lee for technical support of the broiler chick experiment. This work was supported by the IFEZ Authority and by the WCU program of the Korean Ministry of Education, Science, and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Meng-Chiang Kuo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoon, SM., Kim, S.Y., Li, K.F. et al. Transgenic microalgae expressing Escherichia coli AppA phytase as feed additive to reduce phytate excretion in the manure of young broiler chicks. Appl Microbiol Biotechnol 91, 553–563 (2011). https://doi.org/10.1007/s00253-011-3279-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3279-2

Keywords

Navigation