Skip to main content
Log in

Diversity of eukaryotic algae

  • Papers
  • Published:
Biodiversity & Conservation Aims and scope Submit manuscript

Abstract

Algae are ubiquitous. They are the primary producers for all the oceans and seas, an area that covers 71% of the Earth's surface. Algae also occur in freshwater lakes, ponds and streams as well as on and in soil, rocks, ice, snow, plants and animals. In total, 40% of global photosynthesis is contributed by algae. The algae are tremendously diverse. These are at least seven distinct phylogenetic lineages that arose independently during geological time and that evolved at different rates (based upon molecular clocks). Consequently, the algaein toto do not form a single, cohesive group, and they must be considered a polyphyletic assemblage. The red algal lineage has approximately 5000 recognized species (excluding nomenclatural synonyms, superfluous names, etc.) that are extant, and an estimated 500 to 15 000 new species remain to be described. The green algal lineage has approximately 16 000 recognized extant species and up to 100 000 species that remain to be described. The chromophyte lineage has approximately 15 000 recognized extant species and from one to ten million species that remain to be described. The dinophycean lineage (primarily dinoflagellates) has approximately 3000 recognized, extant species and workers estimate that from 500 to 8000 species remain to be described. The euglenophyte lineage has approximately 900 recognized extant species, and experts estimate that up to 1000 species remain to be described. The cryptophyte lineage is undergoing total revision and the numbers of species is very uncertain; perhaps 200 extant species are recognized and 1000 species remain to be described. The glaucophyte lineage has 13 recognized species, and perhaps several dozen species remain to be described. Since the 1960s, clonal culture followed by electron microscopic examination is often required before an alga can be identified or described as new. Recently, electron microscopy is being augmented by, or replaced by, gene sequence comparisons. Both electron microscopy and molecular sequencing are time consuming and expensive methods that slow the descriptions of new species. Time consuming methods for describing new algal species, a reduction in the number of algal systematists, a reduction in funds to support systematic research, and phycologically unexplored geographical areas act synergistically to hamper the rate of accessing algal biodiversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersen, R.A. (1991) The cytoskeleton of chromophyte algae.Protoplasma 164, 143–59.

    Google Scholar 

  • Andersen, R.A. and Wetherbee, R. (1992) Microtubules of the flagellar apparatus are active during prey capture in the chrysophycean algaEpipyxis pulchra.Protoplasma 166, 8–20.

    Google Scholar 

  • Anderson, G.C. and Zeutschel, R.P. (1970) Release of dissolved organic matter by marine phytoplankton in coastal and offshore areas of the northeast Pacific Ocean.Limnol. Oceanogr. 15, 402–7.

    Google Scholar 

  • Antia, N.J. Cheng, J.Y., Foyle, R.A.J. and Percival, E. (1979) Marine cryptomonad starch from autolysis of glycerol-grownChroomonas salina.J. Phycol. 15, 57–62.

    Google Scholar 

  • Ariztia, E.V., Andersen, R.A. and Sogin, M.L. (1991) A new phylogeny for chromophyte algae using 16S-like rRNA sequences fromMallomonas papillosa (Synurophyceae) andTribonema aequale (Xanthophyceae).J. Phycol. 27, 428–36.

    Google Scholar 

  • Asmund, B. and Kristiansen, J. (1986) The genusMallomonas (Chrysophyceae). A taxonomic survey based on the ultrastructure of silica scales and bristles.Opera Bot. 85, 1–128.

    Google Scholar 

  • Bhattacharya, D., Elwood, H.J., Goff, L. and Sogin, M.L. (1990) Phylogeny ofGracilaria lamaneiformis (Rhodophyta) based on sequence analysis of its small subunit ribosomal RNA coding region.J. Phycol. 26, 181–6.

    Google Scholar 

  • Bjørnland, T. and Liaaen-Jensen, S. (1989) Distribution patterns in relation to chromophyte phylogeny and systematics. InThe Chromophyte Algae, Problems and Perspectives. (J.C. Green, B.S.C. Leadbeater and W.L. Diver, eds.) pp. 37–60. Oxford: Clarendon Press.

    Google Scholar 

  • Bold, H.C. (1973)Morphology of Plants. 3rd Edition. New York: Harper and Row.

    Google Scholar 

  • Bold, H.C. and Wynne, M.J. (1985)Introduction to the Algae. 2nd Edition. Englewood Cliffs, New Jersey: Prentice-Hall, Inc.

    Google Scholar 

  • Bolin, B., Degens, E.T., Duvigneaud, P. and Kempe, S. (1977) The global biogeochemical carbon cycle. InThe global carbon cycle. (B. Bolin, E.T. Degens, S. Kempe and P. Ketner, eds.) pp. 1–53. New York: J. Wiley & Sons Inc.

    Google Scholar 

  • Booth, B.C., Lewin, J. and Lorenzen, C.J. (1988) Spring and summer growth rates of subarctic Pacific phytoplankton assemblages determined from carbon uptake and cell volumes estimated using epifluorescence microscopy.Mar. Biol. 98, 287–98.

    Google Scholar 

  • Broadwater, S. and Scott, J. (1983) Fibrous vacuole associated organelles (FVAOs) in the Florideophyceae: a new interpretation of the ‘appareil cinetique’.Phycologia 22, 225–33.

    Google Scholar 

  • Buchheim, M.A., Turmel, M., Zimmer, E.A. and Chapman, R.L. (1990) Phylogeny ofChlamydomonas (Chlorophyta) based on cladistic analysis of nuclear 18S rRNA sequence data.J. Phycol. 26, 689–99.

    Google Scholar 

  • Chapman, V.J. and Chapman, D.J. (1976) Life forms in the algae.Bot. Mar. 19, 65–74.

    Google Scholar 

  • Cochran-Stafira, D.L. and Andersen, R.A. (1984) Diatom flora of a kettle-hole bog in relation to hydrarch succession zones.Hydrobiol. 109, 265–73.

    Google Scholar 

  • Coleman, A.W. (1959) Sexual isolation inPandorina morum.J. Protozool. 6, 249–64.

    Google Scholar 

  • Coleman, A.W. (1977) Sexual and genetic isolation in the cosmopolitan algal speciesPandorina morum.Amer. J. Bot. 64, 361–8.

    Google Scholar 

  • Corliss, J.O. (1984) The Kingdom Protista and its 45 phyla.BioSystems 17, 87–126.

    Google Scholar 

  • Corliss, J.O. (1987) Protistan phylogeny and eukaryogenesis.Int. Rev. Cytol. 100, 319–70.

    Google Scholar 

  • de Saedeleer, H. (1929) Notules systematiques. VI.Paraphysomonas.Ann. Protist. T. 21, 177–8.

    Google Scholar 

  • Dodge, J.D. (1973)The Fine Structure of Algal Cells. New York: Academic Press.

    Google Scholar 

  • Douglas, S.E., Murphy, C.A., Spencer, D.F. and Gray, M.W. (1991) Cryptomonad algae are evolutionary chimaeras of two phylogenetically distinct unicellular eukaryotes.Nature 350, 148–51.

    Google Scholar 

  • Duxbury, A.C. and Duxbury, A.B. (1989)Introduction to the World's Oceans. Dubuque: Wm. Brown Publications.

    Google Scholar 

  • Egan, P.F. and Trainor, F.R. (1990) Phenotypic plasticity inScenedesmus communis (Chlorophyceae). I. Relationship ofS. communis toS. komerekii.J. Phycol. 26, 367–76.

    Google Scholar 

  • Eppley, R.W. and Sloan, P.R. (1965) Carbon balance experiments with marine phytoplankton.J. Fish. Res. Bd. Can. 22, 1083–97.

    Google Scholar 

  • Fenchel, T. (1988) Marine plankton food chains.Ann. Rev. Ecol. Syst. 19, 19–38.

    Google Scholar 

  • Fogg, G.E. (1962) Extracellular products. InPhysiology and Biochemistry of Algae. (R.A. Lewin, ed.) pp. 475–89. New York: Academic Press.

    Google Scholar 

  • Fogg, G.E. (1966) The extracellular products of algae.Oceanogr. Mar. Biol. Annu. Rev. 4, 95–212.

    Google Scholar 

  • Gallagher, J.C. (1982) Physiological variation and electrophoretic banding patterns of genetically different seasonal populations ofSkeletonema costatum (Bacillariophyceae).J. Phycol. 18, 148–62.

    Google Scholar 

  • Gaines, G. and Elbrächter, M. (1987) Heterotrophic nutrition. InThe Biology of Dinoflagellates. (F.J.R. Taylor, ed.) pp. 224–68. London: Blackwell Scientific Publishing.

    Google Scholar 

  • Gantt, E. (1990) Pigmentation and photoacclimation. InBiology of the Red Algae. (K.M. Cole and R.G. Sheath, eds.) pp. 203–19. New York: Cambridge University Press.

    Google Scholar 

  • Garbary, D. (1976) Life-forms of algae and their distribution.Bot. Mar. 19, 97–106.

    Google Scholar 

  • Gillott, M.A. and Gibbs, S.P. (1980) The cryptomonad nucleomorph: Its ultrastructure and evolutionary significance.J. Phycol. 16, 558–68.

    Google Scholar 

  • Glover, H.E., Smith, A.E. and Shapiro, L.P. (1985) diurnal variations in photosynthetic rates: comparisons of ultraplankton with a larger phytoplankton size fraction.J. Plank. Res. 7, 519–35.

    Google Scholar 

  • Goff, L.J. and Coleman, A.W. (1988) The use of plastid DNA restriction endonuclease patterns in delineating red algal species and populations.J. Physcol. 24, 357–68.

    Google Scholar 

  • Guiry, M.D. (1990) Sporangia and spores. InBiology of the Red Algae. (K.M. Cole and R.G. Sheath, eds.) pp. 347–76. New York: Cambridge University Press.

    Google Scholar 

  • Harvey, H.W. (1950) On the production of living matter in the sea off Plymouth.J. Mar. Biol. Assoc. UK 29, 660–6.

    Google Scholar 

  • Hegewald, E. and Silva, P.C. (1988) An annotated catalogue ofScenedesmus and nomenclaturally related genera including original descriptions and figures.Biblio. Physcol. 80, 1–587.

    Google Scholar 

  • Hellebust, J.A. (1988) Polysaccharides produced by chromophyte microalgae. InPolysaccharides from microalgae: a new agro-industry. (J. Ramus and M.J. Jones, eds.) pp. 13–9, Beaufort, NC: Duke University Marine Laboratory.

    Google Scholar 

  • Hill, D.R.A. and Rowan, K.S. (1989) The biliproteins of the Cryptophyceae.Phycologia 28, 455–63.

    Google Scholar 

  • Hommersand, M.H. and Fredericq, S. (1990) Sexual reproduction and cystocarp development. InBiology of the Red Algae. (K.M. Cole and R.G. Sheath, eds.) pp. 305–45. New York: Cambridge University Press.

    Google Scholar 

  • Hutchinson, G.E. (1961) Paradox of the plankton.Amer. Nat. 95, 137–45.

    Google Scholar 

  • Iwanoff, F. (1899) Beitrag zur kenntniss der morphologie und systematik der Chrysomonaden.Bull. Acad. Imp. Sci. St Petersbourg 11, 247–62.

    Google Scholar 

  • Jacobson, D.M. and Anderson, D.M. (1986) Thecate heterotrophic dinoflagellates: feeding behavior and mechanisms.J. Phycol. 22, 258–69.

    Google Scholar 

  • Jacobson, D.M. and Anderson, D.M. (1992) Ultrastructure of the feeding apparatus and myonemal system of the heterphic dinoflagellateProtoperidinium spinulosum.J. Phycol. 28, 69–82.

    Google Scholar 

  • Jeffrey, S.W. (1989) Chlorophyllc pigments and their distribution in the chromophyte algae. InThe Chromophyte Algae. Problems and Perspectives (J.C. Green, B.S.C. Leadbeater and W.L. Diver, eds) pp. 13–36. Oxford: Clarendon Press.

    Google Scholar 

  • Kain, J.M. and Norton, T.A. (1990) Marine Ecology. InBiology of the Red Algae (K.M. Cole and R.G. Sheath, eds.) pp. 377–422. New York: Cambridge University Press.

    Google Scholar 

  • Kantz, T.S., Theriot, E.C., Zimmer, E.A. and Chapman, R.L. (1990) the Pleurastrophyceae and Micromonadophyceae: a cladistic analysis of nuclear rRNA sequence data.J. Phycol. 26, 711–21.

    Google Scholar 

  • Kies, L. (1979) Zur systematischen Einordnung vonCyanophora paradoxa, Gloeochaete wittrochiana untGlaucocystis nostochinearum.Ber. Dtsch. Bot. Ges. 92, 445–54.

    Google Scholar 

  • Kies, L. and Kremer, B.P. (1990) Phylum Glaucocystophyta. InHandbook of Protoctista. (L. Margulis, J.C. Corliss, M. Melkonian and D.J. Chapman, eds.) pp. 152–66. Boston,Jones and Bartlett Publ.

    Google Scholar 

  • Kiss, J.Z., Vasconcelos, A.C. and Triemer, R.E. (1987) Structure of the euglenoid storage carbohydrate, paramylon.Amer. J. Bot. 74, 877–82.

    Google Scholar 

  • Kiss, J.Z., Roberts, E.M., Brown Jr, R.M. and Triemer, R.E. (1988) X-ray and dissolution studies of paramylon storage granules fromEuglena, Protoplasma 146, 150–6.

    Google Scholar 

  • Kowallik, K.V. (1989) Molecular aspects and phylogenetic implications of plastid genomes of certain chromophytes. InThe Chromophyte Algae. Problems and Persectives (J.C. Green, B.S.C. Leadbeater and W.L. Diver, eds) pp. 101–24. Oxford: Clarendon Press.

    Google Scholar 

  • Kugrens, P., Lee, R.E. and Andersen, R.A. (1986) Cell form and surface patterns inChroomonas andCryptomonas cells (Cryptophyta) as revealed by scanning electron microscopy.J. Phycol. 22, 512–22.

    Google Scholar 

  • Kugrens, P., Lee, R.E. and Andersen, R.A. (1987) Ultrastructural variations in cryptomonad flagella.J. Phycol. 23, 511–8.

    Google Scholar 

  • Leadbeater, B.S.C. (1989) The phylogenetic significance of flagellar hairs in the Chromophyta. InThe Chromophyte Algae. (J.C. Green, B.S.C. Leadbeater and W.L. Diver, eds.) pp. 145–65. Oxford: Clarendon Press.

    Google Scholar 

  • Lewin, R.A. (1982) Symbiosis and parasitism-definitions and evaluations.BioSci. 32, 254–60.

    Google Scholar 

  • Lobban, C.S., Harrison, P.J. and Duncan, M.J. (1985)The Physiological Ecology of Seaweeds. New York: Cambridge University Press.

    Google Scholar 

  • Mann, D.G. (1989) The species concept in diatoms: evidence for morphologically distinct, sympatric gamodemes in four epipelic species.Plant Syst. Evol. 164, 215–37.

    Google Scholar 

  • Martin, J.H., Knauer, G.A., Karl, D.M. and Broenkow, W.W. (1987) VERTEX: carbon cycling in the northeast Pacific.Deep Sea Res. 34, 267–85.

    Google Scholar 

  • Mattox, K.R. and Stewart, K.D. (1985) Classification of the green algae: A concept based on comparative cytology. InSystematics of the Green Algae. (D.E.G. Irvine and D.M. John, eds.) pp. 29–72. London: Academic Press.

    Google Scholar 

  • Mayr, E. (1948) The bearing of the new systematics on genetic problems. The nature of species.Adv. Genet. 2, 205–37.

    Google Scholar 

  • McCourt, R.M. and Hoshaw, R.W. (1990) Noncorrespondence of breeding groups, morphology, and monophyletic groups inSpirogyra (Zygnemataceae: Chlorophyta) and the application of species concepts.Syst. Bot. 15, 69–78.

    Google Scholar 

  • Medlin, L.K., Elwood, H.J., Stickel, S. and Sogin, M.L. (1991) Morphological and genetic variation within the diatomSkeletonema costatum (Bacillariophyta): evidence for a new species,Skeletonema pseudocostatum.J. Phycol. 27, 514–24.

    Google Scholar 

  • Metting, B. (1981) The systematics and ecology of soil algae.Bot. Rev. 47, 195–312.

    Google Scholar 

  • Moestrup, Ø. (1982) Flagellar structure in algae: a review, with observations particularly on the Chrysophyceae, Phaeophyceae (Fucophyceae), Euglenophyceae, andReckerita.Phycologia 21, 427–528.

    Google Scholar 

  • Moestrup, Ø. and Andersen, R.A. (1991) Organization of heterotrophic heterokonts. InThe Biology of Free-living Heterotrophic Flagellates (D.J. Patterson and J. Larsen, eds.) pp. 333–60. Systematics Association Special Volume No. 45. Oxford: Clarendon Press.

    Google Scholar 

  • Mumford, T.F. (1978) Growth of Pacific Northwest marine algae on artificial substrates — potential and practice. InThe Marine Plant Biomass of the Pacific Northwest Coast. (V.R. Krauss, ed.) pp. 139–61. Corvallis: Oregan State University Press.

    Google Scholar 

  • Murphy, L.S. and Haugen, E.M. (1985) The distribution and abundance of phototrophic ultraplankton in the North Atlantic.Limnol. Oceanogr. 30, 47–58.

    Google Scholar 

  • Norton, T.A. and Mathieson, A.C. (1983) The biology of unattached seaweeds.Prog. Phycol. Res. 2, 333–86.

    Google Scholar 

  • Odum, E.P. (1983)Basic Ecology. New York: Saunders Publishing Co.

    Google Scholar 

  • Olsen, J.L. (1990) Nucleic acids in algal systematics.J. Phycol. 26, 209–14.

    Google Scholar 

  • Patterson, D.J. (1989) Stramenopiles: chromophytes from a protistan perspective. InThe Chromophyte Algae. (J.C. Green, B.S.C. Leadbeater and W.L. Diver, eds.) pp. 357–79, Oxford: Clarendon Press.

    Google Scholar 

  • Payne, A.I. (1986)The Ecology of Tropical Lakes and Rivers. Chichester: J. Wiley & Sons Publishing Co.

    Google Scholar 

  • Perasso, R., Baroin, A., Qu, L.H., Bachellerie, J.P. and Adoutte, A. (1989) Origin of the algae.Nature 339, 142–4.

    Google Scholar 

  • Perty, M. (1851) Zur kenntnis kleinster lebensfromen nach bau, funktionen, systematik mist specialverzeichnis der in der Schweiz beobachteten, Bern: Jent and Reinert.

    Google Scholar 

  • Platt, T., Harrison, W.G., Lewis, M.R., Li, W.K.W., Sathyendranath, S., Smith, R.E. and Vezina, A.F. (1989) Biological production of the oceans: the case for a consensus.Mar. Ecol. Prog. Ser. 52, 77–88.

    Google Scholar 

  • Platt, T. and Li. W.K.W., eds (1986) Photosynthetic Picoplankton,Can. Bull. Fish. Aquat. Sci. 214, 1–583.

  • Platt, T., Subba Rao, D.V. and Irwin, B. (1983) Photosynthesis of picoplankton in the oligotrophic ocean.Nature 301, 702–4.

    Google Scholar 

  • Pomeroy, L.R. (1974) The ocean's food web, a changing paradigm.Biosci. 24, 499–504.

    Google Scholar 

  • Pratt, D.M. (1959) The phytoplankton of Narragansett Bay.Limnol. Oceanogr. 4, 425–40.

    Google Scholar 

  • Prestig. H.R. and Hibberd, D.J. (1982) Ultrastructure and taxonomy ofParaphysomonas (Chrysophyceae) and related genera 2.Nord. J. Bot. 2, 601–38.

    Google Scholar 

  • Pueschel, C.M. (1990) Cell structure. InBiology of the Red Algae. (K.M. Cole and R.G. Sheath, eds) pp. 7–41. New York: Cambridge University Press.

    Google Scholar 

  • Ragan, M.A. and Chapman, D.J. (1978)A Biochemical Phylogeny of the Protists. New York: Academic Press.

    Google Scholar 

  • Raven, J.A., Johnston, A.M. and MacFarlane, J.J. (1990) Carbon metabolism. InBiology of the Red Algae (K.M. Cole and R.G. Sheath, eds) pp. 171–202. New York: Cambridge University Press.

    Google Scholar 

  • Rice, E.L. and Bird, C.J. (1990) Relationships among geographically distant populations ofGracilaria verrucosa (Gracilariales, Rhodophyta) and related species.Phycologia 29, 501–10.

    Google Scholar 

  • Roberts, K.R. and Roberts, J.E. (1991) The flagellar apparatus and cytoskeleton of the dinoflagellates: a comparative overview.Protoplasma 164, 105–22.

    Google Scholar 

  • Round, F.E. (1981)The Ecology of Algae. New York: Cambridge University Press.

    Google Scholar 

  • Round, F.E., Crawford, R.M. and Mann, D.G. (1990)The Diatoms. Biology and Morphology of the Genera. New York: Cambridge University Press.

    Google Scholar 

  • Rowan, K.S. (1989)Photosynthetic Pigments of Algae, New York: Cambridge University Press.

    Google Scholar 

  • Saunders, R.W. and Porter, K.G. (1983) Phagotrophic phytoflagellates.Adv. Microbial Ecol. 10, 167–92.

    Google Scholar 

  • Schlichting Jr, H.E. (1974) Ejection of microalage into the air via bursting bubbles.J. Allergy Clin. Immunol 53., 185–8.

    Google Scholar 

  • Schlösser, U.G. (1984) Species-specific sporangium autolysins (cell-wall-dissolving enzymes) in the genusChlamydomonas. InThe Systematics of Green Algae (D.E.G. Irvine and D. John, eds.) pp. 409–18. London: Academic Press.

    Google Scholar 

  • Sequel, M. and McLachlan, J.L. (1991) A cold-water, phototrophic, quadraflagellated euglenoid.J. Phycol. 27, (supplement) 66a.

    Google Scholar 

  • Sheath, R.G. and Hambrook, J.A. (1988) Mechanical adaptations to flow in freshwater red algae.J. Phycol. 24, 107–11.

    Google Scholar 

  • Sheath, R.G. and Hambrook, J.A. (1990) Freshwater ecology. InBiology of the Red Algae (K.M. Cole and R.G. Sheath, eds.) pp. 423–53. New York: Cambridge University Press.

    Google Scholar 

  • Shubert, L.E. (1992) Soil algae as ecological indicators,Br. Phycol. J. 27, 100.

    Google Scholar 

  • Sieburth, J. McN., Smetacek, V. and Lenz, J. (1978) Pelagic ecosystem structure: Heterotrophic components of the plankton and their relationship to plankton size fractions.Limnol. Oceanogr. 23, 1256–63.

    Google Scholar 

  • Siver, P.A. (1991)The Biology of Mallomonas, Morphology, Taxonomy and Ecology. Boston: Kluwer Academic Publishers.

    Google Scholar 

  • Smayda, T.J. (1980) Phytoplankton species succession. InThe Physiological Ecology of Phytoplankton. (I. Morris, ed.) pp. 493–570. Berkeley: University of California Press.

    Google Scholar 

  • Solbrig, O.T., ed. (1991)From genes to ecosystems: a research agenda for biodiversity. Cambridge: IUBS.

    Google Scholar 

  • Sournia, A., Chrétennot-Dinet, M.-J. and Ricard, M. (1991) Marine Phytoplankton: how many species in the world ocean?J. Plankton. Res. 13, 1093–9.

    Google Scholar 

  • Stabile, J.E., Gallagher, J.C. and Wurtzel, E.T. (1990) Molecular analysis of interspecific variation in the marine diatomSkeletonema costatum.Biochem. Syst. Evol. 18, 5–9.

    Google Scholar 

  • Stanford, J.A. and Covich, A.P. (1988) (eds.) Community structure and function in temperate and tropical streams.J. N. Amer. Benthol. Soc. 7, 261–524.

    Google Scholar 

  • Stanier, R.Y., Kunisawa, R., Mandel, M. and Cohen-Bazire, G. (1971) Purification and propperties of unicellular blue-green algae (order Chroococcales).Bacteriol. Rev. 35, 171–205.

    Google Scholar 

  • Starks, N.L., Shubert, E.L. and Trainor, F.E. (1981) Ecology of soil algae: a review.Phycologia 20, 65–80.

    Google Scholar 

  • Stokes, A.C. (1885) Notes on some apparently undescribed forms of freshwater infusoria, No. 2.Amer. J. Sci. III 29, 313–28.

    Google Scholar 

  • Taggart, R.E. and Parker, L.R. (1976) A new fossil alga from the Silurian of Michigan.Amer. J. Bot. 63, 1390–2.

    Google Scholar 

  • Takahashi, M. and Beinfang, P.K. (1983) Size structure of phytoplankton biomass and photosynthesis in subtropical Hawaiian waters.Mar. Biol. 76, 203–11.

    Google Scholar 

  • Takahashi, M. and Hori, T. (1984) Abundance of picophytoplankton in the subsurface chlorophyll maximum layer in subtropical and tropical waters.Mar. Biol. 79, 177–86.

    Google Scholar 

  • Tappan, H. (1980)The Paleobiology of Plant Protists. San Francisco: W.H. Freeman and Co.

    Google Scholar 

  • Taylor, F.J.R. (1987) Dinoflagellate morphology. InThe Biology of Dinoflagellates. (F.J.R. Taylor, ed.) pp. 24–91. London: Blackwell Scientific Publications.

    Google Scholar 

  • Thomsen, H.A. (1986) A survey of the smallest — eucaryotic organisms of the marine phytoplankton. InPhotosynthetic Picoplankton. (T. Platt and W.K.W. Li, eds.) pp. 121–58.Can. Bull. Fish. Aquat. Sci. 214, 1–583.

    Google Scholar 

  • Trainor, F. and Egan, P.F. (1990a) The implications of polymorphism for the systematics ofScenedesmus.Br. Physcol. J. 25, 275–9.

    Google Scholar 

  • Trainor, F. and Egan, P.F. (1990b) Phenotypic plasticity inScenedesmus (Chlorophyta) with special reference toS. armatus unicells.Phycol. 29, 461–9.

    Google Scholar 

  • Trainor, F. and Egan, P.F. (1990c)Lagerheimia hindakii is the unicellular stage of aScenedesmus.J. Phycol. 26, 535–9.

    Google Scholar 

  • Trench, R.K. (1987) Dinoflagellates in non-parasitic symbioses. InThe Biology of Dinoflagellates, (F.J.R. Taylor, ed.) pp. 530–70. London: Blackwell Scientific Publ.

    Google Scholar 

  • Triemer, R.E. and Farmer, M.A. (1991) An ultrastructural comparison of the mitotic apparatus, feeding apparatus, flagellar apparatus and cytoskeleton in euglenoids and kintoplastids.Protoplasma 164, 91–104.

    Google Scholar 

  • Vogel, K. and Meeuse, B.J.D. (1968) Characterization of the reserve granules from the dinoflagellateThecadinium inclinatum. Balech. J. Phycol.4, 317–8.

    Google Scholar 

  • Wanders, J.B.W. (1976) The role of benthic algae in the shallow reef of Curacao (Netherlands Antilles). I. Primary productivity in the coral reef.Aq. Bot. 2, 327–35.

    Google Scholar 

  • Wetherbee, R. and Andersen, R.A. (1992) Flagella of chrysophycean algae play an acive role in prey capture and selection. Direct observations onEpipyxis pulchra using image enhanced video microscopy.Protoplasma 166, 1–7.

    Google Scholar 

  • Whatley, J.M. (1989) Chromophyte chloroplasts — polyphyletic origin? InThe Chromophyte Algae. (J.C. Green, B.S.C. Leadbeater and W.L. Diver, eds.) pp. 125–44. Oxford: Clarendon Press.

    Google Scholar 

  • Whatley, J.M. and Whatley, F.R. (1981) Chloroplast evolution.New Phytol. 87, 233–47.

    Google Scholar 

  • Whitton, B.A. (1992) Diversity, ecology, and taxonomy of the cyanobacteria. InPhotosynthetic Prokaryotes (N.H. Mann and N.G. Carr, eds.) pp. 1–51. New York: Plenum Press.

    Google Scholar 

  • Woelkerling, W.J. (1990) An introduction. InBiology of the Red Algae. (K.M. Cole and R.G. Sheath, eds.) pp. 1–6. New York: Cambridge University Press.

    Google Scholar 

  • Wood, A.M. and van Valen, L.M. (1990) Paradox lost? On the release of energy-rich compounds by phytoplankton.Mar. Microb. Food Webs 4, 103–16.

    Google Scholar 

  • Zechman, F.W., Theriot, E.C., Zimmer, E.A. and Chapman, R.L. (1990) Phylogeny of the Ulvophyceae (Chlorophyta): cladistic analysis of nuclear-encoded rRNA sequence data.J. Phycol. 26, 700–10.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andersen, R.A. Diversity of eukaryotic algae. Biodivers Conserv 1, 267–292 (1992). https://doi.org/10.1007/BF00693765

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00693765

Keywords

Navigation