Skip to main content

Advertisement

Log in

The DNA Double-Strand Break Repair in Glioma: Molecular Players and Therapeutic Strategies

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract 

Gliomas are the most frequent type of tumor in the central nervous system, which exhibit properties that make their treatment difficult, such as cellular infiltration, heterogeneity, and the presence of stem-like cells responsible for tumor recurrence. The response of this type of tumor to chemoradiotherapy is poor, possibly due to a higher repair activity of the genetic material, among other causes. The DNA double-strand breaks are an important type of lesion to the genetic material, which have the potential to trigger processes of cell death or cause gene aberrations that could promote tumorigenesis. This review describes how the different cellular elements regulate the formation of DNA double-strand breaks and their repair in gliomas, discussing the therapeutic potential of the induction of this type of lesion and the suppression of its repair as a control mechanism of brain tumorigenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Not applicable.

References 

  1. Johnson DR, Ma DJ, Buckner JC, Hammack JE (2012) Conditional probability of long-term survival in glioblastoma. Cancer 118:5608–5613. https://doi.org/10.1002/cncr.27590

    Article  PubMed  Google Scholar 

  2. Capper D (2012) Addressing Diffuse Glioma as a Systemic Brain Disease With Single-Cell Analysis. Arch Neurol 69:523. https://doi.org/10.1001/archneurol.2011.2910

    Article  PubMed  Google Scholar 

  3. Holland EC (2001) Progenitor cells and glioma formation. Curr Opin Neurol 14:683–688. https://doi.org/10.1097/00019052-200112000-00002

    Article  CAS  PubMed  Google Scholar 

  4. van Solinge TS, Nieland L, Chiocca EA, Broekman MLD (2022) Advances in local therapy for glioblastoma — taking the fight to the tumour. Nat Rev Neurol 18:221–236. https://doi.org/10.1038/s41582-022-00621-0

    Article  PubMed  Google Scholar 

  5. Raaphorst GP, Feeley MM (1994) Hyperthermia radiosensitization in human glioma cells comparison of recovery of polymerase activity, survival, and potentially lethal damage repair. Int J Radiat Oncol 29:133–139. https://doi.org/10.1016/0360-3016(94)90235-6

    Article  CAS  Google Scholar 

  6. Dolling DR, Boreham DL, Brown RJ-A (1998) Modulation of radiation-induced strand break repair by cisplatin in mammalian cells. Int J Radiat Biol 74:61–69. https://doi.org/10.1080/095530098141735

    Article  CAS  PubMed  Google Scholar 

  7. Smith DM, Raaphorst GP (2003) Adaptive responses in human glioma cells assessed by clonogenic survival and DNA strand break analysis. Int J Radiat Biol 79:333–339. https://doi.org/10.1080/0955300032000093137

    Article  CAS  PubMed  Google Scholar 

  8. Xie B, Zhang L, Hu W, Fan M, Jiang N, Duan Y, Jing D, Xiao W, Fragoso RC, Lam KS, Sun L-Q, Li JJ (2019) Dual blockage of STAT3 and ERK1/2 eliminates radioresistant GBM cells. Redox Biol 24:101189. https://doi.org/10.1016/j.redox.2019.101189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, Dewhirst MW, Bigner DD, Rich JN (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444:756–760. https://doi.org/10.1038/nature05236

    Article  CAS  PubMed  Google Scholar 

  10. Huang T, Kim CK, Alvarez AA, Pangeni RP, Wan X, Song X, Shi T, Yang Y, Sastry N, Horbinski CM, Lu S, Stupp R, Kessler JA, Nishikawa R, Nakano I, Sulman EP, Lu X, James CD, Yin X-M, Hu B, Cheng S-Y (2017) MST4 Phosphorylation of ATG4B Regulates Autophagic Activity, Tumorigenicity, and Radioresistance in Glioblastoma. Cancer Cell 32:840-855.e8. https://doi.org/10.1016/j.ccell.2017.11.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wu W, Klockow JL, Zhang M, Lafortune F, Chang E, Jin L, Wu Y, Daldrup-Link HE (2021) Glioblastoma multiforme (GBM): An overview of current therapies and mechanisms of resistance. Pharmacol Res 171:105780. https://doi.org/10.1016/j.phrs.2021.105780

    Article  CAS  PubMed  Google Scholar 

  12. Akgül S, Patch A-M, D’Souza RCJ, Mukhopadhyay P, Nones K, Kempe S, Kazakoff SH, Jeffree RL, Stringer BW, Pearson JV, Waddell N, Day BW (2019) Intratumoural Heterogeneity Underlies Distinct Therapy Responses and Treatment Resistance in Glioblastoma. Cancers (Basel) 11:190. https://doi.org/10.3390/cancers11020190

    Article  CAS  Google Scholar 

  13. Minata M, Audia A, Shi J, Lu S, Bernstock J, Pavlyukov MS, Das A, Kim S-H, Shin YJ, Lee Y, Koo H, Snigdha K, Waghmare I, Guo X, Mohyeldin A, Gallego-Perez D, Wang J, Chen D, Cheng P, Mukheef F, Contreras M, Reyes JF, Vaillant B, Sulman EP, Cheng S-Y, Markert JM, Tannous BA, Lu X, Kango-Singh M, Lee LJ, Nam D-H, Nakano I, Bhat KP (2019) Phenotypic Plasticity of Invasive Edge Glioma Stem-like Cells in Response to Ionizing Radiation. Cell Rep 26:1893-1905.e7. https://doi.org/10.1016/j.celrep.2019.01.076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shen Y, Liu Y, Sun T, Yang W (2017) LincRNA-p21 knockdown enhances radiosensitivity of hypoxic tumor cells by reducing autophagy through HIF-1/Akt/mTOR/P70S6K pathway. Exp Cell Res 358:188–198. https://doi.org/10.1016/j.yexcr.2017.06.016

    Article  CAS  PubMed  Google Scholar 

  15. Fidoamore A, Cristiano L, Antonosante A, D’Angelo M, Di Giacomo E, Astarita C, Giordano A, Ippoliti R, Benedetti E, Cimini A (2016) Glioblastoma Stem Cells Microenvironment: The Paracrine Roles of the Niche in Drug and Radioresistance. Stem Cells Int 2016:1–17. https://doi.org/10.1155/2016/6809105

    Article  CAS  Google Scholar 

  16. Bhat KPL, Balasubramaniyan V, Vaillant B, Ezhilarasan R, Hummelink K, Hollingsworth F, Wani K, Heathcock L, James JD, Goodman LD, Conroy S, Long L, Lelic N, Wang S, Gumin J, Raj D, Kodama Y, Raghunathan A, Olar A, Joshi K, Pelloski CE, Heimberger A, Kim SH, Cahill DP, Rao G, Den Dunnen WFA, Boddeke HWGM, Phillips HS, Nakano I, Lang FF, Colman H, Sulman EP, Aldape K (2013) Mesenchymal Differentiation Mediated by NF-κB Promotes Radiation Resistance in Glioblastoma. Cancer Cell 24:331–346. https://doi.org/10.1016/j.ccr.2013.08.001

    Article  CAS  PubMed  Google Scholar 

  17. Tada M, Matsumoto R, Iggo RD, Onimaru R, Shirato H, Sawamura Y, Shinohe Y (1998) Selective sensitivity to radiation of cerebral glioblastomas harboring p53 mutations. Cancer Res 58:1793–1797

    CAS  PubMed  Google Scholar 

  18. Kubota N (2000) Wortmannin sensitizes human glioblastoma cell lines carrying mutant and wild type TP53 gene to radiation. Cancer Lett 161:141–147. https://doi.org/10.1016/S0304-3835(00)00614-5

    Article  CAS  PubMed  Google Scholar 

  19. Joki T, Carroll RS, Dunn IF, Zhang J, Abe T, Black PM (2001) Assessment of Alterations in Gene Expression in Recurrent Malignant Glioma after Radiotherapy Using Complementary Deoxyribonucleic Acid Microarrays. Neurosurgery 48:195–202. https://doi.org/10.1097/00006123-200101000-00035

    Article  CAS  PubMed  Google Scholar 

  20. Lammering G, Valerie K, Lin PS, Mikkelsen RB, Contessa JN, Feden JP, Farnsworth J, Dent P, Schmidt-Ullrich RK (2001) Radiosensitization of malignant glioma cells through overexpression of dominant-negative epidermal growth factor receptor. Clin Cancer Res 7:682–690

    CAS  PubMed  Google Scholar 

  21. Otomo T, Hishii M, Arai H, Sato K, Sasai K (2004) Microarray Analysis of Temporal Gene Responses to Ionizing Radiation in Two Glioblastoma Cell Lines: Up-regulation of DNA Repair Genes. J Radiat Res 45:53–60. https://doi.org/10.1269/jrr.45.53

    Article  CAS  PubMed  Google Scholar 

  22. Jackson SP (2001) Detecting, signalling and repairing DNA double-strand breaks. Biochem Soc Trans 29:655. https://doi.org/10.1042/0300-5127:0290655

    Article  CAS  PubMed  Google Scholar 

  23. Dasika GK, Lin S-CJ, Zhao S, Sung P, Tomkinson A, Lee EY-HP (1999) DNA damage-induced cell cycle checkpoints and DNA strand break repair in development and tumorigenesis. Oncogene 18:7883–7899. https://doi.org/10.1038/sj.onc.1203283

    Article  CAS  PubMed  Google Scholar 

  24. Lieber MR, Ma Y, Pannicke U, Schwarz K (2003) Mechanism and regulation of human non-homologous DNA end-joining. Nat Rev Mol Cell Biol 4:712–720. https://doi.org/10.1038/nrm1202

    Article  CAS  PubMed  Google Scholar 

  25. Wright WD, Shah SS, Heyer W-D (2018) Homologous recombination and the repair of DNA double-strand breaks. J Biol Chem 293:10524–10535. https://doi.org/10.1074/jbc.TM118.000372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yoshida M, Hosoi Y, Miyachi H, Ishii N, Matsumoto Y, Enomoto A, Nakagawa K, Yamada S, Suzuki N, Ono T (2002) Roles of DNA-dependent protein kinase and ATM in cell-cycle-dependent radiation sensitivity in human cells. Int J Radiat Biol 78:503–512. https://doi.org/10.1080/095530002317577321

    Article  CAS  PubMed  Google Scholar 

  27. Karran P (2000) DNA double strand break repair in mammalian cells. Curr Opin Genet Dev 10:144–150. https://doi.org/10.1016/S0959-437X(00)00069-1

    Article  CAS  PubMed  Google Scholar 

  28. Rothkamm K, Krüger I, Thompson LH, Löbrich M (2003) Pathways of DNA Double-Strand Break Repair during the Mammalian Cell Cycle. Mol Cell Biol 23:5706–5715. https://doi.org/10.1128/MCB.23.16.5706-5715.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Huertas P, Jackson SP (2009) Human CtIP Mediates Cell Cycle Control of DNA End Resection and Double Strand Break Repair. J Biol Chem 284:9558–9565. https://doi.org/10.1074/jbc.M808906200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Escribano-Díaz C, Orthwein A, Fradet-Turcotte A, Xing M, Young JTF, Tkáč J, Cook MA, Rosebrock AP, Munro M, Canny MD, Xu D, Durocher D (2013) A Cell Cycle-Dependent Regulatory Circuit Composed of 53BP1-RIF1 and BRCA1-CtIP Controls DNA Repair Pathway Choice. Mol Cell 49:872–883. https://doi.org/10.1016/j.molcel.2013.01.001

    Article  CAS  PubMed  Google Scholar 

  31. Clerici M, Mantiero D, Guerini I, Lucchini G, Longhese MP (2008) The Yku70–Yku80 complex contributes to regulate double-strand break processing and checkpoint activation during the cell cycle. EMBO Rep 9:810–818. https://doi.org/10.1038/embor.2008.121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Langerak P, Mejia-Ramirez E, Limbo O, Russell P (2011) Release of Ku and MRN from DNA Ends by Mre11 Nuclease Activity and Ctp1 Is Required for Homologous Recombination Repair of Double-Strand Breaks. PLoS Genet 7:e1002271. https://doi.org/10.1371/journal.pgen.1002271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chien JC-Y, Tabet E, Pinkham K, da Hora CC, Chang JC-Y, Lin S, Badr CE, Lai CP-K (2020) A multiplexed bioluminescent reporter for sensitive and non-invasive tracking of DNA double strand break repair dynamics in vitro and in vivo. Nucleic Acids Res 48:e100–e100. https://doi.org/10.1093/nar/gkaa669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Martinez-Pastor B, Silveira GG, Clarke TL, Chung D, Gu Y, Cosentino C, Davidow LS, Mata G, Hassanieh S, Salsman J, Ciccia A, Bae N, Bedford MT, Megias D, Rubin LL, Efeyan A, Dellaire G, Mostoslavsky R (2021) Assessing kinetics and recruitment of DNA repair factors using high content screens. Cell Rep 37:110176. https://doi.org/10.1016/j.celrep.2021.110176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Carter T, Vancurová I, Sun I, Lou W, DeLeon S (1990) A DNA-activated protein kinase from HeLa cell nuclei. Mol Cell Biol 10:6460–6471. https://doi.org/10.1128/MCB.10.12.6460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Blier PR, Griffith AJ, Craft J, Hardin JA (1993) Binding of Ku protein to DNA. Measurement of affinity for ends and demonstration of binding to nicks. J Biol Chem 268:7594–7601. https://doi.org/10.1016/S0021-9258(18)53216-6

    Article  CAS  PubMed  Google Scholar 

  37. Lees-Miller S (2003) Repair of DNA double strand breaks by non-homologous end joining. Biochimie 85:1161–1173. https://doi.org/10.1016/j.biochi.2003.10.011

    Article  CAS  PubMed  Google Scholar 

  38. Critchlow SE, Bowater RP, Jackson SP (1997) Mammalian DNA double-strand break repair protein XRCC4 interacts with DNA ligase IV. Curr Biol 7:588–598. https://doi.org/10.1016/S0960-9822(06)00258-2

    Article  CAS  PubMed  Google Scholar 

  39. Leber R, Wise TW, Mizuta R, Meek K (1998) The XRCC4 Gene Product Is a Target for and Interacts with the DNA-dependent Protein Kinase. J Biol Chem 273:1794–1801. https://doi.org/10.1074/jbc.273.3.1794

    Article  CAS  PubMed  Google Scholar 

  40. Auckley DH (2001) Reduced DNA-dependent protein kinase activity is associated with lung cancer. Carcinogenesis 22:723–727. https://doi.org/10.1093/carcin/22.5.723

    Article  CAS  PubMed  Google Scholar 

  41. Ochiai M (2001) High susceptibility of Scid mice to colon carcinogenesis induced by azoxymethane indicates a possible caretaker role for DNA-dependent protein kinase. Carcinogenesis 22:1551–1555. https://doi.org/10.1093/carcin/22.9.1551

    Article  CAS  PubMed  Google Scholar 

  42. Holgersson Å, Jernberg ARM, Persson LM, Edgren MR, Lewensohn R, Nilsson A, Brahme A, Meijer AE (2003) Low and high LET radiation-induced apoptosis in M059J and M059K cells. Int J Radiat Biol 79:611–621. https://doi.org/10.1080/09553000310001596995

    Article  CAS  PubMed  Google Scholar 

  43. Zhuang W, Li B, Long L, Chen L, Huang Q, Liang Z (2011) Knockdown of the DNA-dependent protein kinase catalytic subunit radiosensitizes glioma-initiating cells by inducing autophagy. Brain Res 1371:7–15. https://doi.org/10.1016/j.brainres.2010.11.044

    Article  CAS  PubMed  Google Scholar 

  44. Liu C, He W, Jin M, Li H, Xu H, Liu H, Yang K, Zhang T, Wu G, Ren J (2015) Blockage of Autophagy in C6 Glioma Cells Enhanced Radiosensitivity Possibly by Attenuating DNA-PK-Dependent DSB Due to Limited Ku Nuclear Translocation and DNA Binding. Curr Mol Med 15:663–673. https://doi.org/10.2174/1566524015666150831141112

    Article  CAS  PubMed  Google Scholar 

  45. Virsik-Köpp P, Rave-Fränk M, Hofman-Hüther H, Schmidberger H (2003) Role of DNA-PK in the process of aberration formation as studied in irradiated human glioblastoma cell lines M059K and M059J. Int J Radiat Biol 79:61–68. https://doi.org/10.1080/0955300021000038644

    Article  PubMed  Google Scholar 

  46. Peddi P, Loftin CW, Dickey JS, Hair JM, Burns KJ, Aziz K, Francisco DC, Panayiotidis MI, Sedelnikova OA, Bonner WM (2010) DNA-PKcs deficiency leads to persistence of oxidatively induced clustered DNA lesions in human tumor cells. Free Radic Biol Med 48:1435–1443. https://doi.org/10.1016/j.freeradbiomed.2010.02.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. An J, Yang D-Y, Xu Q-Z, Zhang S-M, Huo Y-Y, Shang Z-F, Wang Y, Wu D-C, Zhou P-K (2008) DNA-dependent protein kinase catalytic subunit modulates the stability of c-Myc oncoprotein. Mol Cancer 7:32. https://doi.org/10.1186/1476-4598-7-32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Liu Y, Zhang L, Liu Y, Sun C, Zhang H, Miao G, Di CX, Zhou X, Zhou R, Wang Z (2015) DNA-PKcs Deficiency Inhibits Glioblastoma Cell-Derived Angiogenesis After Ionizing Radiation. J Cell Physiol 230:1094–1103. https://doi.org/10.1002/jcp.24841

    Article  CAS  PubMed  Google Scholar 

  49. Amatya PN, Kim H-B, Park S-J, Youn C-K, Hyun J-W, Chang I-Y, Lee J-H, You HJ (2012) A role of DNA-dependent protein kinase for the activation of AMP-activated protein kinase in response to glucose deprivation. Biochim Biophys Acta - Mol Cell Res 1823:2099–2108. https://doi.org/10.1016/j.bbamcr.2012.08.022

    Article  CAS  Google Scholar 

  50. Holgersson Å, Heiden T, Castro J, Edgren MR, Lewensohn R, Meijer AE (2005) Different G2/M accumulation in M059J and M059K cells after exposure to DNA double-strand break–inducing agents. Int J Radiat Oncol 61:915–921. https://doi.org/10.1016/j.ijrobp.2004.10.036

    Article  CAS  Google Scholar 

  51. Allalunis-Turner MJ, Barron GM, Day RS, Dobler KD, Mirzayans R (1993) Isolation of Two Cell Lines from a Human Malignant Glioma Specimen Differing in Sensitivity to Radiation and Chemotherapeutic Drugs. Radiat Res 134:349. https://doi.org/10.2307/3578196

    Article  CAS  PubMed  Google Scholar 

  52. Lees-Miller S, Godbout R, Chan D, Weinfeld M, Day R, Barron G, Allalunis-Turner J (1995) Absence of p350 subunit of DNA-activated protein kinase from a radiosensitive human cell line. Science 267:1183–1185. https://doi.org/10.1126/science.7855602

    Article  CAS  PubMed  Google Scholar 

  53. Galloway AM, Spencer CA, Anderson CW, Allalunis-Turner MJ (1999) Differential stability of the DNA-activated protein kinase catalytic subunit mRNA in human glioma cells. Oncogene 18:1361–1368. https://doi.org/10.1038/sj.onc.1202433

    Article  CAS  PubMed  Google Scholar 

  54. Hoppe BS, Jensen RB, Kirchgessner CU (2000) Complementation of the radiosensitive M059J cell line. Radiat Res 153:125–130. https://doi.org/10.1667/0033-7587(2000)153[0125:cotrmc]2.0.co;2

    Article  CAS  PubMed  Google Scholar 

  55. Allalunis-Turner MJ, Lintott LG, Barron GM, Day RS, Lees-Miller SP (1995) Lack of correlation between DNA-dependent protein kinase activity and tumor cell radiosensitivity. Cancer Res 55:5200–5202

    CAS  PubMed  Google Scholar 

  56. Powis G, Bonjouklian R, Berggren MM, Gallegos A, Abraham R, Ashendel C, Zalkow L, Matter WF, Dodge J, Grindey G (1994) Wortmannin, a potent and selective inhibitor of phosphatidylinositol-3-kinase. Cancer Res 54:2419–2423

    CAS  PubMed  Google Scholar 

  57. Chernikova SB, Wells RL, Elkind MM (1999) Wortmannin Sensitizes Mammalian Cells to Radiation by Inhibiting the DNA-Dependent Protein Kinase-Mediated Rejoining of Double-Strand Breaks. Radiat Res 151:159. https://doi.org/10.2307/3579766

    Article  CAS  PubMed  Google Scholar 

  58. DiBiase SJ, Zeng ZC, Chen R, Hyslop T, Curran WJ, Iliakis G (2000) DNA-dependent protein kinase stimulates an independently active, nonhomologous, end-joining apparatus. Cancer Res 60:1245–1253

    CAS  PubMed  Google Scholar 

  59. Allalunis-Turner MJ, Zia PKY, Barron GM, Mirzayans R, Day RS (1995) Radiation-Induced DNA Damage and Repair in Cells of a Radiosensitive Human Malignant Glioma Cell Line. Radiat Res 144:288. https://doi.org/10.2307/3578948

    Article  CAS  PubMed  Google Scholar 

  60. Ai R, Sandoval A, Labhart P (2003) Differential Gene Expression in Human Glioma Cells: Correlation With Presence or Absence of DNA-Dependent Protein Kinase. Gene Expr 11:35–46. https://doi.org/10.3727/000000003783992306

    Article  PubMed  Google Scholar 

  61. Yao KC, Komata T, Kondo Y, Kanzawa T, Kondo S, Germano IM (2003) Molecular response of human glioblastoma multiforme cells to ionizing radiation: cell cycle arrest, modulation of cyclin-dependent kinase inhibitors, and autophagy. J Neurosurg 98:378–384. https://doi.org/10.3171/jns.2003.98.2.0378

    Article  CAS  PubMed  Google Scholar 

  62. Bursch W, Hochegger K, Torok L, Marian B, Ellinger A, Hermann RS (2000) Autophagic and apoptotic types of programmed cell death exhibit different fates of cytoskeletal filaments. J Cell Sci 113:1189–1198. https://doi.org/10.1242/jcs.113.7.1189

    Article  CAS  PubMed  Google Scholar 

  63. Daido S, Yamamoto A, Fujiwara K, Sawaya R, Kondo S, Kondo Y (2005) Inhibition of the DNA-Dependent Protein Kinase Catalytic Subunit Radiosensitizes Malignant Glioma Cells by Inducing Autophagy. Cancer Res 65:4368–4375. https://doi.org/10.1158/0008-5472.CAN-04-4202

    Article  CAS  PubMed  Google Scholar 

  64. Woo RA (2002) DNA damage-induced apoptosis requires the DNA-dependent protein kinase, and is mediated by the latent population of p53. EMBO J 21:3000–3008. https://doi.org/10.1093/emboj/cdf307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Paull TT, Rogakou EP, Yamazaki V, Kirchgessner CU, Gellert M, Bonner WM (2000) A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr Biol 10:886–895. https://doi.org/10.1016/S0960-9822(00)00610-2

    Article  CAS  PubMed  Google Scholar 

  66. Burma S, Chen BP, Murphy M, Kurimasa A, Chen DJ (2001) ATM Phosphorylates Histone H2AX in Response to DNA Double-strand Breaks. J Biol Chem 276:42462–42467. https://doi.org/10.1074/jbc.C100466200

    Article  CAS  PubMed  Google Scholar 

  67. Momota H, Ichimiya S, Kondo N, Kikuchi T, Torigoe T, Yamaki T, Houkin K, Sato N (2003) Histone H2AX sensitizes glioma cells to genotoxic stimuli by recruiting DNA double-strand break repair proteins. Int J Oncol 23:311. https://doi.org/10.3892/ijo.23.2.311

    Article  CAS  PubMed  Google Scholar 

  68. Durocher D, Jackson SP (2001) DNA-PK, ATM and ATR as sensors of DNA damage: variations on a theme? Curr Opin Cell Biol 13:225–231. https://doi.org/10.1016/S0955-0674(00)00201-5

    Article  CAS  PubMed  Google Scholar 

  69. Matsuoka S, Rotman G, Ogawa A, Shiloh Y, Tamai K, Elledge SJ (2000) Ataxia telangiectasia-mutated phosphorylates Chk2 in vivo and in vitro. Proc Natl Acad Sci 97:10389–10394. https://doi.org/10.1073/pnas.190030497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Luo C-M, Tang W, Mekeel KL, DeFrank JS, Anné PR, Powell SN (1996) High Frequency and Error-prone DNA Recombination in Ataxia Telangiectasia Cell Lines. J Biol Chem 271:4497–4503. https://doi.org/10.1074/jbc.271.8.4497

    Article  CAS  PubMed  Google Scholar 

  71. Morgan SE, Kastan MB (1997) Foundations in Cancer Research p53 and ATM: Cell Cycle, Cell Death, and Cancer. In: Advances in cancer research. pp 1–25

  72. Bartkova J, Hamerlik P, Stockhausen M-T, Ehrmann J, Hlobilkova A, Laursen H, Kalita O, Kolar Z, Poulsen HS, Broholm H, Lukas J, Bartek J (2010) Replication stress and oxidative damage contribute to aberrant constitutive activation of DNA damage signalling in human gliomas. Oncogene 29:5095–5102. https://doi.org/10.1038/onc.2010.249

    Article  CAS  PubMed  Google Scholar 

  73. Golding SE, Rosenberg E, Valerie N, Hussaini I, Frigerio M, Cockcroft XF, Chong WY, Hummersone M, Rigoreau L, Menear KA, O’Connor MJ, Povirk LF, van Meter T, Valerie K (2009) Improved ATM kinase inhibitor KU-60019 radiosensitizes glioma cells, compromises insulin, AKT and ERK prosurvival signaling, and inhibits migration and invasion. Mol Cancer Ther 8:2894–2902. https://doi.org/10.1158/1535-7163.MCT-09-0519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Golding SE, Rosenberg E, Adams BR, Wignarajah S, Beckta JM, O’Connor MJ, Valerie K (2012) Dynamic inhibition of ATM kinase provides a strategy for glioblastoma multiforme radiosensitization and growth control. Cell Cycle 11:1167–1173. https://doi.org/10.4161/cc.11.6.19576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Nadkarni A, Shrivastav M, Mladek AC, Schwingler PM, Grogan PT, Chen J, Sarkaria JN (2012) ATM inhibitor KU-55933 increases the TMZ responsiveness of only inherently TMZ sensitive GBM cells. J Neurooncol 110:349–357. https://doi.org/10.1007/s11060-012-0979-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Biddlestone-Thorpe L, Sajjad M, Rosenberg E, Beckta JM, Valerie NCK, Tokarz M, Adams BR, Wagner AF, Khalil A, Gilfor D, Golding SE, Deb S, Temesi DG, Lau A, O’Connor MJ, Choe KS, Parada LF, Lim SK, Mukhopadhyay ND, Valerie K (2013) ATM Kinase Inhibition Preferentially Sensitizes p53-Mutant Glioma to Ionizing Radiation. Clin Cancer Res 19:3189–3200. https://doi.org/10.1158/1078-0432.CCR-12-3408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Vecchio D, Daga A, Carra E, Marubbi D, Baio G, Neumaier CE, Vagge S, Corvò R, Pia Brisigotti M, Louis Ravetti J, Zunino A, Poggi A, Mascelli S, Raso A, Frosina G (2014) Predictability, efficacy and safety of radiosensitization of glioblastoma-initiating cells by the ATM inhibitor KU-60019. Int J Cancer 135:479–491. https://doi.org/10.1002/ijc.28680

    Article  CAS  PubMed  Google Scholar 

  78. Li Y, Li L, Li B, Wu Z, Wu Y, Wang Y, Jin F, Li D, Ma H, Wang D (2016) Silencing of ataxia-telangiectasia mutated by siRNA enhances the in vitro and in vivo radiosensitivity of glioma. Oncol Rep 35:3303–3312. https://doi.org/10.3892/or.2016.4754

    Article  CAS  PubMed  Google Scholar 

  79. Kastan MB, Lim D (2000) The many substrates and functions of ATM. Nat Rev Mol Cell Biol 1:179–186. https://doi.org/10.1038/35043058

    Article  CAS  PubMed  Google Scholar 

  80. Hartwell L, Kastan M (1994) Cell cycle control and cancer. Science 266:1821–1828. https://doi.org/10.1126/science.7997877

    Article  CAS  PubMed  Google Scholar 

  81. Perkins EJ (2002) Sensing of intermediates in V(D)J recombination by ATM. Genes Dev 16:159–164. https://doi.org/10.1101/gad.956902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Golding SE, Rosenberg E, Khalil A, McEwen A, Holmes M, Neill S, Povirk LF, Valerie K (2004) Double Strand Break Repair by Homologous Recombination Is Regulated by Cell Cycle-independent Signaling via ATM in Human Glioma Cells. J Biol Chem 279:15402–15410. https://doi.org/10.1074/jbc.M314191200

    Article  CAS  PubMed  Google Scholar 

  83. Lee SE, Mitchell RA, Cheng A, Hendrickson EA (1997) Evidence for DNA-PK-dependent and -independent DNA double-strand break repair pathways in mammalian cells as a function of the cell cycle. Mol Cell Biol 17:1425–1433. https://doi.org/10.1128/MCB.17.3.1425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ito K, Takubo K, Arai F, Satoh H, Matsuoka S, Ohmura M, Naka K, Azuma M, Miyamoto K, Hosokawa K, Ikeda Y, Mak TW, Suda T, Hirao A (2007) Regulation of Reactive Oxygen Species by Atm Is Essential for Proper Response to DNA Double-Strand Breaks in Lymphocytes. J Immunol 178:103–110. https://doi.org/10.4049/jimmunol.178.1.103

    Article  CAS  PubMed  Google Scholar 

  85. Rotman G, Shiloh Y (1997) Ataxia-telangiectasia: Is ATM a sensor of oxidative damage and stress? BioEssayshttps://doi.org/10.1002/bies.950191011

  86. Wang S-C, Wu C-C, Wei Y-Y, Hong J-H, Chiang C-S (2011) Inactivation of ataxia telangiectasia mutated gene can increase intracellular reactive oxygen species levels and alter radiation-induced cell death pathways in human glioma cells. Int J Radiat Biol 87:432–442. https://doi.org/10.3109/09553002.2011.538128

    Article  CAS  PubMed  Google Scholar 

  87. Raderschall E, Stout K, Freier S, Suckow V, Schweiger S, Haaf T (2002) Elevated levels of Rad51 recombination protein in tumor cells. Cancer Res 62:219–225

    CAS  PubMed  Google Scholar 

  88. Stürzbecher HW, Donzelmann B, Henning W, Knippschild U, Buchhop S (1996) p53 is linked directly to homologous recombination processes via RAD51/RecA protein interaction. EMBO J 15:1992–2002. https://doi.org/10.1002/j.1460-2075.1996.tb00550.x

    Article  PubMed  PubMed Central  Google Scholar 

  89. Yoon D, Wang Y, Stapleford K, Wiesmüller L, Chen J (2004) p53 Inhibits Strand Exchange and Replication Fork Regression Promoted by Human Rad51. J Mol Biol 336:639–654. https://doi.org/10.1016/j.jmb.2003.12.050

    Article  CAS  PubMed  Google Scholar 

  90. Ohgaki H, Kleihues P (2007) Genetic Pathways to Primary and Secondary Glioblastoma. Am J Pathol 170:1445–1453. https://doi.org/10.2353/ajpath.2007.070011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ohnishi T, Taki T, Hiraga S, Arita N, Morita T (1998) In Vitroandin VivoPotentiation of Radiosensitivity of Malignant Gliomas by Antisense Inhibition of the RAD51 Gene. Biochem Biophys Res Commun 245:319–324. https://doi.org/10.1006/bbrc.1998.8440

    Article  CAS  PubMed  Google Scholar 

  92. Shinohara A, Ogawa H, Matsuda Y, Ushio N, Ikeo K, Ogawa T (1993) Cloning of human, mouse and fission yeast recombination genes homologous to RAD51 and recA. Nat Genet 4:239–243. https://doi.org/10.1038/ng0793-239

    Article  CAS  PubMed  Google Scholar 

  93. See WL, Miller JP, Squatrito M, Holland E, Resh MD, Koff A (2010) Defective DNA double-strand break repair underlies enhanced tumorigenesis and chromosomal instability in p27-deficient mice with growth factor-induced oligodendrogliomas. Oncogene 29:1720–1731. https://doi.org/10.1038/onc.2009.465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Short SC, Martindale C, Bourne S, Brand G, Woodcock M, Johnston P (2007) DNA repair after irradiation in glioma cells and normal human astrocytes. Neuro Oncol 9:404–411. https://doi.org/10.1215/15228517-2007-030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Godoy PRDV, Mello SS, Magalhães DAR, Donaires FS, Nicolucci P, Donadi EA, Passos GA, Sakamoto-Hojo ET (2013) Ionizing radiation-induced gene expression changes in TP53 proficient and deficient glioblastoma cell lines. Mutat Res Toxicol Environ Mutagen 756:46–55. https://doi.org/10.1016/j.mrgentox.2013.06.010

    Article  CAS  Google Scholar 

  96. Jones RM, Petermann E (2012) Replication fork dynamics and the DNA damage response. Biochem J 443:13–26. https://doi.org/10.1042/BJ20112100

    Article  CAS  PubMed  Google Scholar 

  97. Zhao H, Piwnica-Worms H (2001) ATR-Mediated Checkpoint Pathways Regulate Phosphorylation and Activation of Human Chk1. Mol Cell Biol 21:4129–4139. https://doi.org/10.1128/MCB.21.13.4129-4139.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Wang XQ, Redpath JL, Fan ST, Stanbridge EJ (2006) ATR dependent activation of Chk2. J Cell Physiol 208:613–619. https://doi.org/10.1002/jcp.20700

    Article  CAS  PubMed  Google Scholar 

  99. Bernd K, Fritz G, Mitra S, Coquerelle T (1991) Transfection and expression of human O 6 -methylguanine-DNA methyltransferase (MGMT) cDNA in Chinese hamster cells: the role of MGMT in protection against the genotoxic effects of alkylating agents. Carcinogenesis 12:1857–1867. https://doi.org/10.1093/carcin/12.10.1857

    Article  Google Scholar 

  100. Caporali S, Falcinelli S, Starace G, Russo MT, Bonmassar E, Jiricny J, D’Atri S (2004) DNA damage induced by temozolomide signals to both ATM and ATR: role of the mismatch repair system. Mol Pharmacol 66:478–491. https://doi.org/10.1124/mol.66.3

    Article  CAS  PubMed  Google Scholar 

  101. Eich M, Roos WP, Nikolova T, Kaina B (2013) Contribution of ATM and ATR to the Resistance of Glioblastoma and Malignant Melanoma Cells to the Methylating Anticancer Drug Temozolomide. Mol Cancer Ther 12:2529–2540. https://doi.org/10.1158/1535-7163.MCT-13-0136

    Article  CAS  PubMed  Google Scholar 

  102. Lord CJ, Ashworth A (2017) PARP inhibitors: Synthetic lethality in the clinic. Science 355:1152–1158. https://doi.org/10.1126/science.aam7344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Sunada S, Nakanishi A, Miki Y (2018) Crosstalk of DNA double-strand break repair pathways in poly(ADP-ribose) polymerase inhibitor treatment of breast cancer susceptibility gene 1/2-mutated cancer. Cancer Sci 109:893–899. https://doi.org/10.1111/cas.13530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Langelier M-F, Planck JL, Roy S, Pascal JM (2012) Structural Basis for DNA Damage-Dependent Poly(ADP-ribosyl)ation by Human PARP-1. Science 336:728–732. https://doi.org/10.1126/science.1216338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Yang G, Liu C, Chen S-H, Kassab MA, Hoff JD, Walter NG, Yu X (2018) Super-resolution imaging identifies PARP1 and the Ku complex acting as DNA double-strand break sensors. Nucleic Acids Res 46:3446–3457. https://doi.org/10.1093/nar/gky088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Caron M-C, Sharma AK, O’Sullivan J, Myler LR, Ferreira MT, Rodrigue A, Coulombe Y, Ethier C, Gagné J-P, Langelier M-F, Pascal JM, Finkelstein IJ, Hendzel MJ, Poirier GG, Masson J-Y (2019) Poly(ADP-ribose) polymerase-1 antagonizes DNA resection at double-strand breaks. Nat Commun 10:2954. https://doi.org/10.1038/s41467-019-10741-9

    Article  PubMed  PubMed Central  Google Scholar 

  107. Kieffer SR, Lowndes NF (2022) Immediate-Early, Early, and Late Responses to DNA Double Stranded Breaks. Front Genet 13:793884. https://doi.org/10.3389/fgene.2022.793884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Rouleau M, Patel A, Hendzel MJ, Kaufmann SH, Poirier GG (2010) PARP inhibition: PARP1 and beyond. Nat Rev Cancer 10:293–301. https://doi.org/10.1038/nrc2812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Sugimura K, Takebayashi S, Taguchi H, Takeda S, Okumura K (2008) PARP-1 ensures regulation of replication fork progression by homologous recombination on damaged DNA. J Cell Biol 183:1203–1212. https://doi.org/10.1083/jcb.200806068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Mansour WY, Rhein T, Dahm-Daphi J (2010) The alternative end-joining pathway for repair of DNA double-strand breaks requires PARP1 but is not dependent upon microhomologies. Nucleic Acids Res 38:6065–6077. https://doi.org/10.1093/nar/gkq387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Barton VN, Donson AM, Kleinschmidt-DeMasters BK, Gore L, Liu AK, Foreman NK (2009) PARP1 expression in pediatric central nervous system tumors. Pediatr Blood Cancer 53:1227–1230. https://doi.org/10.1002/pbc.22141

    Article  PubMed  Google Scholar 

  112. van Vuurden DG, Hulleman E, Meijer OLM, Wedekind LE, Kool M, Witt H, Vandertop WP, Würdinger T, Noske DP, Kaspers GJL, Cloos J (2011) PARP inhibition sensitizes childhood high grade glioma, medulloblastoma and ependymoma to radiation. Oncotarget 2:984–996. https://doi.org/10.18632/oncotarget.362

    Article  PubMed  PubMed Central  Google Scholar 

  113. Hochegger H, Dejsuphong D, Fukushima T, Morrison C, Sonoda E, Schreiber V, Zhao GY, Saberi A, Masutani M, Adachi N, Koyama H, de Murcia G, Takeda S (2006) Parp-1 protects homologous recombination from interference by Ku and Ligase IV in vertebrate cells. EMBO J 25:1305–1314. https://doi.org/10.1038/sj.emboj.7601015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. McEllin B, Camacho CV, Mukherjee B, Hahm B, Tomimatsu N, Bachoo RM, Burma S (2010) PTEN Loss Compromises Homologous Recombination Repair in Astrocytes: Implications for Glioblastoma Therapy with Temozolomide or Poly(ADP-Ribose) Polymerase Inhibitors. Cancer Res 70:5457–5464. https://doi.org/10.1158/0008-5472.CAN-09-4295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Dang TT, Morales JC (2021) Loss of CENP-I Impairs Homologous Recombination and Sensitizes Cells to PARP1 Inhibition. Cancers (Basel) 13:3202. https://doi.org/10.3390/cancers13133202

    Article  CAS  Google Scholar 

  116. Venere M, Hamerlik P, Wu Q, Rasmussen RD, Song LA, Vasanji A, Tenley N, Flavahan WA, Hjelmeland AB, Bartek J, Rich JN (2014) Therapeutic targeting of constitutive PARP activation compromises stem cell phenotype and survival of glioblastoma-initiating cells. Cell Death Differ 21:258–269. https://doi.org/10.1038/cdd.2013.136

    Article  CAS  PubMed  Google Scholar 

  117. Camacho CV, Todorova PK, Hardebeck MC, Tomimatsu N, Gil del Alcazar CR, Ilcheva M, Mukherjee B, McEllin B, Vemireddy V, Hatanpaa K, Story MD, Habib AA, Murty VV, Bachoo R, Burma S (2015) DNA double-strand breaks cooperate with loss of Ink4 and Arf tumor suppressors to generate glioblastomas with frequent Met amplification. Oncogene 34:1064–1072. https://doi.org/10.1038/onc.2014.29

    Article  CAS  PubMed  Google Scholar 

  118. Rouleau M, McDonald D, Gagné P, Ouellet M-E, Droit A, Hunter JM, Dutertre S, Prigent C, Hendzel MJ, Poirier GG (2007) PARP-3 associates with polycomb group bodies and with components of the DNA damage repair machinery. J Cell Biochem 100:385–401. https://doi.org/10.1002/jcb.21051

    Article  CAS  PubMed  Google Scholar 

  119. Quan J-J, Song J-N, Qu J-Q (2015) PARP3 interacts with FoxM1 to confer glioblastoma cell radioresistance. Tumor Biol 36:8617–8624. https://doi.org/10.1007/s13277-015-3554-4

    Article  CAS  Google Scholar 

  120. Helleday T (2011) The underlying mechanism for the PARP and BRCA synthetic lethality: Clearing up the misunderstandings. Mol Oncol 5:387–393. https://doi.org/10.1016/j.molonc.2011.07.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Juvekar A, Burga LN, Hu H, Lunsford EP, Ibrahim YH, Balmañà J, Rajendran A, Papa A, Spencer K, Lyssiotis CA, Nardella C, Pandolfi PP, Baselga J, Scully R, Asara JM, Cantley LC, Wulf GM (2012) Combining a PI3K Inhibitor with a PARP Inhibitor Provides an Effective Therapy for BRCA1-Related Breast Cancer. Cancer Discov 2:1048–1063. https://doi.org/10.1158/2159-8290.CD-11-0336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Luo M-L, Zheng F, Chen W, Liang Z-M, Chandramouly G, Tan J, Willis NA, Chen C-H, de Taveira ME, Zhou XZ, Lu KP, Scully R, Wulf GM, Hu H (2020) Inactivation of the Prolyl Isomerase Pin1 Sensitizes BRCA1-Proficient Breast Cancer to PARP Inhibition. Cancer Res 80:3033–3045. https://doi.org/10.1158/0008-5472.CAN-19-2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Jannetti SA, Carlucci G, Carney B, Kossatz S, Shenker L, Carter LM, Salinas B, Brand C, Sadique A, Donabedian PL, Cunanan KM, Gönen M, Ponomarev V, Zeglis BM, Souweidane MM, Lewis JS, Weber WA, Humm JL, Reiner T (2018) PARP-1–Targeted Radiotherapy in Mouse Models of Glioblastoma. J Nucl Med 59:1225–1233. https://doi.org/10.2967/jnumed.117.205054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Gupta SK, Smith EJ, Mladek AC, Tian S, Decker PA, Kizilbash SH, Kitange GJ, Sarkaria JN (2019) PARP Inhibitors for Sensitization of Alkylation Chemotherapy in Glioblastoma: Impact of Blood-Brain Barrier and Molecular Heterogeneity. Front Oncol 8:670. https://doi.org/10.3389/fonc.2018.00670

    Article  PubMed  PubMed Central  Google Scholar 

  125. Gupta SK, Kizilbash SH, Carlson BL, Mladek AC, Boakye-Agyeman F, Bakken KK, Pokorny JL, Schroeder MA, Decker PA, Cen L, Eckel-Passow JE, Sarkar G, Ballman KV, Reid JM, Jenkins RB, Verhaak RG, Sulman EP, Kitange GJ, Sarkaria JN (2015) Delineation of MGMT Hypermethylation as a Biomarker for Veliparib-Mediated Temozolomide-Sensitizing Therapy of Glioblastoma. J Natl Cancer Inst 108:djv369. https://doi.org/10.1093/jnci/djv369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Sun K, Mikule K, Wang Z, Poon G, Vaidyanathan A, Smith G, Zhang Z-Y, Hanke J, Ramaswamy S, Wang J (2018) A comparative pharmacokinetic study of PARP inhibitors demonstrates favorable properties for niraparib efficacy in preclinical tumor models. Oncotarget 9:37080–37096. https://doi.org/10.18632/oncotarget.26354

    Article  PubMed  PubMed Central  Google Scholar 

  127. Hanna C, Kurian KM, Williams K, Watts C, Jackson A, Carruthers R, Strathdee K, Cruickshank G, Dunn L, Erridge S, Godfrey L, Jefferies S, McBain C, Sleigh R, McCormick A, Pittman M, Halford S, Chalmers AJ (2020) Pharmacokinetics, safety, and tolerability of olaparib and temozolomide for recurrent glioblastoma: results of the phase I OPARATIC trial. Neuro Oncol 22:1840–1850. https://doi.org/10.1093/neuonc/noaa104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Xiong Y, Guo Y, Liu Y, Wang H, Gong W, Liu Y, Wang X, Gao Y, Yu F, Su D, Wang F, Zhu Y, Zhao Y, Wu Y, Qin Z, Sun X, Ren B, Jiang B, Jin W, Shen Z, Tang Z, Song X, Wang L, Liu X, Zhou C, Jiang B (2020) Pamiparib is a potent and selective PARP inhibitor with unique potential for the treatment of brain tumor. Neoplasia 22:431–440. https://doi.org/10.1016/j.neo.2020.06.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Sim H-W, Galanis E, Khasraw M (2022) PARP Inhibitors in Glioma: A Review of Therapeutic Opportunities. Cancers (Basel) 14:1003. https://doi.org/10.3390/cancers14041003

    Article  CAS  Google Scholar 

  130. Edwards SL, Brough R, Lord CJ, Natrajan R, Vatcheva R, Levine DA, Boyd J, Reis-Filho JS, Ashworth A (2008) Resistance to therapy caused by intragenic deletion in BRCA2. Nature 451:1111–1115. https://doi.org/10.1038/nature06548

    Article  CAS  PubMed  Google Scholar 

  131. Barber LJ, Sandhu S, Chen L, Campbell J, Kozarewa I, Fenwick K, Assiotis I, Rodrigues DN, Reis-Filho JS, Moreno V, Mateo J, Molife LR, De Bono J, Kaye S, Lord CJ, Ashworth A (2013) Secondary mutations in BRCA2 associated with clinical resistance to a PARP inhibitor. J Pathol 229:422–429. https://doi.org/10.1002/path.4140

    Article  CAS  PubMed  Google Scholar 

  132. ter Brugge P, Kristel P, van der Burg E, Boon U, de Maaker M, Lips E, Mulder L, de Ruiter J, Moutinho C, Gevensleben H, Marangoni E, Majewski I, Jóźwiak K, Kloosterman W, van Roosmalen M, Duran K, Hogervorst F, Turner N, Esteller M, Cuppen E, Wesseling J, Jonkers J (2016) Mechanisms of Therapy Resistance in Patient-Derived Xenograft Models of BRCA1-Deficient Breast Cancer. J Natl Cancer Inst 108:djw148. https://doi.org/10.1093/jnci/djw148

    Article  CAS  Google Scholar 

  133. Kondrashova O, Nguyen M, Shield-Artin K, Tinker AV, Teng NNH, Harrell MI, Kuiper MJ, Ho G-Y, Barker H, Jasin M, Prakash R, Kass EM, Sullivan MR, Brunette GJ, Bernstein KA, Coleman RL, Floquet A, Friedlander M, Kichenadasse G, O’Malley DM, Oza A, Sun J, Robillard L, Maloney L, Bowtell D, Giordano H, Wakefield MJ, Kaufmann SH, Simmons AD, Harding TC, Raponi M, McNeish IA, Swisher EM, Lin KK, Scott CL (2017) Secondary Somatic Mutations Restoring RAD51C and RAD51D Associated with Acquired Resistance to the PARP Inhibitor Rucaparib in High-Grade Ovarian Carcinoma. Cancer Discov 7:984–998. https://doi.org/10.1158/2159-8290.CD-17-0419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Bouwman P, Aly A, Escandell JM, Pieterse M, Bartkova J, van der Gulden H, Hiddingh S, Thanasoula M, Kulkarni A, Yang Q, Haffty BG, Tommiska J, Blomqvist C, Drapkin R, Adams DJ, Nevanlinna H, Bartek J, Tarsounas M, Ganesan S, Jonkers J (2010) 53BP1 loss rescues BRCA1 deficiency and is associated with triple-negative and BRCA-mutated breast cancers. Nat Struct Mol Biol 17:688–695. https://doi.org/10.1038/nsmb.1831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Taglialatela A, Alvarez S, Leuzzi G, Sannino V, Ranjha L, Huang J-W, Madubata C, Anand R, Levy B, Rabadan R, Cejka P, Costanzo V, Ciccia A (2017) Restoration of Replication Fork Stability in BRCA1- and BRCA2-Deficient Cells by Inactivation of SNF2-Family Fork Remodelers. Mol Cell 68:414-430.e8. https://doi.org/10.1016/j.molcel.2017.09.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Vaidyanathan A, Sawers L, Gannon A-L, Chakravarty P, Scott AL, Bray SE, Ferguson MJ, Smith G (2016) ABCB1 (MDR1) induction defines a common resistance mechanism in paclitaxel- and olaparib-resistant ovarian cancer cells. Br J Cancer 115:431–441. https://doi.org/10.1038/bjc.2016.203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Quiros S, Roos WP, Kaina B (2011) Rad51 and BRCA2 - New Molecular Targets for Sensitizing Glioma Cells to Alkylating Anticancer Drugs. PLoS ONE 6:e27183. https://doi.org/10.1371/journal.pone.0027183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Somyajit K, Basavaraju S, Scully R, Nagaraju G (2013) ATM- and ATR-Mediated Phosphorylation of XRCC3 Regulates DNA Double-Strand Break-Induced Checkpoint Activation and Repair. Mol Cell Biol 33:1830–1844. https://doi.org/10.1128/MCB.01521-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Roos WP, Frohnapfel L, Quiros S, Ringel F, Kaina B (2018) XRCC3 contributes to temozolomide resistance of glioblastoma cells by promoting DNA double-strand break repair. Cancer Lett 424:119–126. https://doi.org/10.1016/j.canlet.2018.03.025

    Article  CAS  PubMed  Google Scholar 

  140. Yang B, Han N, Sun J, Jiang H, Xu H-Y (2019) CtIP contributes to non-homologous end joining formation through interacting with ligase IV and promotion of TMZ resistance in glioma cells. Eur Rev Med Pharmacol Sci 23:2092–2102. https://doi.org/10.26355/eurrev_201903_17252

    Article  CAS  PubMed  Google Scholar 

  141. You Z, Bailis JM (2010) DNA damage and decisions: CtIP coordinates DNA repair and cell cycle checkpoints. Trends Cell Biol 20:402–409. https://doi.org/10.1016/j.tcb.2010.04.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Wang H, Shi LZ, Wong CCL, Han X, Hwang PY-H, Truong LN, Zhu Q, Shao Z, Chen DJ, Berns MW, Yates JR, Chen L, Wu X (2013) The Interaction of CtIP and Nbs1 Connects CDK and ATM to Regulate HR–Mediated Double-Strand Break Repair. PLoS Genet 9:e1003277. https://doi.org/10.1371/journal.pgen.1003277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Hengartner MO (2000) The biochemistry of apoptosis. Nature 407:770–776. https://doi.org/10.1038/35037710

    Article  CAS  PubMed  Google Scholar 

  144. Zhang D, Tang B, Xie X, Xiao Y-F, Yang S-M, Zhang J-W (2015) The interplay between DNA repair and autophagy in cancer therapy. Cancer Biol Ther 16:1005–1013. https://doi.org/10.1080/15384047.2015.1046022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Huang S, Sinicrope F (2010) Celecoxib-induced apoptosis is enhanced by ABT-737 and by inhibition of autophagy in human colorectal cancer cells. Autophagy 6:256–269. https://doi.org/10.4161/auto.6.2.11124

    Article  CAS  PubMed  Google Scholar 

  146. Golden EB, Cho H-Y, Jahanian A, Hofman FM, Louie SG, Schönthal AH, Chen TC (2014) Chloroquine enhances temozolomide cytotoxicity in malignant gliomas by blocking autophagy. Neurosurg Focus 37:E12. https://doi.org/10.3171/2014.9.FOCUS14504

    Article  PubMed  Google Scholar 

  147. Li X, Zhou Y, Li Y, Yang L, Ma Y, Peng X, Yang S, Liu J, Li H (2019) Autophagy: A novel mechanism of chemoresistance in cancers. Biomed Pharmacother 119:109415. https://doi.org/10.1016/j.biopha.2019.109415

    Article  CAS  PubMed  Google Scholar 

  148. Hou W, Han J, Lu C, Goldstein LA, Rabinowich H (2010) Autophagic degradation of active caspase-8. Autophagy 6:891–900. https://doi.org/10.4161/auto.6.7.13038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Lim J, Park H, Heisler J, Maculins T, Roose-Girma M, Xu M, Mckenzie B, van Lookeren Campagne M, Newton K, Murthy A (2019) Autophagy regulates inflammatory programmed cell death via turnover of RHIM-domain proteins. Elife 8https://doi.org/10.7554/eLife.44452

  150. Yang Y, Xing D, Zhou F, Chen Q (2010) Mitochondrial autophagy protects against heat shock-induced apoptosis through reducing cytosolic cytochrome c release and downstream caspase-3 activation. Biochem Biophys Res Commun 395:190–195. https://doi.org/10.1016/j.bbrc.2010.03.155

    Article  CAS  PubMed  Google Scholar 

  151. Pyo J-O, Jang M-H, Kwon Y-K, Lee H-J, Jun J-I, Woo H-N, Cho D-H, Choi B, Lee H, Kim J-H, Mizushima N, Oshumi Y, Jung Y-K (2005) Essential Roles of Atg5 and FADD in Autophagic Cell Death. J Biol Chem 280:20722–20729. https://doi.org/10.1074/jbc.M413934200

    Article  CAS  PubMed  Google Scholar 

  152. Yousefi S, Perozzo R, Schmid I, Ziemiecki A, Schaffner T, Scapozza L, Brunner T, Simon H-U (2006) Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis. Nat Cell Biol 8:1124–1132. https://doi.org/10.1038/ncb1482

    Article  CAS  PubMed  Google Scholar 

  153. Young MM, Takahashi Y, Khan O, Park S, Hori T, Yun J, Sharma AK, Amin S, Hu C-D, Zhang J, Kester M, Wang H-G (2012) Autophagosomal Membrane Serves as Platform for Intracellular Death-inducing Signaling Complex (iDISC)-mediated Caspase-8 Activation and Apoptosis. J Biol Chem 287:12455–12468. https://doi.org/10.1074/jbc.M111.309104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Erlich S, Mizrachy L, Segev O, Lindenboim L, Zmira O, Adi-Harel S, Hirsch JA, Stein R, Pinkas-Kramarski R (2007) Differential Interactions Between Beclin 1 and Bcl-2 Family Members. Autophagy 3:561–568. https://doi.org/10.4161/auto.4713

    Article  CAS  PubMed  Google Scholar 

  155. Oral O, Oz-Arslan D, Itah Z, Naghavi A, Deveci R, Karacali S, Gozuacik D (2012) Cleavage of Atg3 protein by caspase-8 regulates autophagy during receptor-activated cell death. Apoptosis 17:810–820. https://doi.org/10.1007/s10495-012-0735-0

    Article  CAS  PubMed  Google Scholar 

  156. Zhou X-Y, Luo Y, Zhu Y-M, Liu Z-H, Kent TA, Rong J-G, Li W, Qiao S-G, Li M, Ni Y, Ishidoh K, Zhang H-L (2017) Inhibition of autophagy blocks cathepsins–tBid–mitochondrial apoptotic signaling pathway via stabilization of lysosomal membrane in ischemic astrocytes. Cell Death Dis 8:e2618–e2618. https://doi.org/10.1038/cddis.2017.34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Zeng X, Yan T, Schupp JE, Seo Y, Kinsella TJ (2007) DNA Mismatch Repair Initiates 6-Thioguanine-Induced Autophagy through p53 Activation in Human Tumor Cells. Clin Cancer Res 13:1315–1321. https://doi.org/10.1158/1078-0432.CCR-06-1517

    Article  CAS  PubMed  Google Scholar 

  158. Rajecki M, Hällström TAF, Hakkarainen T, Nokisalmi P, Hautaniemi S, Nieminen AI, Tenhunen M, Rantanen V, Desmond RA, Chen D-T, Guse K, Stenman U-H, Gargini R, Kapanen M, Klefström J, Kanerva A, Pesonen S, Ahtiainen L, Hemminki A (2009) Mre11 inhibition by oncolytic adenovirus associates with autophagy and underlies synergy with ionizing radiation. Int J Cancer 125:2441–2449. https://doi.org/10.1002/ijc.24608

    Article  CAS  PubMed  Google Scholar 

  159. Kanzawa T, Bedwell J, Kondo Y, Kondo S, Germano IM (2003) Inhibition of DNA repair for sensitizing resistant glioma cells to temozolomide. J Neurosurg 99:1047–1052. https://doi.org/10.3171/jns.2003.99.6.1047

    Article  CAS  PubMed  Google Scholar 

  160. Crighton D, Wilkinson S, O’Prey J, Syed N, Smith P, Harrison PR, Gasco M, Garrone O, Crook T, Ryan KM (2006) DRAM, a p53-Induced Modulator of Autophagy, Is Critical for Apoptosis. Cell 126:121–134. https://doi.org/10.1016/j.cell.2006.05.034

    Article  CAS  PubMed  Google Scholar 

  161. Crighton D, Wilkinson S, Ryan KM (2007) DRAM Links Autophagy to p53 and Programmed Cell Death. Autophagy 3:72–74. https://doi.org/10.4161/auto.3438

    Article  CAS  PubMed  Google Scholar 

  162. Maiuri MC, Galluzzi L, Morselli E, Kepp O, Malik SA, Kroemer G (2010) Autophagy regulation by p53. Curr Opin Cell Biol 22:181–185. https://doi.org/10.1016/j.ceb.2009.12.001

    Article  CAS  PubMed  Google Scholar 

  163. Ko A, Kanehisa A, Martins I, Senovilla L, Chargari C, Dugue D, Mariño G, Kepp O, Michaud M, Perfettini J-L, Kroemer G, Deutsch E (2014) Autophagy inhibition radiosensitizes in vitro, yet reduces radioresponses in vivo due to deficient immunogenic signalling. Cell Death Differ 21:92–99. https://doi.org/10.1038/cdd.2013.124

    Article  CAS  PubMed  Google Scholar 

  164. Lan YY, Londoño D, Bouley R, Rooney MS, Hacohen N (2014) Dnase2a Deficiency Uncovers Lysosomal Clearance of Damaged Nuclear DNA via Autophagy. Cell Rep 9:180–192. https://doi.org/10.1016/j.celrep.2014.08.074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Mo N, Lu Y-K, Xie W-M, Liu Y, Zhou W-X, Wang H-X, Nong L, Jia Y-X, Tan A-H, Chen Y, Li S-S, Luo B-H (2014) Inhibition of autophagy enhances the radiosensitivity of nasopharyngeal carcinoma by reducing Rad51 expression. Oncol Rep 32:1905–1912. https://doi.org/10.3892/or.2014.3427

    Article  CAS  PubMed  Google Scholar 

  166. Chen H, Ma Z, Vanderwaal RP, Feng Z, Gonzalez-Suarez I, Wang S, Zhang J, Roti Roti JL, Gonzalo S, Zhang J (2010) The mTOR Inhibitor Rapamycin Suppresses DNA Double-Strand Break Repair. Radiat Res 175:214. https://doi.org/10.1667/RR2323.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Robert T, Vanoli F, Chiolo I, Shubassi G, Bernstein KA, Rothstein R, Botrugno OA, Parazzoli D, Oldani A, Minucci S, Foiani M (2011) HDACs link the DNA damage response, processing of double-strand breaks and autophagy. Nature 471:74–79. https://doi.org/10.1038/nature09803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Siggens L, Figg N, Bennett M, Foo R (2012) Nutrient deprivation regulates DNA damage repair in cardiomyocytes via loss of the base-excision repair enzyme OGG1. FASEB J 26:2117–2124. https://doi.org/10.1096/fj.11-197525

    Article  CAS  PubMed  Google Scholar 

  169. Bondy ML, Kyritsis AP, Gu J, de Andrade M, Cunningham J, Levin VA, Bruner JM, Wei Q (1996) Mutagen sensitivity and risk of gliomas: a case-control analysis. Cancer Res 56:1484–1486

    CAS  PubMed  Google Scholar 

  170. Bondy ML, Wang L-E, El-Zein R, de Andrade M, Selvan MS, Bruner JM, Levin VA, Alfred Yung WK, Adatto P, Wei Q (2001) Radiation Sensitivity and Risk of Glioma. JNCI J Natl Cancer Inst 93:1553–1557. https://doi.org/10.1093/jnci/93.20.1553

    Article  CAS  PubMed  Google Scholar 

  171. Liu Y, Zhou K, Zhang H, Shugart YY, Chen L, Xu Z, Zhong Y, Liu H, Jin L, Wei Q, Huang F, Lu D, Zhou L (2008) Polymorphisms of LIG4 and XRCC4 involved in the NHEJ pathway interact to modify risk of glioma. Hum Mutat 29:381–389. https://doi.org/10.1002/humu.20645

    Article  CAS  PubMed  Google Scholar 

  172. Zhao P, Zou P, Zhao L, Yan W, Kang C, Jiang T, You Y (2013) Genetic polymorphisms of DNA double-strand break repair pathway genes and glioma susceptibility. BMC Cancer 13:234. https://doi.org/10.1186/1471-2407-13-234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Wang L-E, Bondy ML, Shen H, El-Zein R, Aldape K, Cao Y, Pudavalli V, Levin VA, Yung WKA, Wei Q (2004) Polymorphisms of DNA Repair Genes and Risk of Glioma. Cancer Res 64:5560–5563. https://doi.org/10.1158/0008-5472.CAN-03-2181

    Article  CAS  PubMed  Google Scholar 

  174. Liu Y, Shete S, Wang L-E, El-Zein R, Etzel CJ, Liang F-W, Armstrong G, Tsavachidis S, Gilbert MR, Aldape KD, Xing J, Wu X, Wei Q, Bondy ML (2010) Gamma-radiation sensitivity and polymorphisms in RAD51L1 modulate glioma risk. Carcinogenesis 31:1762–1769. https://doi.org/10.1093/carcin/bgq141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Feng Y, Zeng M, Xu Q (2014) Association between XRCC3 T241M polymorphism and glioma risk: a meta-analysis. Tumor Biol 35:5589–5592. https://doi.org/10.1007/s13277-014-1738-y

    Article  CAS  Google Scholar 

  176. Wang R, Li M, Gao W-W, Gu Y, Guo Y, Wang G, Tian H-L (2014) Quantitative assessment of the association between XRCC3 C18607T polymorphism and glioma risk. Tumor Biol 35:1101–1105. https://doi.org/10.1007/s13277-013-1147-7

    Article  CAS  Google Scholar 

  177. Liu Y, Shete S, Etzel CJ, Scheurer M, Alexiou G, Armstrong G, Tsavachidis S, Liang F-W, Gilbert M, Aldape K, Armstrong T, Houlston R, Hosking F, Robertson L, Xiao Y, Wiencke J, Wrensch M, Andersson U, Melin BS, Bondy M (2010) Polymorphisms of LIG4, BTBD2, HMGA2, and RTEL1 Genes Involved in the Double-Strand Break Repair Pathway Predict Glioblastoma Survival. J Clin Oncol 28:2467–2474. https://doi.org/10.1200/JCO.2009.26.6213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Rodriguez-Hernandez I, Perdomo S, Santos-Briz A, Garcia JL, Gomez-Moreta JA, Cruz JJ, Gonzalez-Sarmiento R (2014) Analysis of DNA repair gene polymorphisms in glioblastoma. Gene 536:79–83. https://doi.org/10.1016/j.gene.2013.11.077

    Article  CAS  PubMed  Google Scholar 

  179. Viana-Pereira M, Lee A, Popov S, Bax DA, Al-Sarraj S, Bridges LR, Stávale JN, Hargrave D, Jones C, Reis RM (2011) Microsatellite Instability in Pediatric High Grade Glioma Is Associated with Genomic Profile and Differential Target Gene Inactivation. PLoS ONE 6:e20588. https://doi.org/10.1371/journal.pone.0020588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Nord H, Hartmann C, Andersson R, Menzel U, Pfeifer S, Piotrowski A, Bogdan A, Kloc W, Sandgren J, Olofsson T, Hesselager G, Blomquist E, Komorowski J, von Deimling A, Bruder CEG, Dumanski JP, de Ståhl TD (2009) Characterization of novel and complex genomic aberrations in glioblastoma using a 32K BAC array. Neuro Oncol 11:803–818. https://doi.org/10.1215/15228517-2009-013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Fischer U, Rheinheimer S, Krempler A, Löbrich M, Meese E (2013) Glioma-amplified sequence KUB3 influences double-strand break repair after ionizing radiation. Int J Oncol 43:50–56. https://doi.org/10.3892/ijo.2013.1937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Fischer U, Leidinger P, Keller A, Folarin A, Ketter R, Graf N, Lenhof H-P, Meese E (2010) Amplicons on chromosome 12q13-21 in glioblastoma recurrences. Int J Cancer 126:2594. https://doi.org/10.1002/ijc.24971

    Article  CAS  PubMed  Google Scholar 

  183. Varon R, Vissinga C, Platzer M, Cerosaletti KM, Chrzanowska KH, Saar K, Beckmann G, Seemanová E, Cooper PR, Nowak NJ, Stumm M, Weemaes CMR, Gatti RA, Wilson RK, Digweed M, Rosenthal A, Sperling K, Concannon P, Reis A (1998) Nibrin, a Novel DNA Double-Strand Break Repair Protein, Is Mutated in Nijmegen Breakage Syndrome. Cell 93:467–476. https://doi.org/10.1016/S0092-8674(00)81174-5

    Article  CAS  PubMed  Google Scholar 

  184. Williams RS, Williams JS, Tainer JA (2007) Mre11–Rad50–Nbs1 is a keystone complex connecting DNA repair machinery, double-strand break signaling, and the chromatin template. Biochem Cell Biol 85:509–520. https://doi.org/10.1139/O07-069

    Article  CAS  PubMed  Google Scholar 

  185. Kang J, Ferguson D, Song H, Bassing C, Eckersdorff M, Alt FW, Xu Y (2005) Functional Interaction of H2AX, NBS1, and p53 in ATM-Dependent DNA Damage Responses and Tumor Suppression. Mol Cell Biol 25:661–670. https://doi.org/10.1128/MCB.25.2.661-670.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Watanabe T, Nobusawa S, Lu S, Huang J, Mittelbronn M, Ohgaki H (2009) Mutational Inactivation of the Nijmegen Breakage Syndrome Gene (NBS1) in Glioblastomas Is Associated With Multiple TP53 Mutations. J Neuropathol Exp Neurol 68:210–215. https://doi.org/10.1097/NEN.0b013e31819724c2

    Article  CAS  PubMed  Google Scholar 

  187. Piekutowska-Abramczuk D, Ciara E, Popowska E, Grajkowska W, Dembowska-Bagińska B, Kowalewska E, Czajńska A, Perek-Polnik M, Roszkowski M, Syczewska M, Krajewska-Walasek M, Perek D, Chrzanowska KH (2010) The frequency of NBN molecular variants in pediatric astrocytic tumors. J Neurooncol 96:161–168. https://doi.org/10.1007/s11060-009-9958-5

    Article  CAS  PubMed  Google Scholar 

  188. Fujimori A, Yaoi T, Ogi H, Wang B, Suetomi K, Sekine E, Yu D, Kato T, Takahashi S, Okayasu R, Itoh K, Fushiki S (2008) Ionizing radiation downregulates ASPM, a gene responsible for microcephaly in humans. Biochem Biophys Res Commun 369:953–957. https://doi.org/10.1016/j.bbrc.2008.02.149

    Article  CAS  PubMed  Google Scholar 

  189. Marie SKN, Okamoto OK, Uno M, Hasegawa APG, Oba-Shinjo SM, Cohen T, Camargo AA, Kosoy A, Carlotti CG, Toledo S, Moreira-Filho CA, Zago MA, Simpson AJ, Caballero OL (2008) Maternal embryonic leucine zipper kinase transcript abundance correlates with malignancy grade in human astrocytomas. Int J Cancer 122:807–815. https://doi.org/10.1002/ijc.23189

    Article  CAS  PubMed  Google Scholar 

  190. Horvath S, Zhang B, Carlson M, Lu KV, Zhu S, Felciano RM, Laurance MF, Zhao W, Qi S, Chen Z, Lee Y, Scheck AC, Liau LM, Wu H, Geschwind DH, Febbo PG, Kornblum HI, Cloughesy TF, Nelson SF, Mischel PS (2006) Analysis of oncogenic signaling networks in glioblastoma identifies ASPM as a molecular target. Proc Natl Acad Sci 103:17402–17407. https://doi.org/10.1073/pnas.0608396103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Kato TA, Okayasu R, Jeggo PA, Fujimori A (2011) ASPM influences DNA double-strand break repair and represents a potential target for radiotherapy. Int J Radiat Biol 87:1189–1195. https://doi.org/10.3109/09553002.2011.624152

    Article  CAS  PubMed  Google Scholar 

  192. Lavin MF, Birrell G, Chen P, Kozlov S, Scott S, Gueven N (2005) ATM signaling and genomic stability in response to DNA damage. Mutat Res Mol Mech Mutagen 569:123–132. https://doi.org/10.1016/j.mrfmmm.2004.04.020

    Article  CAS  Google Scholar 

  193. Dokic I, Mairani A, Brons S, Schoell B, Jauch A, Krunic D, Debus J, Régnier-Vigouroux A, Weber K-J (2015) High resistance to X-rays and therapeutic carbon ions in glioblastoma cells bearing dysfunctional ATM associates with intrinsic chromosomal instability. Int J Radiat Biol 91:157–165. https://doi.org/10.3109/09553002.2014.937511

    Article  CAS  PubMed  Google Scholar 

  194. Blakely EA, Kronenberg A (1998) Heavy-Ion Radiobiology: New Approaches to Delineate Mechanisms Underlying Enhanced Biological Effectiveness. Radiat Res 150:S126. https://doi.org/10.2307/3579815

    Article  CAS  PubMed  Google Scholar 

  195. Mairani A, Böhlen TT, Dokic I, Cabal G, Brons S, Haberer T (2013) Modelling of cell killing due to sparsely ionizing radiation in normoxic and hypoxic conditions and an extension to high LET radiation. Int J Radiat Biol 89:782–793. https://doi.org/10.3109/09553002.2013.800247

    Article  CAS  PubMed  Google Scholar 

  196. Fernandez-L A, Squatrito M, Northcott P, Awan A, Holland EC, Taylor MD, Nahlé Z, Kenney AM (2012) Oncogenic YAP promotes radioresistance and genomic instability in medulloblastoma through IGF2-mediated Akt activation. Oncogene 31:1923–1937. https://doi.org/10.1038/onc.2011.379

    Article  CAS  PubMed  Google Scholar 

  197. Raso A, Vecchio D, Cappelli E, Ropolo M, Poggi A, Nozza P, Biassoni R, Mascelli S, Capra V, Kalfas F, Severi P, Frosina G (2012) Characterization of Glioma Stem Cells Through Multiple Stem Cell Markers and Their Specific Sensitization to Double-Strand Break-Inducing Agents by Pharmacological Inhibition of Ataxia Telangiectasia Mutated Protein. Brain Pathol 22:677–688. https://doi.org/10.1111/j.1750-3639.2012.00566.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Schwartzentruber J, Korshunov A, Liu X-Y, Jones DTW, Pfaff E, Jacob K, Sturm D, Fontebasso AM, Quang D-AK, Tönjes M, Hovestadt V, Albrecht S, Kool M, Nantel A, Konermann C, Lindroth A, Jäger N, Rausch T, Ryzhova M, Korbel JO, Hielscher T, Hauser P, Garami M, Klekner A, Bognar L, Ebinger M, Schuhmann MU, Scheurlen W, Pekrun A, Frühwald MC, Roggendorf W, Kramm C, Dürken M, Atkinson J, Lepage P, Montpetit A, Zakrzewska M, Zakrzewski K, Liberski PP, Dong Z, Siegel P, Kulozik AE, Zapatka M, Guha A, Malkin D, Felsberg J, Reifenberger G, von Deimling A, Ichimura K, Collins VP, Witt H, Milde T, Witt O, Zhang C, Castelo-Branco P, Lichter P, Faury D, Tabori U, Plass C, Majewski J, Pfister SM, Jabado N (2012) Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 482:226–231. https://doi.org/10.1038/nature10833

    Article  CAS  PubMed  Google Scholar 

  199. Heaphy CM, de Wilde RF, Jiao Y, Klein AP, Edil BH, Shi C, Bettegowda C, Rodriguez FJ, Eberhart CG, Hebbar S, Offerhaus GJ, McLendon R, Rasheed BA, He Y, Yan H, Bigner DD, Oba-Shinjo SM, Marie SKN, Riggins GJ, Kinzler KW, Vogelstein B, Hruban RH, Maitra A, Papadopoulos N, Meeker AK (2011) Altered Telomeres in Tumors with ATRX and DAXX Mutations. Science 333:425–425. https://doi.org/10.1126/science.1207313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Koschmann C, Calinescu A-A, Nunez FJ, Mackay A, Fazal-Salom J, Thomas D, Mendez F, Kamran N, Dzaman M, Mulpuri L, Krasinkiewicz J, Doherty R, Lemons R, Brosnan-Cashman JA, Li Y, Roh S, Zhao L, Appelman H, Ferguson D, Gorbunova V, Meeker A, Jones C, Lowenstein PR, Castro MG (2016) ATRX loss promotes tumor growth and impairs nonhomologous end joining DNA repair in glioma. Sci Transl Med 8:328ra28-328ra28. https://doi.org/10.1126/scitranslmed.aac8228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, Yuan W, Kos I, Batinic-Haberle I, Jones S, Riggins GJ, Friedman H, Friedman A, Reardon D, Herndon J, Kinzler KW, Velculescu VE, Vogelstein B, Bigner DD (2009) IDH1 and IDH2 Mutations in Gliomas. N Engl J Med 360:765–773. https://doi.org/10.1056/NEJMoa0808710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Dang L, White DW, Gross S, Bennett BD, Bittinger MA, Driggers EM, Fantin VR, Jang HG, Jin S, Keenan MC, Marks KM, Prins RM, Ward PS, Yen KE, Liau LM, Rabinowitz JD, Cantley LC, Thompson CB, Vander Heiden MG, Su SM (2010) Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 465:966–966. https://doi.org/10.1038/nature09132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Xu W, Yang H, Liu Y, Yang Y, Wang P, Kim S-H, Ito S, Yang C, Wang P, Xiao M-T, Liu L, Jiang W, Liu J, Zhang J, Wang B, Frye S, Zhang Y, Xu Y, Lei Q, Guan K-L, Zhao S, Xiong Y (2011) Oncometabolite 2-Hydroxyglutarate Is a Competitive Inhibitor of α-Ketoglutarate-Dependent Dioxygenases. Cancer Cell 19:17–30. https://doi.org/10.1016/j.ccr.2010.12.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Molenaar RJ, Verbaan D, Lamba S, Zanon C, Jeuken JWM, Boots-Sprenger SHE, Wesseling P, Hulsebos TJM, Troost D, van Tilborg AA, Leenstra S, Vandertop WP, Bardelli A, van Noorden CJF, Bleeker FE (2014) The combination of IDH1 mutations and MGMT methylation status predicts survival in glioblastoma better than either IDH1 or MGMT alone. Neuro Oncol 16:1263–1273. https://doi.org/10.1093/neuonc/nou005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Tran AN, Lai A, Li S, Pope WB, Teixeira S, Harris RJ, Woodworth DC, Nghiemphu PL, Cloughesy TF, Ellingson BM (2014) Increased sensitivity to radiochemotherapy in IDH1 mutant glioblastoma as demonstrated by serial quantitative MR volumetry. Neuro Oncol 16:414–420. https://doi.org/10.1093/neuonc/not198

    Article  CAS  PubMed  Google Scholar 

  206. Sulkowski PL, Corso CD, Robinson ND, Scanlon SE, Purshouse KR, Bai H, Liu Y, Sundaram RK, Hegan DC, Fons NR, Breuer GA, Song Y, Mishra-Gorur K, De Feyter HM, de Graaf RA, Surovtseva YV, Kachman M, Halene S, Günel M, Glazer PM, Bindra RS (2017) 2-Hydroxyglutarate produced by neomorphic IDH mutations suppresses homologous recombination and induces PARP inhibitor sensitivity. Sci Transl Med 9:eaal2463. https://doi.org/10.1126/scitranslmed.aal2463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Lu Y, Kwintkiewicz J, Liu Y, Tech K, Frady LN, Su Y-T, Bautista W, Moon SI, MacDonald J, Ewend MG, Gilbert MR, Yang C, Wu J (2017) Chemosensitivity of IDH1-Mutated Gliomas Due to an Impairment in PARP1-Mediated DNA Repair. Cancer Res 77:1709–1718. https://doi.org/10.1158/0008-5472.CAN-16-2773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Wang Y, Wild AT, Turcan S, Wu WH, Sigel C, Klimstra DS, Ma X, Gong Y, Holland EC, Huse JT, Chan TA (2020) Targeting therapeutic vulnerabilities with PARP inhibition and radiation in IDH-mutant gliomas and cholangiocarcinomas. Sci Adv 6:eaaz3221. https://doi.org/10.1126/sciadv.aaz3221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. de Sousa JF, Torrieri R, Serafim RB, Di Cristofaro LFM, Escanfella FD, Ribeiro R, Zanette DL, Paçó-Larson ML, da Silva WA, da Tirapelli DP, C, Neder L, Carlotti CG, Valente V, (2017) Expression signatures of DNA repair genes correlate with survival prognosis of astrocytoma patients. Tumor Biol 39:101042831769455. https://doi.org/10.1177/1010428317694552

    Article  CAS  Google Scholar 

  210. Turner KM, Sun Y, Ji P, Granberg KJ, Bernard B, Hu L, Cogdell DE, Zhou X, Yli-Harja O, Nykter M, Shmulevich I, Yung WKA, Fuller GN, Zhang W (2015) Genomically amplified Akt3 activates DNA repair pathway and promotes glioma progression. Proc Natl Acad Sci 112:3421–3426. https://doi.org/10.1073/pnas.1414573112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Tomimatsu N, Mukherjee B, Deland K, Kurimasa A, Bolderson E, Khanna KK, Burma S (2012) Exo1 plays a major role in DNA end resection in humans and influences double-strand break repair and damage signaling decisions. DNA Repair (Amst) 11:441–448. https://doi.org/10.1016/j.dnarep.2012.01.006

    Article  CAS  Google Scholar 

  212. Hong J-H, Chiang C-S, Sun J-R, Withers HR, McBride WH (1997) Induction of c-fos and junB mRNA following in vivo brain irradiation. Mol Brain Res 48:223–228. https://doi.org/10.1016/S0169-328X(97)00095-8

    Article  CAS  PubMed  Google Scholar 

  213. Liu Z-G, Jiang G, Tang J, Wang H, Feng G, Chen F, Tu Z, Liu G, Zhao Y, Peng M-J, He Z-W, Chen X-Y, Lindsay H, Xia Y-F, Li X-N (2016) c-Fos over-expression promotes radioresistance and predicts poor prognosis in malignant glioma. Oncotarget 7:65946–65956. https://doi.org/10.18632/oncotarget.11779

    Article  PubMed  PubMed Central  Google Scholar 

  214. Galloway AM, Allalunis-Turner J (2000) cDNA expression array analysis of DNA repair genes in human glioma cells that lack or express DNA-PK. Radiat Res 154:609–615. https://doi.org/10.1667/0033-7587(2000)154[0609:ceaaod]2.0.co;2

    Article  CAS  PubMed  Google Scholar 

  215. Chaudhry MA, Sachdeva H, Omaruddin RA (2010) Radiation-Induced Micro-RNA Modulation in Glioblastoma Cells Differing in DNA-Repair Pathways. DNA Cell Biol 29:553–561. https://doi.org/10.1089/dna.2009.0978

    Article  CAS  PubMed  Google Scholar 

  216. Zhang J, Jing L, Tan S, Zeng E-M, Lin Y, He L, Hu Z, Liu J, Guo Z (2020) Inhibition of miR-1193 leads to synthetic lethality in glioblastoma multiforme cells deficient of DNA-PKcs. Cell Death Dis 11:602. https://doi.org/10.1038/s41419-020-02812-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Grawunder U, Wilm M, Wu X, Kulesza P, Wilson TE, Mann M, Lieber MR (1997) Activity of DNA ligase IV stimulated by complex formation with XRCC4 protein in mammalian cells. Nature 388:492–495. https://doi.org/10.1038/41358

    Article  CAS  PubMed  Google Scholar 

  218. Zheng Z, Ng WL, Zhang X, Olson JJ, Hao C, Curran WJ, Wang Y (2012) RNAi-Mediated Targeting of Noncoding and Coding Sequences in DNA Repair Gene Messages Efficiently Radiosensitizes Human Tumor Cells. Cancer Res 72:1221–1228. https://doi.org/10.1158/0008-5472.CAN-11-2785

    Article  CAS  PubMed  Google Scholar 

  219. McLendon RE, Turner K, Perkinson K, Rich J (2007) Second Messenger Systems in Human Gliomas. Arch Pathol Lab Med 131:1585–1590. https://doi.org/10.5858/2007-131-1585-SMSIHG

    Article  CAS  PubMed  Google Scholar 

  220. Roos WP, Batista LFZ, Naumann SC, Wick W, Weller M, Menck CFM, Kaina B (2007) Apoptosis in malignant glioma cells triggered by the temozolomide-induced DNA lesion O6-methylguanine. Oncogene 26:186–197. https://doi.org/10.1038/sj.onc.1209785

    Article  CAS  PubMed  Google Scholar 

  221. McLendon R, Friedman A, Bigner D, Van Meir EG, Brat DJ, Mastrogianakis GM, Olson JJ, Mikkelsen T, Lehman N, Aldape K, Yung WKA, Bogler O, Weinstein JN, VandenBerg S, Berger M, Prados M, Muzny D, Morgan M, Scherer S, Sabo A, Nazareth L, Lewis L, Hall O, Zhu Y, Ren Y, Alvi O, Yao J, Hawes A, Jhangiani S, Fowler G, San Lucas A, Kovar C, Cree A, Dinh H, Santibanez J, Joshi V, Gonzalez-Garay ML, Miller CA, Milosavljevic A, Donehower L, Wheeler DA, Gibbs RA, Cibulskis K, Sougnez C, Fennell T, Mahan S, Wilkinson J, Ziaugra L, Onofrio R, Bloom T, Nicol R, Ardlie K, Baldwin J, Gabriel S, Lander ES, Ding L, Fulton RS, McLellan MD, Wallis J, Larson DE, Shi X, Abbott R, Fulton L, Chen K, Koboldt DC, Wendl MC, Meyer R, Tang Y, Lin L, Osborne JR, Dunford-Shore BH, Miner TL, Delehaunty K, Markovic C, Swift G, Courtney W, Pohl C, Abbott S, Hawkins A, Leong S, Haipek C, Schmidt H, Wiechert M, Vickery T, Scott S, Dooling DJ, Chinwalla A, Weinstock GM, Mardis ER, Wilson RK, Getz G, Winckler W, Verhaak RGW, Lawrence MS, O’Kelly M, Robinson J, Alexe G, Beroukhim R, Carter S, Chiang D, Gould J, Gupta S, Korn J, Mermel C, Mesirov J, Monti S, Nguyen H, Parkin M, Reich M, Stransky N, Weir BA, Garraway L, Golub T, Meyerson M, Chin L, Protopopov A, Zhang J, Perna I, Aronson S, Sathiamoorthy N, Ren G, Yao J, Wiedemeyer WR, Kim H, Sek WK, Xiao Y, Kohane IS, Seidman J, Park PJ, Kucherlapati R, Laird PW, Cope L, Herman JG, Weisenberger DJ, Pan F, Van Den Berg D, Van Neste L, Joo MY, Schuebel KE, Baylin SB, Absher DM, Li JZ, Southwick A, Brady S, Aggarwal A, Chung T, Sherlock G, Brooks JD, Myers RM, Spellman PT, Purdom E, Jakkula LR, Lapuk AV, Marr H, Dorton S, Yoon GC, Han J, Ray A, Wang V, Durinck S, Robinson M, Wang NJ, Vranizan K, Peng V, Van Name E, Fontenay GV, Ngai J, Conboy JG, Parvin B, Feiler HS, Speed TP, Gray JW, Brennan C, Socci ND, Olshen A, Taylor BS, Lash A, Schultz N, Reva B, Antipin Y, Stukalov A, Gross B, Cerami E, Wei QW, Qin LX, Seshan VE, Villafania L, Cavatore M, Borsu L, Viale A, Gerald W, Sander C, Ladanyi M, Perou CM, Hayes DN, Topal MD, Hoadley KA, Qi Y, Balu S, Shi Y, Wu J, Penny R, Bittner M, Shelton T, Lenkiewicz E, Morris S, Beasley D, Sanders S, Kahn A, Sfeir R, Chen J, Nassau D, Feng L, Hickey E, Barker A, Gerhard DS, Vockley J, Compton C, Vaught J, Fielding P, Ferguson ML, Schaefer C, Zhang J, Madhavan S, Buetow KH, Collins F, Good P, Guyer M, Ozenberger B, Peterson J, Thomson E (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455:1061–1068. https://doi.org/10.1038/nature07385

    Article  CAS  Google Scholar 

  222. Parsons DW, Jones S, Zhang X, Lin JC-H, Leary RJ, Angenendt P, Mankoo P, Carter H, Siu I-M, Gallia GL, Olivi A, McLendon R, Rasheed BA, Keir S, Nikolskaya T, Nikolsky Y, Busam DA, Tekleab H, Diaz LA, Hartigan J, Smith DR, Strausberg RL, Marie SKN, Shinjo SMO, Yan H, Riggins GJ, Bigner DD, Karchin R, Papadopoulos N, Parmigiani G, Vogelstein B, Velculescu VE, Kinzler KW (2008) An Integrated Genomic Analysis of Human Glioblastoma Multiforme. Science 321:1807–1812. https://doi.org/10.1126/science.1164382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Badr CE, da Hora CC, Kirov AB, Tabet E, Amante R, Maksoud S, Nibbs AE, Fitzsimons E, Boukhali M, Chen JW, Chiu NHL, Nakano I, Haas W, Mazitschek R, Tannous BA (2020) Obtusaquinone: A Cysteine-Modifying Compound That Targets Keap1 for Degradation. ACS Chem Biol 15:1445–1454. https://doi.org/10.1021/acschembio.0c00104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Maksoud S (2021) The Role of the Ubiquitin Proteasome System in Glioma: Analysis Emphasizing the Main Molecular Players and Therapeutic Strategies Identified in Glioblastoma Multiforme. Mol Neurobiol 58:3252–3269. https://doi.org/10.1007/s12035-021-02339-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, Dirks PB (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63:5821–5828

    CAS  PubMed  Google Scholar 

  226. Lim YC, Roberts TL, Day BW, Harding A, Kozlov S, Kijas AW, Ensbey KS, Walker DG, Lavin MF (2012) A Role for Homologous Recombination and Abnormal Cell-Cycle Progression in Radioresistance of Glioma-Initiating Cells. Mol Cancer Ther 11:1863–1872. https://doi.org/10.1158/1535-7163.MCT-11-1044

    Article  CAS  PubMed  Google Scholar 

  227. Carruthers R, Ahmed SU, Strathdee K, Gomez-Roman N, Amoah-Buahin E, Watts C, Chalmers AJ (2015) Abrogation of radioresistance in glioblastoma stem-like cells by inhibition of ATM kinase. Mol Oncol 9:192–203. https://doi.org/10.1016/j.molonc.2014.08.003

    Article  CAS  PubMed  Google Scholar 

  228. Carruthers RD, Ahmed SU, Ramachandran S, Strathdee K, Kurian KM, Hedley A, Gomez-Roman N, Kalna G, Neilson M, Gilmour L, Stevenson KH, Hammond EM, Chalmers AJ (2018) Replication Stress Drives Constitutive Activation of the DNA Damage Response and Radioresistance in Glioblastoma Stem-like Cells. Cancer Res 78:5060–5071. https://doi.org/10.1158/0008-5472.CAN-18-0569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Griguer CE, Oliva CR, Gobin E, Marcorelles P, Benos DJ, Lancaster JR, Gillespie GY (2008) CD133 Is a Marker of Bioenergetic Stress in Human Glioma. PLoS ONE 3:e3655. https://doi.org/10.1371/journal.pone.0003655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Beier D, Hau P, Proescholdt M, Lohmeier A, Wischhusen J, Oefner PJ, Aigner L, Brawanski A, Bogdahn U, Beier CP (2007) CD133 + and CD133 − Glioblastoma-Derived Cancer Stem Cells Show Differential Growth Characteristics and Molecular Profiles. Cancer Res 67:4010–4015. https://doi.org/10.1158/0008-5472.CAN-06-4180

    Article  CAS  PubMed  Google Scholar 

  231. Wang J, Sakariassen PØ, Tsinkalovsky O, Immervoll H, Bøe SO, Svendsen A, Prestegarden L, Røsland G, Thorsen F, Stuhr L, Molven A, Bjerkvig R, Enger PØ (2008) CD133 negative glioma cells form tumors in nude rats and give rise to CD133 positive cells. Int J Cancer 122:761–768. https://doi.org/10.1002/ijc.23130

    Article  CAS  PubMed  Google Scholar 

  232. McCord AM, Jamal M, Williams ES, Camphausen K, Tofilon PJ (2009) CD133 + Glioblastoma Stem-like Cells are Radiosensitive with a Defective DNA Damage Response Compared with Established Cell Lines. Clin Cancer Res 15:5145–5153. https://doi.org/10.1158/1078-0432.CCR-09-0263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Ropolo M, Daga A, Griffero F, Foresta M, Casartelli G, Zunino A, Poggi A, Cappelli E, Zona G, Spaziante R, Corte G, Frosina G (2009) Comparative Analysis of DNA Repair in Stem and Nonstem Glioma Cell Cultures. Mol Cancer Res 7:383–392. https://doi.org/10.1158/1541-7786.MCR-08-0409

    Article  CAS  PubMed  Google Scholar 

  234. Jamal M, Rath BH, Williams ES, Camphausen K, Tofilon PJ (2010) Microenvironmental Regulation of Glioblastoma Radioresponse. Clin Cancer Res 16:6049–6059. https://doi.org/10.1158/1078-0432.CCR-10-2435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Jamal M, Rath BH, Tsang PS, Camphausen K, Tofilon PJ (2012) The Brain Microenvironment Preferentially Enhances the Radioresistance of CD133+ Glioblastoma Stem-like Cells. Neoplasia 14:150–158. https://doi.org/10.1593/neo.111794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Rath BH, Wahba A, Camphausen K, Tofilon PJ (2015) Coculture with astrocytes reduces the radiosensitivity of glioblastoma stem-like cells and identifies additional targets for radiosensitization. Cancer Med 4:1705–1716. https://doi.org/10.1002/cam4.510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Olcina MM, Foskolou IP, Anbalagan S, Senra JM, Pires IM, Jiang Y, Ryan AJ, Hammond EM (2013) Replication Stress and Chromatin Context Link ATM Activation to a Role in DNA Replication. Mol Cell 52:758–766. https://doi.org/10.1016/j.molcel.2013.10.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Ahmed SU, Carruthers R, Gilmour L, Yildirim S, Watts C, Chalmers AJ (2015) Selective Inhibition of Parallel DNA Damage Response Pathways Optimizes Radiosensitization of Glioblastoma Stem-like Cells. Cancer Res 75:4416–4428. https://doi.org/10.1158/0008-5472.CAN-14-3790

    Article  CAS  PubMed  Google Scholar 

  239. Valk-Lingbeek ME, Bruggeman SWM, van Lohuizen M (2004) Stem Cells and Cancer. Cell 118:409–418. https://doi.org/10.1016/j.cell.2004.08.005

    Article  CAS  PubMed  Google Scholar 

  240. Park I, Qian D, Kiel M, Becker MW, Pihalja M, Weissman IL, Morrison SJ, Clarke MF (2003) Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature 423:302–305. https://doi.org/10.1038/nature01587

    Article  CAS  PubMed  Google Scholar 

  241. Bruggeman SWM, Hulsman D, Tanger E, Buckle T, Blom M, Zevenhoven J, van Tellingen O, van Lohuizen M (2007) Bmi1 Controls Tumor Development in an Ink4a/Arf-Independent Manner in a Mouse Model for Glioma. Cancer Cell 12:328–341. https://doi.org/10.1016/j.ccr.2007.08.032

    Article  CAS  PubMed  Google Scholar 

  242. Abdouh M, Facchino S, Chatoo W, Balasingam V, Ferreira J, Bernier G (2009) BMI1 Sustains Human Glioblastoma Multiforme Stem Cell Renewal. J Neurosci 29:8884–8896. https://doi.org/10.1523/JNEUROSCI.0968-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Facchino S, Abdouh M, Chatoo W, Bernier G (2010) BMI1 Confers Radioresistance to Normal and Cancerous Neural Stem Cells through Recruitment of the DNA Damage Response Machinery. J Neurosci 30:10096–10111. https://doi.org/10.1523/JNEUROSCI.1634-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Tamura K, Aoyagi M, Wakimoto H, Ando N, Nariai T, Yamamoto M, Ohno K (2010) Accumulation of CD133-positive glioma cells after high-dose irradiation by Gamma Knife surgery plus external beam radiation. J Neurosurg 113:310–318. https://doi.org/10.3171/2010.2.JNS091607

    Article  PubMed  Google Scholar 

  245. Zhou W, Sun M, Li G-H, Wu Y-Z, Wang Y, Jin F, Zhang Y-Y, Yang L, Wang D-L (2013) Activation of the phosphorylation of ATM contributes to radioresistance of glioma stem cells. Oncol Rep 30:1793–1801. https://doi.org/10.3892/or.2013.2614

    Article  CAS  PubMed  Google Scholar 

  246. Lee J-H, Paull TT (2007) Activation and regulation of ATM kinase activity in response to DNA double-strand breaks. Oncogene 26:7741–7748. https://doi.org/10.1038/sj.onc.1210872

    Article  CAS  PubMed  Google Scholar 

  247. Lim YC, Roberts TL, Day BW, Stringer BW, Kozlov S, Fazry S, Bruce ZC, Ensbey KS, Walker DG, Boyd AW, Lavin MF (2014) Increased sensitivity to ionizing radiation by targeting the homologous recombination pathway in glioma initiating cells. Mol Oncol 8:1603–1615. https://doi.org/10.1016/j.molonc.2014.06.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Gosink EC, Chong MJ, McKinnon PJ (1999) Ataxia telangiectasia mutated deficiency affects astrocyte growth but not radiosensitivity. Cancer Res 59:5294–5298

    CAS  PubMed  Google Scholar 

  249. Bolderson E, Richard DJ, Zhou B-BS, Khanna KK (2009) Recent Advances in Cancer Therapy Targeting Proteins Involved in DNA Double-Strand Break Repair. Clin Cancer Res 15:6314–6320. https://doi.org/10.1158/1078-0432.CCR-09-0096

    Article  CAS  PubMed  Google Scholar 

  250. Liu X, Li F, Huang Q, Zhang Z, Zhou L, Deng Y, Zhou M, Fleenor DE, Wang H, Kastan MB, Li C-Y (2017) Self-inflicted DNA double-strand breaks sustain tumorigenicity and stemness of cancer cells. Cell Res 27:764–783. https://doi.org/10.1038/cr.2017.41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Tang HL, Tang HM, Mak KH, Hu S, Wang SS, Wong KM, Wong CST, Wu HY, Law HT, Liu K, Talbot CC, Lau WK, Montell DJ, Fung MC (2012) Cell survival, DNA damage, and oncogenic transformation after a transient and reversible apoptotic response. Mol Biol Cell 23:2240–2252. https://doi.org/10.1091/mbc.e11-11-0926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Ichim G, Lopez J, Ahmed SU, Muthalagu N, Giampazolias E, Delgado ME, Haller M, Riley JS, Mason SM, Athineos D, Parsons MJ, van de Kooij B, Bouchier-Hayes L, Chalmers AJ, Rooswinkel RW, Oberst A, Blyth K, Rehm M, Murphy DJ, Tait SWG (2015) Limited Mitochondrial Permeabilization Causes DNA Damage and Genomic Instability in the Absence of Cell Death. Mol Cell 57:860–872. https://doi.org/10.1016/j.molcel.2015.01.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Liu X, He Y, Li F, Huang Q, Kato TA, Hall RP, Li C-Y (2015) Caspase-3 Promotes Genetic Instability and Carcinogenesis. Mol Cell 58:284–296. https://doi.org/10.1016/j.molcel.2015.03.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. King HO, Brend T, Payne HL, Wright A, Ward TA, Patel K, Egnuni T, Stead LF, Patel A, Wurdak H, Short SC (2017) RAD51 Is a Selective DNA Repair Target to Radiosensitize Glioma Stem Cells. Stem Cell Reports 8:125–139. https://doi.org/10.1016/j.stemcr.2016.12.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Akhavan D, Cloughesy TF, Mischel PS (2010) mTOR signaling in glioblastoma: lessons learned from bench to bedside. Neuro Oncol 12:882–889. https://doi.org/10.1093/neuonc/noq052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Chakravarti A, Zhai G, Suzuki Y, Sarkesh S, Black PM, Muzikansky A, Loeffler JS (2004) The Prognostic Significance of Phosphatidylinositol 3-Kinase Pathway Activation in Human Gliomas. J Clin Oncol 22:1926–1933. https://doi.org/10.1200/JCO.2004.07.193

    Article  CAS  PubMed  Google Scholar 

  257. Laplante M, Sabatini DM (2012) mTOR Signaling in Growth Control and Disease. Cell 149:274–293. https://doi.org/10.1016/j.cell.2012.03.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Kahn J, Hayman TJ, Jamal M, Rath BH, Kramp T, Camphausen K, Tofilon PJ (2014) The mTORC1/mTORC2 inhibitor AZD2014 enhances the radiosensitivity of glioblastoma stem-like cells. Neuro Oncol 16:29–37. https://doi.org/10.1093/neuonc/not139

    Article  CAS  PubMed  Google Scholar 

  259. Hayman TJ, Williams ES, Jamal M, Shankavaram UT, Camphausen K, Tofilon PJ (2012) Translation Initiation Factor eIF4E Is a Target for Tumor Cell Radiosensitization. Cancer Res 72:2362–2372. https://doi.org/10.1158/0008-5472.CAN-12-0329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Liu M, Dai B, Kang S-H, Ban K, Huang F-J, Lang FF, Aldape KD, Xie T, Pelloski CE, Xie K, Sawaya R, Huang S (2006) FoxM1B Is Overexpressed in Human Glioblastomas and Critically Regulates the Tumorigenicity of Glioma Cells. Cancer Res 66:3593–3602. https://doi.org/10.1158/0008-5472.CAN-05-2912

    Article  CAS  PubMed  Google Scholar 

  261. Alvarez-Fernández M, Medema RH (2013) Novel functions of FoxM1: from molecular mechanisms to cancer therapy. Front Oncol 3https://doi.org/10.3389/fonc.2013.00030

  262. Maachani UB, Shankavaram U, Kramp T, Tofilon PJ, Camphausen K, Tandle AT (2016) FOXM1 and STAT3 interaction confers radioresistance in glioblastoma cells. Oncotarget 7:77365–77377. https://doi.org/10.18632/oncotarget.12670

    Article  PubMed  PubMed Central  Google Scholar 

  263. Yang Y-P, Chang Y-L, Huang P-I, Chiou G-Y, Tseng L-M, Chiou S-H, Chen M-H, Chen M-T, Shih Y-H, Chang C-H, Hsu C-C, Ma H-I, Wang C-T, Tsai L-L, Yu C-C, Chang C-J (2012) Resveratrol suppresses tumorigenicity and enhances radiosensitivity in primary glioblastoma tumor initiating cells by inhibiting the STAT3 axis. J Cell Physiol 227:976–993. https://doi.org/10.1002/jcp.22806

    Article  CAS  PubMed  Google Scholar 

  264. Ming G, Song H (2011) Adult Neurogenesis in the Mammalian Brain: Significant Answers and Significant Questions. Neuron 70:687–702. https://doi.org/10.1016/j.neuron.2011.05.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Smith AW, Mehta MP, Wernicke AG (2016) Neural stem cells, the subventricular zone and radiotherapy: implications for treating glioblastoma. J Neurooncol 128:207–216. https://doi.org/10.1007/s11060-016-2123-z

    Article  CAS  PubMed  Google Scholar 

  266. van Dijken BRJ, Jan van Laar P, Li C, Yan J-L, Boonzaier NR, Price SJ, FCRS, van Hoorn A (2019) Ventricle contact is associated with lower survival and increased peritumoral perfusion in glioblastoma. J Neurosurg 131:717–723. https://doi.org/10.3171/2018.5.JNS18340

  267. Chen L, Guerrero-Cazares H, Ye X, Ford E, McNutt T, Kleinberg L, Lim M, Chaichana K, Quinones-Hinojosa A, Redmond K (2013) Increased Subventricular Zone Radiation Dose Correlates With Survival in Glioblastoma Patients After Gross Total Resection. Int J Radiat Oncol 86:616–622. https://doi.org/10.1016/j.ijrobp.2013.02.014

    Article  Google Scholar 

  268. Muracciole X, El-amine W, Tabouret E, Boucekine M, Barlier A, Petrirena G, Harivony T, Solignac L, Chinot OL, Macagno N, Figarella-Branger D, Padovani L (2018) Negative Survival Impact of High Radiation Doses to Neural Stem Cells Niches in an IDH-Wild-Type Glioblastoma Population. Front Oncol 8https://doi.org/10.3389/fonc.2018.00426

  269. Cameron BD, Traver G, Roland JT, Brockman AA, Dean D, Johnson L, Boyd K, Ihrie RA, Freeman ML (2019) Bcl2-Expressing Quiescent Type B Neural Stem Cells in the Ventricular-Subventricular Zone Are Resistant to Concurrent Temozolomide/X-Irradiation. Stem Cells 37:1629–1639. https://doi.org/10.1002/stem.3081

    Article  CAS  PubMed  Google Scholar 

  270. Barazzuol L, Rickett N, Ju L, Jeggo PA (2015) Endogenous and X-ray-induced DNA double strand breaks sensitively activate apoptosis in adult neural stem cells. J Cell Scihttps://doi.org/10.1242/jcs.171223

  271. Ren J, Wang X, Dong C, Wang G, Zhang W, Cai C, Qian M, Yang D, Ling B, Ning K, Mao Z, Liu B, Wang T, Xiong L, Wang W, Liang A, Gao Z, Xu J (2022) Sirt1 Protects Subventricular Zone-Derived Neural Stem Cells from DNA Double-Strand Breaks and Contributes to Olfactory Function Maintenance in Aging Mice. Stem Cellshttps://doi.org/10.1093/stmcls/sxac008

  272. Evers P, Lee PP, DeMarco J, Agazaryan N, Sayre JW, Selch M, Pajonk F (2010) Irradiation of the potential cancer stem cell niches in the adult brain improves progression-free survival of patients with malignant glioma. BMC Cancer 10:384. https://doi.org/10.1186/1471-2407-10-384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Hildrestrand GA, Neurauter CG, Diep DB, Castellanos CG, Krauss S, Bjørås M, Luna L (2009) Expression patterns of Neil3 during embryonic brain development and neoplasia. BMC Neurosci 10:45. https://doi.org/10.1186/1471-2202-10-45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Dong C, Wang X, Sun L, Zhu L, Yang D, Gao S, Zhang W, Ling B, Liang A, Gao Z, Xu J (2022) ATM modulates subventricular zone neural stem cell maintenance and senescence through Notch signaling pathway. Stem Cell Res 58:102618. https://doi.org/10.1016/j.scr.2021.102618

    Article  CAS  PubMed  Google Scholar 

  275. Kim J, Wong PKY (2009) Loss of ATM Impairs Proliferation of Neural Stem Cells Through Oxidative Stress-Mediated p38 MAPK Signaling. Stem Cells 27:1987–1998. https://doi.org/10.1002/stem.125

    Article  CAS  PubMed  Google Scholar 

  276. Steed TC, Treiber JM, Taha B, Engin HB, Carter H, Patel KS, Dale AM, Carter BS, Chen CC (2020) Glioblastomas located in proximity to the subventricular zone (SVZ) exhibited enrichment of gene expression profiles associated with the cancer stem cell state. J Neurooncol 148:455–462. https://doi.org/10.1007/s11060-020-03550-4

    Article  CAS  PubMed  Google Scholar 

  277. Goffart N, Lombard A, Lallemand F, Kroonen J, Nassen J, Di Valentin E, Berendsen S, Dedobbeleer M, Willems E, Robe P, Bours V, Martin D, Martinive P, Maquet P, Rogister B (2017) CXCL12 mediates glioblastoma resistance to radiotherapy in the subventricular zone. Neuro Oncol 19:66–77. https://doi.org/10.1093/neuonc/now136

    Article  CAS  PubMed  Google Scholar 

  278. Wang S, Chen C, Li J, Xu X, Chen W, Li F (2020) The CXCL12/CXCR4 axis confers temozolomide resistance to human glioblastoma cells via up-regulation of FOXM1. J Neurol Sci 414:116837. https://doi.org/10.1016/j.jns.2020.116837

    Article  CAS  PubMed  Google Scholar 

  279. Dedobbeleer M, Willems E, Lambert J, Lombard A, Digregorio M, Lumapat PN, Di Valentin E, Freeman S, Goffart N, Scholtes F, Rogister B (2020) MKP1 phosphatase is recruited by CXCL12 in glioblastoma cells and plays a role in DNA strand breaks repair. Carcinogenesis 41:417–429. https://doi.org/10.1093/carcin/bgz151

    Article  CAS  PubMed  Google Scholar 

  280. Mukherjee B, Camacho C, Tomimatsu N, Miller J, Burma S (2008) Modulation of the DNA-damage response to HZE particles by shielding. DNA Repair (Amst) 7:1717–1730. https://doi.org/10.1016/j.dnarep.2008.06.016

    Article  CAS  Google Scholar 

  281. Anderson JA, Harper JV, Cucinotta FA, O’Neill P (2010) Participation of DNA-PKcs in DSB Repair after Exposure to High- and Low-LET Radiation. Radiat Res 174:195–205. https://doi.org/10.1667/RR2071.1

    Article  CAS  PubMed  Google Scholar 

  282. Eke I, Storch K, Kästner I, Vehlow A, Faethe C, Mueller-Klieser W, Taucher-Scholz G, Temme A, Schackert G, Cordes N (2012) Three-dimensional Invasion of Human Glioblastoma Cells Remains Unchanged by X-ray and Carbon Ion Irradiation In Vitro. Int J Radiat Oncol 84:e515–e523. https://doi.org/10.1016/j.ijrobp.2012.06.012

    Article  Google Scholar 

  283. Hirota Y, Masunaga S-I, Kondo N, Kawabata S, Hirakawa H, Yajima H, Fujimori A, Ono K, Kuroiwa T, Miyatake S-I (2014) High linear-energy-transfer radiation can overcome radioresistance of glioma stem-like cells to low linear-energy-transfer radiation. J Radiat Res 55:75–83. https://doi.org/10.1093/jrr/rrt095

    Article  CAS  PubMed  Google Scholar 

  284. Lopez Perez R, Nicolay NH, Wolf J-C, Frister M, Schmezer P, Weber K-J, Huber PE (2019) DNA damage response of clinical carbon ion versus photon radiation in human glioblastoma cells. Radiother Oncol 133:77–86. https://doi.org/10.1016/j.radonc.2018.12.028

    Article  CAS  PubMed  Google Scholar 

  285. Kashino G, Kondoh T, Nariyama N, Umetani K, Ohigashi T, Shinohara K, Kurihara A, Fukumoto M, Tanaka H, Maruhashi A, Suzuki M, Kinashi Y, Liu Y, Masunaga S, Watanabe M, Ono K (2009) Induction of DNA Double-Strand Breaks and Cellular Migration Through Bystander Effects in Cells Irradiated With the Slit-Type Microplanar Beam of the Spring-8 Synchrotron. Int J Radiat Oncol 74:229–236. https://doi.org/10.1016/j.ijrobp.2008.09.060

    Article  CAS  Google Scholar 

  286. Gil S, Prezado Y, Sabés M (2014) Double-strand breaks on F98 glioma rat cells induced by minibeam and broad-beam synchrotron radiation therapy. Clin Transl Oncol 16:696–701. https://doi.org/10.1007/s12094-013-1134-x

    Article  CAS  PubMed  Google Scholar 

  287. Fontana AO, Augsburger MA, Grosse N, Guckenberger M, Lomax AJ, Sartori AA, Pruschy MN (2015) Differential DNA repair pathway choice in cancer cells after proton- and photon-irradiation. Radiother Oncol 116:374–380. https://doi.org/10.1016/j.radonc.2015.08.014

    Article  CAS  PubMed  Google Scholar 

  288. Israel I, Blass G, Reiners C, Samnick S (2011) Validation of an amino-acid-based radionuclide therapy plus external beam radiotherapy in heterotopic glioblastoma models. Nucl Med Biol 38:451–460. https://doi.org/10.1016/j.nucmedbio.2010.12.002

    Article  CAS  PubMed  Google Scholar 

  289. Sattiraju A, Xiong X, Pandya DN, Wadas TJ, Xuan A, Sun Y, Jung Y, Sai KKS, Dorsey JF, Li KC, Mintz A (2017) Alpha Particle Enhanced Blood Brain/Tumor Barrier Permeabilization in Glioblastomas Using Integrin Alpha-v Beta-3–Targeted Liposomes. Mol Cancer Ther 16:2191–2200. https://doi.org/10.1158/1535-7163.MCT-16-0907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  290. Azorín-Vega E, Aranda-Lara L, Torres-García E, Santiago-Bañuelos JA (2019) Effect of 177Lu-iPSMA on viability and DNA damage of human glioma cells subjected to hypoxia-mimetic conditions. Appl Radiat Isot 146:24–28. https://doi.org/10.1016/j.apradiso.2019.01.021

    Article  CAS  PubMed  Google Scholar 

  291. Mukherjee B, Todorova PK, Burma S (2015) Mouse models of radiation-induced glioblastoma. Oncoscience 2:934–935. https://doi.org/10.18632/oncoscience.278

    Article  PubMed  PubMed Central  Google Scholar 

  292. van Tellingen O, Yetkin-Arik B, de Gooijer MC, Wesseling P, Wurdinger T, de Vries HE (2015) Overcoming the blood–brain tumor barrier for effective glioblastoma treatment. Drug Resist Updat 19:1–12. https://doi.org/10.1016/j.drup.2015.02.002

    Article  PubMed  Google Scholar 

  293. Tivnan A, Zakaria Z, O’Leary C, KÃgel D, Pokorny JL, Sarkaria JN, Prehn JHM (2015) Inhibition of multidrug resistance protein 1 (MRP1) improves chemotherapy drug response in primary and recurrent glioblastoma multiforme. Front Neurosci 9:218

    Article  Google Scholar 

  294. Hoelzinger DB, Demuth T, Berens ME (2007) Autocrine Factors That Sustain Glioma Invasion and Paracrine Biology in the Brain Microenvironment. JNCI J Natl Cancer Inst 99:1583–1593. https://doi.org/10.1093/jnci/djm187

    Article  CAS  PubMed  Google Scholar 

  295. Yang N, Yan T, Zhu H, Liang X, Leiss L, Sakariassen PØ, Skaftnesmo KO, Huang B, Costea DE, Enger PØ, Li X, Wang J (2014) A co-culture model with brain tumor-specific bioluminescence demonstrates astrocyte-induced drug resistance in glioblastoma. J Transl Med 12:278. https://doi.org/10.1186/s12967-014-0278-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  296. Hong X, Sin WC, Harris AL, Naus CC (2015) Gap junctions modulate glioma invasion by direct transfer of microRNA. Oncotarget 6:15566–15577. https://doi.org/10.18632/oncotarget.3904

    Article  PubMed  PubMed Central  Google Scholar 

  297. Piao Y, Liang J, Holmes L, Zurita AJ, Henry V, Heymach JV, de Groot JF (2012) Glioblastoma resistance to anti-VEGF therapy is associated with myeloid cell infiltration, stem cell accumulation, and a mesenchymal phenotype. Neuro Oncol 14:1379–1392. https://doi.org/10.1093/neuonc/nos158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  298. Hambardzumyan D, Gutmann DH, Kettenmann H (2016) The role of microglia and macrophages in glioma maintenance and progression. Nat Neurosci 19:20–27. https://doi.org/10.1038/nn.4185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  299. Zhang X, Ding K, Wang J, Li X, Zhao P (2019) Chemoresistance caused by the microenvironment of glioblastoma and the corresponding solutions. Biomed Pharmacother 109:39–46. https://doi.org/10.1016/j.biopha.2018.10.063

    Article  CAS  PubMed  Google Scholar 

  300. Crespo I, Vital AL, Gonzalez-Tablas M, Patino M del C, Otero A, Lopes MC, de Oliveira C, Domingues P, Orfao A, Tabernero MD (2015) Molecular and Genomic Alterations in Glioblastoma Multiforme. Am J Pathol 185:1820–1833https://doi.org/10.1016/j.ajpath.2015.02.023

  301. Westhoff M-A, Kandenwein JA, Karl S, Vellanki SHK, Braun V, Eramo A, Antoniadis G, Debatin K-M, Fulda S (2009) The pyridinylfuranopyrimidine inhibitor, PI-103, chemosensitizes glioblastoma cells for apoptosis by inhibiting DNA repair. Oncogene 28:3586–3596. https://doi.org/10.1038/onc.2009.215

    Article  CAS  PubMed  Google Scholar 

  302. Yu Z, Xie G, Zhou G, Cheng Y, Zhang G, Yao G, Chen Y, Li Y, Zhao G (2015) NVP-BEZ235, a novel dual PI3K–mTOR inhibitor displays anti-glioma activity and reduces chemoresistance to temozolomide in human glioma cells. Cancer Lett 367:58–68. https://doi.org/10.1016/j.canlet.2015.07.007

    Article  CAS  PubMed  Google Scholar 

  303. Gao L (2015) Glioma an overview of current classifications characteristics molecular biology and target therapies. Front Biosci 20:4362. https://doi.org/10.2741/4362

    Article  Google Scholar 

  304. Bianco R, Rosa R, Damiano V, Daniele G, Gelardi T, Garofalo S, Tarallo V, De Falco S, Melisi D, Benelli R, Albini A, Ryan A, Ciardiello F, Tortora G (2008) Vascular Endothelial Growth Factor Receptor-1 Contributes to Resistance to Anti-Epidermal Growth Factor Receptor Drugs in Human Cancer Cells. Clin Cancer Res 14:5069–5080. https://doi.org/10.1158/1078-0432.CCR-07-4905

    Article  CAS  PubMed  Google Scholar 

  305. Huang L, Fu L (2015) Mechanisms of resistance to EGFR tyrosine kinase inhibitors. Acta Pharm Sin B 5:390–401. https://doi.org/10.1016/j.apsb.2015.07.001

    Article  PubMed  PubMed Central  Google Scholar 

  306. Mayo LD, Dixon JE, Durden DL, Tonks NK, Donner DB (2002) PTEN Protects p53 from Mdm2 and Sensitizes Cancer Cells to Chemotherapy. J Biol Chem 277:5484–5489. https://doi.org/10.1074/jbc.M108302200

    Article  CAS  PubMed  Google Scholar 

  307. Balça-Silva J, Matias D, Carmo A do, Sarmento-Ribeiro AB, Lopes MC, Moura-Neto V (2019) Cellular and molecular mechanisms of glioblastoma malignancy: Implications in resistance and therapeutic strategies. Semin Cancer Biol 58:130–141https://doi.org/10.1016/j.semcancer.2018.09.007

  308. Erasimus H, Gobin M, Niclou S, Van Dyck E (2016) DNA repair mechanisms and their clinical impact in glioblastoma. Mutat Res Mutat Res 769:19–35. https://doi.org/10.1016/j.mrrev.2016.05.005

    Article  CAS  Google Scholar 

  309. Regine WF, Patchell RA, Strottmann JM, Meigooni A, Sanders M, Young AB (2000) Preliminary report of a phase I study of combined fractionated stereotactic radiosurgery and conventional external beam radiation therapy for unfavorable gliomas. Int J Radiat Oncol 48:421–426. https://doi.org/10.1016/S0360-3016(00)00688-X

    Article  CAS  Google Scholar 

  310. Chan JL (2002) Survival and Failure Patterns of High-Grade Gliomas After Three-Dimensional Conformal Radiotherapy. J Clin Oncol 20:1635–1642. https://doi.org/10.1200/JCO.20.6.1635

    Article  PubMed  Google Scholar 

  311. Tatter SB, Shaw EG, Rosenblum ML, Karvelis KC, Kleinberg L, Weingart J, Olson JJ, Crocker IR, Brem S, Pearlman JL, Fisher JD, Carson KA, Grossman SA (2003) An inflatable balloon catheter and liquid 125I radiation source (GliaSite Radiation Therapy System) for treatment of recurrent malignant glioma: multicenter safety and feasibility trial. J Neurosurg 99:297–303. https://doi.org/10.3171/jns.2003.99.2.0297

    Article  PubMed  Google Scholar 

  312. Ferri A, Stagni V, Barilà D (2020) Targeting the DNA Damage Response to Overcome Cancer Drug Resistance in Glioblastoma. Int J Mol Sci 21:4910. https://doi.org/10.3390/ijms21144910

    Article  CAS  PubMed Central  Google Scholar 

  313. Leone S, Cornetta T, Basso E, Cozzi R (2010) Resveratrol induces DNA double-strand breaks through human topoisomerase II interaction. Cancer Lett 295:167–172. https://doi.org/10.1016/j.canlet.2010.02.022

    Article  CAS  PubMed  Google Scholar 

  314. Berdelle N, Nikolova T, Quiros S, Efferth T, Kaina B (2011) Artesunate Induces Oxidative DNA Damage, Sustained DNA Double-Strand Breaks, and the ATM/ATR Damage Response in Cancer Cells. Mol Cancer Ther 10:2224–2233. https://doi.org/10.1158/1535-7163.MCT-11-0534

    Article  CAS  PubMed  Google Scholar 

  315. Herst PM, Broadley KWR, Harper JL, McConnell MJ (2012) Pharmacological concentrations of ascorbate radiosensitize glioblastoma multiforme primary cells by increasing oxidative DNA damage and inhibiting G2/M arrest. Free Radic Biol Med 52:1486–1493. https://doi.org/10.1016/j.freeradbiomed.2012.01.021

    Article  CAS  PubMed  Google Scholar 

  316. Li H, Liu Y, Jiao Y, Guo A, Xu X, Qu X, Wang S, Zhao J, Li Y, Cao Y (2016) Resveratrol sensitizes glioblastoma-initiating cells to temozolomide by inducing cell apoptosis and promoting differentiation. Oncol Rep 35:343–351. https://doi.org/10.3892/or.2015.4346

    Article  CAS  PubMed  Google Scholar 

  317. Bijangi-Vishehsaraei K, Reza Saadatzadeh M, Wang H, Nguyen A, Kamocka MM, Cai W, Cohen-Gadol AA, Halum SL, Sarkaria JN, Pollok KE, Safa AR (2017) Sulforaphane suppresses the growth of glioblastoma cells, glioblastoma stem cell–like spheroids, and tumor xenografts through multiple cell signaling pathways. J Neurosurg 127:1219–1230. https://doi.org/10.3171/2016.8.JNS161197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  318. Liu X, Li P, Hirayama R, Niu Y, Liu X, Chen W, Jin X, Zhang P, Ye F, Zhao T, Liu B, Li Q (2018) Genistein sensitizes glioblastoma cells to carbon ions via inhibiting DNA-PKcs phosphorylation and subsequently repressing NHEJ and delaying HR repair pathways. Radiother Oncol 129:84–94. https://doi.org/10.1016/j.radonc.2018.04.005

    Article  CAS  PubMed  Google Scholar 

  319. Mu F, Liu T, Zheng H, Xie X, Lei T, He X, Du S, Tong R, Wang Y (2018) Mangiferin induces radiosensitization in glioblastoma cells by inhibiting nonhomologous end joining. Oncol Rep 40:3663. https://doi.org/10.3892/or.2018.6756

    Article  CAS  PubMed  Google Scholar 

  320. Hosoi Y, Matsumoto Y, Tomita M, Enomoto A, Morita A, Sakai K, Umeda N, Zhao H-J, Nakagawa K, Ono T, Suzuki N (2002) Phosphorothioate oligonucleotides, suramin and heparin inhibit DNA-dependent protein kinase activity. Br J Cancer 86:1143–1149. https://doi.org/10.1038/sj.bjc.6600191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  321. Biston M-C, Joubert A, Adam J-F, Elleaume H, Bohic S, Charvet A-M, Estève F, Foray N, Balosso J (2004) Cure of Fisher Rats Bearing Radioresistant F98 Glioma Treated with cis -Platinum and Irradiated with Monochromatic Synchrotron X-Rays. Cancer Res 64:2317–2323. https://doi.org/10.1158/0008-5472.CAN-03-3600

    Article  CAS  PubMed  Google Scholar 

  322. Camphausen K, Cerna D, Scott T, Sproull M, Burgan WE, Cerra MA, Fine H, Tofilon PJ (2005) Enhancement ofin vitro andin vivo tumor cell radiosensitivity by valproic acid. Int J Cancer 114:380–386. https://doi.org/10.1002/ijc.20774

    Article  CAS  PubMed  Google Scholar 

  323. Batista LFZ, Roos WP, Christmann M, Menck CFM, Kaina B (2007) Differential Sensitivity of Malignant Glioma Cells to Methylating and Chloroethylating Anticancer Drugs: p53 Determines the Switch by Regulating xpc, ddb2, and DNA Double-Strand Breaks. Cancer Res 67:11886–11895. https://doi.org/10.1158/0008-5472.CAN-07-2964

    Article  CAS  PubMed  Google Scholar 

  324. Lally BE, Geiger GA, Kridel S, Arcury-Quandt AE, Robbins ME, Kock ND, Wheeler K, Peddi P, Georgakilas A, Kao GD, Koumenis C (2007) Identification and Biological Evaluation of a Novel and Potent Small Molecule Radiation Sensitizer via an Unbiased Screen of a Chemical Library. Cancer Res 67:8791–8799. https://doi.org/10.1158/0008-5472.CAN-07-0477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  325. Tewari R, Sharma V, Koul N, Sen E (2008) Involvement of miltefosine-mediated ERK activation in glioma cell apoptosis through Fas regulation. J Neurochem 107:616–627. https://doi.org/10.1111/j.1471-4159.2008.05625.x

    Article  CAS  PubMed  Google Scholar 

  326. Kondo N, Takahashi A, Mori E, Noda T, Su X, Ohnishi K, McKinnon PJ, Sakaki T, Nakase H, Ono K, Ohnishi T (2010) DNA ligase IV is a potential molecular target in ACNU sensitivity. Cancer Sci 101:1881–1885. https://doi.org/10.1111/j.1349-7006.2010.01591.x

    Article  CAS  PubMed  Google Scholar 

  327. Li Y, Zhou H, Xing E, Dassarath M, Ren J, Dong X, Liu H, Yang K, Wu G (2011) Contribution of decreased expression of Ku70 to enhanced radiosensitivity by sodium butyrate in glioblastoma cell line (U251). J Huazhong Univ Sci Technol [Medical Sci 31:359–364 . https://doi.org/10.1007/s11596-011-0381-8

  328. Kang KB, Zhu C, Wong YL, Gao Q, Ty A, Wong MC (2012) Gefitinib Radiosensitizes Stem-Like Glioma Cells: Inhibition of Epidermal Growth Factor Receptor-Akt-DNA-PK Signaling, Accompanied by Inhibition of DNA Double-Strand Break Repair. Int J Radiat Oncol 83:e43–e52. https://doi.org/10.1016/j.ijrobp.2011.11.037

    Article  CAS  Google Scholar 

  329. Hadaczek P, Ozawa T, Soroceanu L, Yoshida Y, Matlaf L, Singer E, Fiallos E, James CD, Cobbs CS (2013) Cidofovir: A Novel Antitumor Agent for Glioblastoma. Clin Cancer Res 19:6473–6483. https://doi.org/10.1158/1078-0432.CCR-13-1121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  330. Mirjolet C, Papa AL, Créhange G, Raguin O, Seignez C, Paul C, Truc G, Maingon P, Millot N (2013) The radiosensitization effect of titanate nanotubes as a new tool in radiation therapy for glioblastoma: A proof-of-concept. Radiother Oncol 108:136–142. https://doi.org/10.1016/j.radonc.2013.04.004

    Article  CAS  PubMed  Google Scholar 

  331. Perera RH, Patel R, Wu H, Gangolli M, Traughber B, Oleinick N, Exner AA (2013) Preclinical evaluation of radiosensitizing activity of Pluronic block copolymers. Int J Radiat Biol 89:801–812. https://doi.org/10.3109/09553002.2013.800246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  332. Berte N, Lokan S, Eich M, Kim E, Kaina B (2016) Artesunate enhances the therapeutic response of glioma cells to temozolomide by inhibition of homologous recombination and senescence. Oncotarget 7:67235–67250. https://doi.org/10.18632/oncotarget.11972

    Article  PubMed  PubMed Central  Google Scholar 

  333. Chang Y-L, Huang L-C, Chen Y-C, Wang Y-W, Hueng D-Y, Huang S-M (2017) The synergistic effects of valproic acid and fluvastatin on apoptosis induction in glioblastoma multiforme cell lines. Int J Biochem Cell Biol 92:155–163. https://doi.org/10.1016/j.biocel.2017.10.003

    Article  CAS  PubMed  Google Scholar 

  334. Staberg M, Michaelsen SR, Rasmussen RD, Villingshøj M, Poulsen HS, Hamerlik P (2017) Inhibition of histone deacetylases sensitizes glioblastoma cells to lomustine. Cell Oncol 40:21–32. https://doi.org/10.1007/s13402-016-0301-9

    Article  CAS  Google Scholar 

  335. Timme CR, Rath BH, O’Neill JW, Camphausen K, Tofilon PJ (2018) The DNA-PK Inhibitor VX-984 Enhances the Radiosensitivity of Glioblastoma Cells Grown In Vitro and as Orthotopic Xenografts. Mol Cancer Ther 17:1207–1216. https://doi.org/10.1158/1535-7163.MCT-17-1267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  336. Tavecchio M, Munck JM, Cano C, Newell DR, Curtin NJ (2012) Further characterisation of the cellular activity of the DNA-PK inhibitor, NU7441, reveals potential cross-talk with homologous recombination. Cancer Chemother Pharmacol 69:155–164. https://doi.org/10.1007/s00280-011-1662-4

    Article  CAS  PubMed  Google Scholar 

  337. Pastwa E, Poplawski T, Lewandowska U, Somiari SB, Blasiak J, Somiari RI (2014) Wortmannin potentiates the combined effect of etoposide and cisplatin in human glioma cells. Int J Biochem Cell Biol 53:423–431. https://doi.org/10.1016/j.biocel.2014.06.007

    Article  CAS  PubMed  Google Scholar 

  338. Gil del Alcazar CR, Hardebeck MC, Mukherjee B, Tomimatsu N, Gao X, Yan J, Xie X-J, Bachoo R, Li L, Habib AA, Burma S (2014) Inhibition of DNA Double-Strand Break Repair by the Dual PI3K/mTOR Inhibitor NVP-BEZ235 as a Strategy for Radiosensitization of Glioblastoma. Clin Cancer Res 20:1235–1248. https://doi.org/10.1158/1078-0432.CCR-13-1607

    Article  CAS  PubMed  Google Scholar 

  339. Jackson CB, Noorbakhsh SI, Sundaram RK, Kalathil AN, Ganesa S, Jia L, Breslin H, Burgenske DM, Gilad O, Sarkaria JN, Bindra RS (2019) Temozolomide Sensitizes MGMT-Deficient Tumor Cells to ATR Inhibitors. Cancer Res 79:4331–4338. https://doi.org/10.1158/0008-5472.CAN-18-3394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  340. Kim H, Kim J, Chie E, DaYoung P, Kim I, Kim I (2012) DNMT (DNA methyltransferase) inhibitors radiosensitize human cancer cells by suppressing DNA repair activity. Radiat Oncol 7:39. https://doi.org/10.1186/1748-717X-7-39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  341. Gursoy-Yuzugullu O, Carman C, Serafim RB, Myronakis M, Valente V, Price BD (2017) Epigenetic therapy with inhibitors of histone methylation suppresses DNA damage signaling and increases glioma cell radiosensitivity. Oncotarget 8:24518–24532. https://doi.org/10.18632/oncotarget.15543

    Article  PubMed  PubMed Central  Google Scholar 

  342. Katagi H, Louis N, Unruh D, Sasaki T, He X, Zhang A, Ma Q, Piunti A, Shimazu Y, Lamano JB, Carcaboso AM, Tian X, Seluanov A, Gorbunova V, Laurie KL, Kondo A, Wadhwani NR, Lulla R, Goldman S, Venneti S, Becher OJ, Zou L, Shilatifard A, Hashizume R (2019) Radiosensitization by Histone H3 Demethylase Inhibition in Diffuse Intrinsic Pontine Glioma. Clin Cancer Res 25:5572–5583. https://doi.org/10.1158/1078-0432.CCR-18-3890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  343. Balvers RK, Lamfers M, Kloezeman JJ, Kleijn A, Berghauser Pont L, Dirven C, Leenstra S (2015) ABT-888 enhances cytotoxic effects of temozolomide independent of MGMT status in serum free cultured glioma cells. J Transl Med 13:74. https://doi.org/10.1186/s12967-015-0427-y

    Article  PubMed  PubMed Central  Google Scholar 

  344. Koosha F, Neshasteh-Riz A, Takavar A, Eyvazzadeh N, Mazaheri Z, Eynali S, Mousavi M (2017) The combination of A-966492 and Topotecan for effective radiosensitization on glioblastoma spheroids. Biochem Biophys Res Commun 491:1092–1097. https://doi.org/10.1016/j.bbrc.2017.08.018

    Article  CAS  PubMed  Google Scholar 

  345. Barazzuol L, Jeynes JCG, Merchant MJ, Wéra A-C, Barry MA, Kirkby KJ, Suzuki M (2015) Radiosensitization of glioblastoma cells using a histone deacetylase inhibitor (SAHA) comparing carbon ions with X-rays. Int J Radiat Biol 91:90–98. https://doi.org/10.3109/09553002.2014.946111

    Article  CAS  PubMed  Google Scholar 

  346. Johnson AM, Bennett PV, Sanidad KZ, Hoang A, Jardine JH, Keszenman DJ, Wilson PF (2021) Evaluation of Histone Deacetylase Inhibitors as Radiosensitizers for Proton and Light Ion Radiotherapy. Front Oncol 11:735940. https://doi.org/10.3389/fonc.2021.735940

    Article  PubMed  PubMed Central  Google Scholar 

  347. Macieja A, Kopa P, Galita G, Pastwa E, Majsterek I, Poplawski T (2019) Comparison of the effect of three different topoisomerase II inhibitors combined with cisplatin in human glioblastoma cells sensitized with double strand break repair inhibitors. Mol Biol Rep 46:3625–3636. https://doi.org/10.1007/s11033-019-04605-0

    Article  CAS  PubMed  Google Scholar 

  348. Quanz M, Chassoux D, Berthault N, Agrario C, Sun J-S, Dutreix M (2009) Hyperactivation of DNA-PK by Double-Strand Break Mimicking Molecules Disorganizes DNA Damage Response. PLoS ONE 4:e6298. https://doi.org/10.1371/journal.pone.0006298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  349. Coquery N, Pannetier N, Farion R, Herbette A, Azurmendi L, Clarencon D, Bauge S, Josserand V, Rome C, Coll J-L, Sun J-S, Barbier EL, Dutreix M, Remy CC (2012) Distribution and Radiosensitizing Effect of Cholesterol-Coupled Dbait Molecule in Rat Model of Glioblastoma. PLoS ONE 7:e40567. https://doi.org/10.1371/journal.pone.0040567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  350. Liu H, Cai Y, Zhang Y, Xie Y, Qiu H, Hua L, Liu X, Li Y, Lu J, Zhang L, Yu R (2017) Development of a Hypoxic Radiosensitizer-Prodrug Liposome Delivery DNA Repair Inhibitor Dbait Combination with Radiotherapy for Glioma Therapy. Adv Healthc Mater 6:1601377. https://doi.org/10.1002/adhm.201601377

    Article  CAS  Google Scholar 

  351. Biau J, Chautard E, Berthault N, de Koning L, Court F, Pereira B, Verrelle P, Dutreix M (2019) Combining the DNA Repair Inhibitor Dbait With Radiotherapy for the Treatment of High Grade Glioma: Efficacy and Protein Biomarkers of Resistance in Preclinical Models. Front Oncol 9:549. https://doi.org/10.3389/fonc.2019.00549

    Article  PubMed  PubMed Central  Google Scholar 

  352. Li S, Xu Q, Zhao L, Ye C, Hua L, Liang J, Yu R, Liu H (2019) Angiopep-2 Modified Cationic Lipid-Poly-Lactic-Co-Glycolic Acid Delivery Temozolomide and DNA Repair Inhibitor Dbait to Achieve Synergetic Chemo-Radiotherapy Against Glioma. J Nanosci Nanotechnol 19:7539–7545. https://doi.org/10.1166/jnn.2019.16775

    Article  CAS  PubMed  Google Scholar 

  353. Stupp R, Taillibert S, Kanner AA, Kesari S, Steinberg DM, Toms SA, Taylor LP, Lieberman F, Silvani A, Fink KL, Barnett GH, Zhu J-J, Henson JW, Engelhard HH, Chen TC, Tran DD, Sroubek J, Tran ND, Hottinger AF, Landolfi J, Desai R, Caroli M, Kew Y, Honnorat J, Idbaih A, Kirson ED, Weinberg U, Palti Y, Hegi ME, Ram Z (2015) Maintenance Therapy With Tumor-Treating Fields Plus Temozolomide vs Temozolomide Alone for Glioblastoma. JAMA 314:2535. https://doi.org/10.1001/jama.2015.16669

    Article  CAS  PubMed  Google Scholar 

  354. Giladi M, Munster M, Schneiderman RS, Voloshin T, Porat Y, Blat R, Zielinska-Chomej K, Hååg P, Bomzon Z, Kirson ED, Weinberg U, Viktorsson K, Lewensohn R, Palti Y (2017) Tumor treating fields (TTFields) delay DNA damage repair following radiation treatment of glioma cells. Radiat Oncol 12:206. https://doi.org/10.1186/s13014-017-0941-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  355. Paolillo M, Boselli C, Schinelli S (2018) Glioblastoma under Siege: An Overview of Current Therapeutic Strategies. Brain Sci 8:15. https://doi.org/10.3390/brainsci8010015

    Article  CAS  PubMed Central  Google Scholar 

  356. Meikrantz W (1998) O6-alkylguanine DNA lesions trigger apoptosis. Carcinogenesis 19:369–372. https://doi.org/10.1093/carcin/19.2.369

    Article  CAS  PubMed  Google Scholar 

  357. Pegg AE (2000) Repair of O6-alkylguanine by alkyltransferases. Mutat Res Mutat Res 462:83–100. https://doi.org/10.1016/S1383-5742(00)00017-X

    Article  CAS  PubMed  Google Scholar 

  358. Esteller M, Hamilton SR, Burger PC, Baylin SB, Herman JG (1999) Inactivation of the DNA repair gene O6-methylguanine-DNA methyltransferase by promoter hypermethylation is a common event in primary human neoplasia. Cancer Res 59:793–797

    CAS  PubMed  Google Scholar 

  359. Srivenugopal KS, Shou J, Mullapudi SR, Lang FF, Rao JS, Ali-Osman F (2001) Enforced expression of wild-type p53 curtails the transcription of the O(6)-methylguanine-DNA methyltransferase gene in human tumor cells and enhances their sensitivity to alkylating agents. Clin Cancer Res 7:1398–1409

    CAS  PubMed  Google Scholar 

  360. Felsberg J, Thon N, Eigenbrod S, Hentschel B, Sabel MC, Westphal M, Schackert G, Kreth FW, Pietsch T, Löffler M, Weller M, Reifenberger G, Tonn JC (2011) Promoter methylation and expression of MGMT and the DNA mismatch repair genes MLH1, MSH2, MSH6 and PMS2 in paired primary and recurrent glioblastomas. Int J Cancer 129:659–670. https://doi.org/10.1002/ijc.26083

    Article  CAS  PubMed  Google Scholar 

  361. Hegi ME, Diserens A-C, Gorlia T, Hamou M-F, de Tribolet N, Weller M, Kros JM, Hainfellner JA, Mason W, Mariani L, Bromberg JEC, Hau P, Mirimanoff RO, Cairncross JG, Janzer RC, Stupp R (2005) MGMT Gene Silencing and Benefit from Temozolomide in Glioblastoma. N Engl J Med 352:997–1003. https://doi.org/10.1056/NEJMoa043331

    Article  CAS  PubMed  Google Scholar 

  362. Gil del Alcazar CR, Todorova PK, Habib AA, Mukherjee B, Burma S (2016) Augmented HR Repair Mediates Acquired Temozolomide Resistance in Glioblastoma. Mol Cancer Res 14:928–940. https://doi.org/10.1158/1541-7786.MCR-16-0125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  363. Zhang J, Stevens MFG, Hummersone M, Madhusudan S, Laughton CA, Bradshaw TD (2011) Certain Imidazotetrazines Escape O6-Methylguanine-DNA Methyltransferase and Mismatch Repair. Oncology 80:195–207. https://doi.org/10.1159/000327837

    Article  CAS  PubMed  Google Scholar 

  364. Zhang J, Hummersone M, Matthews CS, Stevens MFG, Bradshaw TD (2015) N3-Substituted Temozolomide Analogs Overcome Methylguanine-DNA Methyltransferase and Mismatch Repair Precipitating Apoptotic and Autophagic Cancer Cell Death. Oncology 88:28–48. https://doi.org/10.1159/000366131

    Article  CAS  PubMed  Google Scholar 

  365. Jhaveri N, Agasse F, Armstrong D, Peng L, Commins D, Wang W, Rosenstein-Sisson R, Vaikari VP, Santiago SV, Santos T, Chen L, Schönthal AH, Chen TC, Hofman FM (2016) A novel drug conjugate, NEO212, targeting proneural and mesenchymal subtypes of patient-derived glioma cancer stem cells. Cancer Lett 371:240–250. https://doi.org/10.1016/j.canlet.2015.11.040

    Article  CAS  PubMed  Google Scholar 

  366. Yang Z, Wei D, Dai X, Stevens MFG, Bradshaw TD, Luo Y, Zhang J (2019) C8-Substituted Imidazotetrazine Analogs Overcome Temozolomide Resistance by Inducing DNA Adducts and DNA Damage. Front Oncol 9:485. https://doi.org/10.3389/fonc.2019.00485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  367. Roos WP, Nikolova T, Quiros S, Naumann SC, Kiedron O, Zdzienicka MZ, Kaina B (2009) Brca2/Xrcc2 dependent HR, but not NHEJ, is required for protection against O6-methylguanine triggered apoptosis, DSBs and chromosomal aberrations by a process leading to SCEs. DNA Repair (Amst) 8:72–86. https://doi.org/10.1016/j.dnarep.2008.09.003

    Article  CAS  Google Scholar 

  368. Short SC, Giampieri S, Worku M, Alcaide-German M, Sioftanos G, Bourne S, Lio KI, Shaked-Rabi M, Martindale C (2011) Rad51 inhibition is an effective means of targeting DNA repair in glioma models and CD133+ tumor-derived cells. Neuro Oncol 13:487–499. https://doi.org/10.1093/neuonc/nor010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  369. Ameratunga M, Pavlakis N, Wheeler H, Grant R, Simes J, Khasraw M (2018) Anti-angiogenic therapy for high-grade glioma. Cochrane Database Syst Rev 2018:CD008218 . https://doi.org/10.1002/14651858.CD008218.pub4

  370. Bencokova Z, Pauron L, Devic C, Joubert A, Gastaldo J, Massart C, Balosso J, Foray N (2008) Molecular and cellular response of the most extensively used rodent glioma models to radiation and/or cisplatin. J Neurooncol 86:13–21. https://doi.org/10.1007/s11060-007-9433-0

    Article  CAS  PubMed  Google Scholar 

  371. Dehghani F, Hischebeth GTR, Wirjatijasa F, Kohl A, Korf H-W, Hailer NP (2003) The immunosuppressant mycophenolate mofetil attenuates neuronal damage after excitotoxic injury in hippocampal slice cultures. Eur J Neurosci 18:1061–1072. https://doi.org/10.1046/j.1460-9568.2003.02821.x

    Article  PubMed  Google Scholar 

  372. Merz F, Gaunitz F, Dehghani F, Renner C, Meixensberger J, Gutenberg A, Giese A, Schopow K, Hellwig C, Schäfer M, Bauer M, Stöcker H, Taucher-Scholz G, Durante M, Bechmann I (2013) Organotypic slice cultures of human glioblastoma reveal different susceptibilities to treatments. Neuro Oncol 15:670–681. https://doi.org/10.1093/neuonc/not003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  373. Todorova PK, Fletcher-Sananikone E, Mukherjee B, Kollipara R, Vemireddy V, Xie X-J, Guida PM, Story MD, Hatanpaa K, Habib AA, Kittler R, Bachoo R, Hromas R, Floyd JR, Burma S (2019) Radiation-Induced DNA Damage Cooperates with Heterozygosity of TP53 and PTEN to Generate High-Grade Gliomas. Cancer Res 79:3749–3761. https://doi.org/10.1158/0008-5472.CAN-19-0680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  374. Shen S, Vagner S, Robert C (2020) Persistent Cancer Cells: The Deadly Survivors. Cell 183:860–874. https://doi.org/10.1016/j.cell.2020.10.027

    Article  CAS  PubMed  Google Scholar 

  375. Liau BB, Sievers C, Donohue LK, Gillespie SM, Flavahan WA, Miller TE, Venteicher AS, Hebert CH, Carey CD, Rodig SJ, Shareef SJ, Najm FJ, van Galen P, Wakimoto H, Cahill DP, Rich JN, Aster JC, Suvà ML, Patel AP, Bernstein BE (2017) Adaptive Chromatin Remodeling Drives Glioblastoma Stem Cell Plasticity and Drug Tolerance. Cell Stem Cell 20:233-246.e7. https://doi.org/10.1016/j.stem.2016.11.003

    Article  CAS  PubMed  Google Scholar 

  376. Russo M, Crisafulli G, Sogari A, Reilly NM, Arena S, Lamba S, Bartolini A, Amodio V, Magrì A, Novara L, Sarotto I, Nagel ZD, Piett CG, Amatu A, Sartore-Bianchi A, Siena S, Bertotti A, Trusolino L, Corigliano M, Gherardi M, Lagomarsino MC, Di Nicolantonio F, Bardelli A (2019) Adaptive mutability of colorectal cancers in response to targeted therapies. Science 366:1473–1480. https://doi.org/10.1126/science.aav4474

    Article  CAS  PubMed  Google Scholar 

  377. Nagane M, Coufal F, Lin H, Bögler O, Cavenee WK, Huang HJS (1996) A common mutant epidermal growth factor receptor confers enhanced tumorigenicity on human glioblastoma cells by increasing proliferation and reducing apoptosis. Cancer Res 56:5079–5086

    CAS  PubMed  Google Scholar 

  378. Huang H-JS, Nagane M, Klingbeil CK, Lin H, Nishikawa R, Ji X-D, Huang C-M, Gill GN, Wiley HS, Cavenee WK (1997) The Enhanced Tumorigenic Activity of a Mutant Epidermal Growth Factor Receptor Common in Human Cancers Is Mediated by Threshold Levels of Constitutive Tyrosine Phosphorylation and Unattenuated Signaling. J Biol Chem 272:2927–2935. https://doi.org/10.1074/jbc.272.5.2927

    Article  CAS  PubMed  Google Scholar 

  379. Lammering G, Lin P-S, Contessa JN, Hampton JL, Valerie K, Schmidt-Ullrich RK (2001) Adenovirus-mediated overexpression of dominant negative epidermal growth factor receptor-CD533 as a gene therapeutic approach radiosensitizes human carcinoma and malignant glioma cells. Int J Radiat Oncol 51:775–784. https://doi.org/10.1016/S0360-3016(01)01714-X

    Article  CAS  Google Scholar 

  380. Lammering G, Hewit TH, Valerie K, Contessa JN, Amorino GP, Dent P, Schmidt-Ullrich RK (2003) EGFRvIII-mediated radioresistance through a strong cytoprotective response. Oncogene 22:5545–5553. https://doi.org/10.1038/sj.onc.1206788

    Article  CAS  PubMed  Google Scholar 

  381. Stea B, Falsey R, Kislin K, Patel J, Glanzberg H, Carey S, Ambrad AA, Meuillet EJ, Martinez JD (2003) Time and dose-dependent radiosensitization of the glioblastoma multiforme U251 cells by the EGF receptor tyrosine kinase inhibitor ZD1839 (‘Iressa’). Cancer Lett 202:43–51. https://doi.org/10.1016/j.canlet.2003.07.006

    Article  CAS  PubMed  Google Scholar 

  382. Koochekpour S, Jeffers M, Rulong S, Taylor G, Klineberg E, Hudson EA, Resau JH, Vande Woude GF (1997) Met and hepatocyte growth factor/scatter factor expression in human gliomas. Cancer Res 57:5391–5398

    CAS  PubMed  Google Scholar 

  383. Qian L-W, Mizumoto K, Inadome N, Nagai E, Sato N, Matsumoto K, Nakamura T, Tanaka M (2003) Radiation stimulates HGF receptor/c-Met expression that leads to amplifying cellular response to HGF stimulation via upregulated receptor tyrosine phosphorylation and MAP kinase activity in pancreatic cancer cells. Int J Cancer 104:542–549. https://doi.org/10.1002/ijc.10997

    Article  CAS  PubMed  Google Scholar 

  384. Lal B, Xia S, Abounader R, Laterra J (2005) Targeting the c-Met Pathway Potentiates Glioblastoma Responses to γ-Radiation. Clin Cancer Res 11:4479–4486. https://doi.org/10.1158/1078-0432.CCR-05-0166

    Article  CAS  PubMed  Google Scholar 

  385. Athauda G, Giubellino A, Coleman JA, Horak C, Steeg PS, Lee M-J, Trepel J, Wimberly J, Sun J, Coxon A, Burgess TL, Bottaro DP (2006) c-Met Ectodomain Shedding Rate Correlates with Malignant Potential. Clin Cancer Res 12:4154–4162. https://doi.org/10.1158/1078-0432.CCR-06-0250

    Article  CAS  PubMed  Google Scholar 

  386. Sheng-hua C, Zhi-an Z, Xian-hou Y, Zhi-qiang L, Pu-cha J (2006) In vitro and in vivo potentiating the cytotoxic effect of radiation on human U251 gliomas by the c-Met antisense oligodeoxynucleotides. J Neurooncol 80:143–149. https://doi.org/10.1007/s11060-006-9174-5

    Article  CAS  Google Scholar 

  387. Welsh JW, Mahadevan D, Ellsworth R, Cooke L, Bearss D, Stea B (2009) The c-Met receptor tyrosine kinase inhibitor MP470 radiosensitizes glioblastoma cells. Radiat Oncol 4:69. https://doi.org/10.1186/1748-717X-4-69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  388. Buchanan IM, Scott T, Tandle AT, Burgan WE, Burgess TL, Tofilon PJ, Camphausen K (2011) Radiosensitization of glioma cells by modulation of Met signalling with the hepatocyte growth factor neutralizing antibody, AMG102. J Cell Mol Med 15:1999–2006. https://doi.org/10.1111/j.1582-4934.2010.01122.x

    Article  CAS  PubMed  Google Scholar 

  389. Lou AM, Jackman JG, McSherry F, Herndon JE, Massey EC, Lipp E, Desjardins A, Friedman HS, Vlahovic G, Vredenburgh J, Peters KB (2018) Phase II Study to Evaluate the Efficacy and Safety of Rilotumumab and Bevacizumab in Subjects with Recurrent Malignant Glioma. Oncologist 23:889. https://doi.org/10.1634/theoncologist.2018-0149

    Article  CAS  Google Scholar 

  390. Mintz A, Gibo DM, Slagle-Webb B, Christensent ND, Debinski W (2002) IL-13Rα2 is a Glioma-Restricted Receptor for Interleukin-13. Neoplasia 4:388–399. https://doi.org/10.1038/sj.neo.7900234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  391. Thaci B, Brown CE, Binello E, Werbaneth K, Sampath P, Sengupta S (2014) Significance of interleukin-13 receptor alpha 2-targeted glioblastoma therapy. Neuro Oncol 16:1304–1312. https://doi.org/10.1093/neuonc/nou045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  392. Brown CE, Alizadeh D, Starr R, Weng L, Wagner JR, Naranjo A, Ostberg JR, Blanchard MS, Kilpatrick J, Simpson J, Kurien A, Priceman SJ, Wang X, Harshbarger TL, D’Apuzzo M, Ressler JA, Jensen MC, Barish ME, Chen M, Portnow J, Forman SJ, Badie B (2016) Regression of Glioblastoma after Chimeric Antigen Receptor T-Cell Therapy. N Engl J Med 375:2561–2569. https://doi.org/10.1056/NEJMoa1610497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  393. Keu KV, Witney TH, Yaghoubi S, Rosenberg J, Kurien A, Magnusson R, Williams J, Habte F, Wagner JR, Forman S, Brown C, Allen-Auerbach M, Czernin J, Tang W, Jensen MC, Badie B, Gambhir SS (2017) Reporter gene imaging of targeted T cell immunotherapy in recurrent glioma. Sci Transl Med 9:eaag2196. https://doi.org/10.1126/scitranslmed.aag2196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  394. Sattiraju A, Sai KKS, Xuan A, Pandya DN, Almaguel FG, Wadas TJ, Herpai DM, Debinski W, Mintz A (2017) IL13RA2 targeted alpha particle therapy against glioblastomas. Oncotarget 8:42997–43007. https://doi.org/10.18632/oncotarget.17792

    Article  PubMed  PubMed Central  Google Scholar 

  395. Roth P, Silginer M, Goodman SL, Hasenbach K, Thies S, Maurer G, Schraml P, Tabatabai G, Moch H, Tritschler I, Weller M (2013) Integrin control of the transforming growth factor-β pathway in glioblastoma. Brain 136:564–576. https://doi.org/10.1093/brain/aws351

    Article  PubMed  Google Scholar 

  396. Christmann M, Diesler K, Majhen D, Steigerwald C, Berte N, Freund H, Stojanović N, Kaina B, Osmak M, Ambriović-Ristov A, Tomicic MT (2017) Integrin αVβ3 silencing sensitizes malignant glioma cells to temozolomide by suppression of homologous recombination repair. Oncotarget 8:27754–27771. https://doi.org/10.18632/oncotarget.10897

    Article  PubMed  Google Scholar 

  397. Glogowska A, Kunanuvat U, Stetefeld J, Patel TR, Thanasupawat T, Krcek J, Weber E, Wong GW, Del Bigio MR, Hoang-Vu C, Hombach-Klonisch S, Klonisch T (2013) C1q-tumour necrosis factor-related protein 8 (CTRP8) is a novel interaction partner of relaxin receptor RXFP1 in human brain cancer cells. J Pathol 231:466–479. https://doi.org/10.1002/path.4257

    Article  CAS  PubMed  Google Scholar 

  398. Thanasupawat T, Glogowska A, Burg M, Krcek J, Beiko J, Pitz M, Zhang G, Hombach-Klonisch S, Klonisch T (2018) C1q/ <scp>TNF</scp> -related peptide 8 ( <scp>CTRP</scp> 8) promotes temozolomide resistance in human glioblastoma. Mol Oncol 12:1464–1479. https://doi.org/10.1002/1878-0261.12349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  399. Takano T, Lin JHC, Arcuino G, Gao Q, Yang J, Nedergaard M (2001) Glutamate release promotes growth of malignant gliomas. Nat Med 7:1010–1015. https://doi.org/10.1038/nm0901-1010

    Article  CAS  PubMed  Google Scholar 

  400. Lutz H, Nguyen T, Joswig J, Rau K, Laube B (2019) NMDA Receptor Signaling Mediates cFos Expression via Top2β-Induced DSBs in Glioblastoma Cells. Cancers (Basel) 11:306. https://doi.org/10.3390/cancers11030306

    Article  CAS  PubMed Central  Google Scholar 

  401. Müller-Längle L, Hehlgans R, Rau L (2019) NMDA Receptor-Mediated Signaling Pathways Enhance Radiation Resistance, Survival and Migration in Glioblastoma Cells—A Potential Target for Adjuvant Radiotherapy. Cancers (Basel) 11:503. https://doi.org/10.3390/cancers11040503

    Article  CAS  Google Scholar 

  402. Zechiedrich EL, Osheroff N (1990) Eukaryotic topoisomerases recognize nucleic acid topology by preferentially interacting with DNA crossovers. EMBO J 9:4555–4562. https://doi.org/10.1002/j.1460-2075.1990.tb07908.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  403. Slupphaug G (2003) The interacting pathways for prevention and repair of oxidative DNA damage. Mutat Res Mol Mech Mutagen 531:231–251. https://doi.org/10.1016/j.mrfmmm.2003.06.002

    Article  CAS  Google Scholar 

  404. Mandraju RK, Kannapiran P, Kondapi AK (2008) Distinct roles of Topoisomerase II isoforms: DNA damage accelerating α, double strand break repair promoting β. Arch Biochem Biophys 470:27–34. https://doi.org/10.1016/j.abb.2007.10.017

    Article  CAS  PubMed  Google Scholar 

  405. Darbinian N, Gallia GL, King J, Del Valle L, Johnson EM, Khalili K (2001) Growth inhibition of glioblastoma cells by human Pur? J Cell Physiol 189:334–340. https://doi.org/10.1002/jcp.10029

    Article  CAS  PubMed  Google Scholar 

  406. Wang H, Wang M, Reiss K, Darbinian-Sarkissian N, Johnson EM, Iliakis G, Amini S, Khalili K, Rappaport J (2007) Evidence for the involvement of purα in response to DNA replication stress. Cancer Biol Ther 6:596–602. https://doi.org/10.4161/cbt.6.4.3889

    Article  CAS  PubMed  Google Scholar 

  407. Wang H, White MK, Kaminski R, Darbinian N, Amini S, Johnson EM, Khalili K, Rappaport J (2008) Role of Puralpha in the modulation of homologous recombination-directed DNA repair by HIV-1 Tat. Anticancer Res 28:1441–1447

    CAS  PubMed  PubMed Central  Google Scholar 

  408. Kaminski R, Darbinyan A, Merabova N, Deshmane SL, White MK, Khalili K (2008) Protective role of Purα to cisplatin. Cancer Biol Ther 7:1926–1935. https://doi.org/10.4161/cbt.7.12.6938

    Article  CAS  PubMed  Google Scholar 

  409. Shen B, Singh P, Liu R, Qiu J, Zheng L, Finger LD, Alas S (2005) Multiple but dissectible functions of FEN-1 nucleases in nucleic acid processing, genome stability and diseases. BioEssays 27:717–729. https://doi.org/10.1002/bies.20255

    Article  CAS  PubMed  Google Scholar 

  410. Nikolova T, Christmann M, Kaina B (2009) FEN1 is overexpressed in testis, lung and brain tumors. Anticancer Res 29:2453–2459

    CAS  PubMed  Google Scholar 

  411. Bugreev DV, Pezza RJ, Mazina OM, Voloshin ON, Camerini-Otero RD, Mazin AV (2011) The resistance of DMC1 D-loops to dissociation may account for the DMC1 requirement in meiosis. Nat Struct Mol Biol 18:56–60. https://doi.org/10.1038/nsmb.1946

    Article  CAS  PubMed  Google Scholar 

  412. Rivera M, Wu Q, Hamerlik P, Hjelmeland AB, Bao S, Rich JN (2015) Acquisition of meiotic DNA repair regulators maintain genome stability in glioblastoma. Cell Death Dis 6:e1732–e1732. https://doi.org/10.1038/cddis.2015.75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  413. Dahlrot RH, Hansen S, Herrstedt J, Schrøder HD, Hjelmborg J, Kristensen BW (2013) Prognostic value of Musashi-1 in gliomas. J Neurooncol 115:453–461. https://doi.org/10.1007/s11060-013-1246-8

    Article  CAS  PubMed  Google Scholar 

  414. Uren PJ, Vo DT, de Araujo PR, Pötschke R, Burns SC, Bahrami-Samani E, Qiao M, de Sousa AR, Nakaya HI, Correa BR, Kühnöl C, Ule J, Martindale JL, Abdelmohsen K, Gorospe M, Smith AD, Penalva LOF (2015) RNA-Binding Protein Musashi1 Is a Central Regulator of Adhesion Pathways in Glioblastoma. Mol Cell Biol 35:2965–2978. https://doi.org/10.1128/MCB.00410-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  415. de Araujo PR, Gorthi A, da Silva AE, Tonapi SS, Vo DT, Burns SC, Qiao M, Uren PJ, Yuan Z-M, Bishop AJR, Penalva LOF (2016) Musashi1 Impacts Radio-Resistance in Glioblastoma by Controlling DNA-Protein Kinase Catalytic Subunit. Am J Pathol 186:2271–2278. https://doi.org/10.1016/j.ajpath.2016.05.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  416. Marampon F, Megiorni F, Camero S, Crescioli C, McDowell HP, Sferra R, Vetuschi A, Pompili S, Ventura L, De Felice F, Tombolini V, Dominici C, Maggio R, Festuccia C, Gravina GL (2017) HDAC4 and HDAC6 sustain DNA double strand break repair and stem-like phenotype by promoting radioresistance in glioblastoma cells. Cancer Lett 397:1–11. https://doi.org/10.1016/j.canlet.2017.03.028

    Article  CAS  PubMed  Google Scholar 

  417. Dang TT, Morales JC (2020) Involvement of POLA2 in Double Strand Break Repair and Genotoxic Stress. Int J Mol Sci 21:4245. https://doi.org/10.3390/ijms21124245

    Article  CAS  PubMed Central  Google Scholar 

  418. Ströbel T, Madlener S, Tuna S, Vose S, Lagerweij T, Wurdinger T, Vierlinger K, Wöhrer A, Price BD, Demple B, Saydam O, Saydam N (2017) Ape1 guides DNA repair pathway choice that is associated with drug tolerance in glioblastoma. Sci Rep 7:9674. https://doi.org/10.1038/s41598-017-10013-w

    Article  PubMed  PubMed Central  Google Scholar 

  419. Karimi-Busheri F, Daly G, Robins P, Canas B, Pappin DJC, Sgouros J, Miller GG, Fakhrai H, Davis EM, Le Beau MM, Weinfeld M (1999) Molecular Characterization of a Human DNA Kinase. J Biol Chem 274:24187–24194. https://doi.org/10.1074/jbc.274.34.24187

    Article  CAS  PubMed  Google Scholar 

  420. Spycher C, Miller ES, Townsend K, Pavic L, Morrice NA, Janscak P, Stewart GS, Stucki M (2008) Constitutive phosphorylation of MDC1 physically links the MRE11–RAD50–NBS1 complex to damaged chromatin. J Cell Biol 181:227–240. https://doi.org/10.1083/jcb.200709008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  421. Olsen BB, Issinger O-G, Guerra B (2010) Regulation of DNA-dependent protein kinase by protein kinase CK2 in human glioblastoma cells. Oncogene 29:6016–6026. https://doi.org/10.1038/onc.2010.337

    Article  CAS  PubMed  Google Scholar 

  422. Guerra B, Iwabuchi K, Issinger O-G (2014) Protein kinase CK2 is required for the recruitment of 53BP1 to sites of DNA double-strand break induced by radiomimetic drugs. Cancer Lett 345:115–123. https://doi.org/10.1016/j.canlet.2013.11.008

    Article  CAS  PubMed  Google Scholar 

  423. Kotliarova S, Pastorino S, Kovell LC, Kotliarov Y, Song H, Zhang W, Bailey R, Maric D, Zenklusen JC, Lee J, Fine HA (2008) Glycogen Synthase Kinase-3 Inhibition Induces Glioma Cell Death through c-MYC, Nuclear Factor-κB, and Glucose Regulation. Cancer Res 68:6643–6651. https://doi.org/10.1158/0008-5472.CAN-08-0850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  424. Yang Y, Lei T, Du S, Tong R, Wang H, Yang J, Huang J, Sun M, Wang Y, Dong Z (2018) Nuclear GSK3β induces DNA double-strand break repair by phosphorylating 53BP1 in glioblastoma. Int J Oncol 52:709. https://doi.org/10.3892/ijo.2018.4237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  425. Maachani UB, Kramp T, Hanson R, Zhao S, Celiku O, Shankavaram U, Colombo R, Caplen NJ, Camphausen K, Tandle A (2015) Targeting MPS1 Enhances Radiosensitization of Human Glioblastoma by Modulating DNA Repair Proteins. Mol Cancer Res 13:852–862. https://doi.org/10.1158/1541-7786.MCR-14-0462-T

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  426. Li H-L, Wang C-Y, Fu J, Yang X-J, Sun Y, Shao Y-H, Zhang L-H, Yang X-M, Zhang X-L, Lin J (2019) PTEN expression in U251 glioma cells enhances their sensitivity to ionizing radiation by suppressing DNA repair capacity. Eur Rev Med Pharmacol Sci 23:10453–10458. https://doi.org/10.26355/eurrev_201912_19684

    Article  PubMed  Google Scholar 

  427. Meerang M, Ritz D, Paliwal S, Garajova Z, Bosshard M, Mailand N, Janscak P, Hübscher U, Meyer H, Ramadan K (2011) The ubiquitin-selective segregase VCP/p97 orchestrates the response to DNA double-strand breaks. Nat Cell Biol 13:1376–1382. https://doi.org/10.1038/ncb2367

    Article  CAS  PubMed  Google Scholar 

  428. Jiang N, Shen Y, Fei X, Sheng K, Sun P, Qiu Y, Larner J, Cao L, Kong X, Mi J (2013) Valosin-containing protein regulates the proteasome-mediated degradation of DNA-PKcs in glioma cells. Cell Death Dis 4:e647–e647. https://doi.org/10.1038/cddis.2013.171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  429. Huang J, Huen MSY, Kim H, Leung CCY, Glover JNM, Yu X, Chen J (2009) RAD18 transmits DNA damage signalling to elicit homologous recombination repair. Nat Cell Biol 11:592–603. https://doi.org/10.1038/ncb1865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  430. Xie C, Wang H, Cheng H, Li J, Wang Z, Yue W (2014) RAD18 mediates resistance to ionizing radiation in human glioma cells. Biochem Biophys Res Commun 445:263–268. https://doi.org/10.1016/j.bbrc.2014.02.003

    Article  CAS  PubMed  Google Scholar 

  431. Hu L, Li X, Liu Q, Xu J, Ge H, Wang Z, Wang H, Wang Z, Shi C, Xu X, Huang J, Lin Z, Pieper RO, Weng C (2017) UBE2S, a novel substrate of Akt1, associates with Ku70 and regulates DNA repair and glioblastoma multiforme resistance to chemotherapy. Oncogene 36:1145–1156. https://doi.org/10.1038/onc.2016.281

    Article  CAS  PubMed  Google Scholar 

  432. Sreekanthreddy P, Srinivasan H, Kumar DM, Nijaguna MB, Sridevi S, Vrinda M, Arivazhagan A, Balasubramaniam A, Hegde AS, Chandramouli BA, Santosh V, Rao MRS, Kondaiah P, Somasundaram K (2010) Identification of Potential Serum Biomarkers of Glioblastoma: Serum Osteopontin Levels Correlate with Poor Prognosis. Cancer Epidemiol Biomarkers Prev 19:1409–1422. https://doi.org/10.1158/1055-9965.EPI-09-1077

    Article  CAS  PubMed  Google Scholar 

  433. Hsieh I-S, Huang W-H, Liou H-C, Chuang W-J, Yang R-S, Fu W-M (2013) Upregulation of Drug Transporter Expression by Osteopontin in Prostate Cancer Cells. Mol Pharmacol 83:968–977. https://doi.org/10.1124/mol.112.082339

    Article  CAS  PubMed  Google Scholar 

  434. Lamour V, Henry A, Kroonen J, Nokin M-J, von Marschall Z, Fisher LW, Chau T-L, Chariot A, Sanson M, Delattre J-Y, Turtoi A, Peulen O, Rogister B, Castronovo V, Bellahcène A (2015) Targeting osteopontin suppresses glioblastoma stem-like cell character and tumorigenicity in vivo. Int J Cancer 137:1047–1057. https://doi.org/10.1002/ijc.29454

    Article  CAS  PubMed  Google Scholar 

  435. Henry A, Nokin M-J, Leroi N, Lallemand F, Lambert J, Goffart N, Roncarati P, Bianchi E, Peixoto P, Blomme A, Turtoi A, Peulen O, Habraken Y, Scholtes F, Martinive P, Delvenne P, Rogister B, Castronovo V, Bellahcène A (2016) New role of osteopontin in DNA repair and impact on human glioblastoma radiosensitivity. Oncotarget 7:63708–63721. https://doi.org/10.18632/oncotarget.11483

    Article  PubMed  PubMed Central  Google Scholar 

  436. Tamari Y, Kashino G, Mori H (2017) Acquisition of radioresistance by IL-6 treatment is caused by suppression of oxidative stress derived from mitochondria after γ-irradiation. J Radiat Res 58:412–420. https://doi.org/10.1093/jrr/rrw084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  437. Chakravarti A (2002) Quantitatively Determined Survivin Expression Levels Are of Prognostic Value in Human Gliomas. J Clin Oncol 20:1063–1068. https://doi.org/10.1200/JCO.20.4.1063

    Article  CAS  PubMed  Google Scholar 

  438. Chakravarti A, Zhai GG, Zhang M, Malhotra R, Latham DE, Delaney MA, Robe P, Nestler U, Song Q, Loeffler J (2004) Survivin enhances radiation resistance in primary human glioblastoma cells via caspase-independent mechanisms. Oncogene 23:7494–7506. https://doi.org/10.1038/sj.onc.1208049

    Article  CAS  PubMed  Google Scholar 

  439. Reichert S, Rödel C, Mirsch J, Harter PN, Tomicic MT, Mittelbronn M, Kaina B, Rödel F (2011) Survivin inhibition and DNA double-strand break repair: A molecular mechanism to overcome radioresistance in glioblastoma. Radiother Oncol 101:51–58. https://doi.org/10.1016/j.radonc.2011.06.037

    Article  CAS  PubMed  Google Scholar 

  440. Jane EP, Premkumar DR, Sutera PA, Cavaleri JM, Pollack IF (2017) Survivin inhibitor YM155 induces mitochondrial dysfunction, autophagy, DNA damage and apoptosis in Bcl-xL silenced glioma cell lines. Mol Carcinog 56:1251–1265. https://doi.org/10.1002/mc.22587

    Article  CAS  PubMed  Google Scholar 

  441. Reich TR, Schwarzenbach C, Vilar JB, Unger S, Mühlhäusler F, Nikolova T, Poplawski A, Baymaz HI, Beli P, Christmann M, Tomicic MT (2021) Localization matters: nuclear-trapped Survivin sensitizes glioblastoma cells to temozolomide by elevating cellular senescence and impairing homologous recombination. Cell Mol Life Sci 78:5587–5604. https://doi.org/10.1007/s00018-021-03864-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  442. Biasoli D, Kahn SA, Cornélio TA, Furtado M, Campanati L, Chneiweiss H, Moura-Neto V, Borges HL (2013) Retinoblastoma protein regulates the crosstalk between autophagy and apoptosis, and favors glioblastoma resistance to etoposide. Cell Death Dis 4:e767–e767. https://doi.org/10.1038/cddis.2013.283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  443. Yamamoto M, Sawaya R, Mohanam S, Rao VH, Bruner JM, Nicolson GL, Rao JS (1994) Expression and localization of urokinase-type plasminogen activator receptor in human gliomas. Cancer Res 54:5016–5020

    CAS  PubMed  Google Scholar 

  444. Ponnala S, Veeravalli KK, Chetty C, Dinh DH, Rao JS (2011) Regulation of DNA Repair Mechanism in Human Glioma Xenograft Cells both In Vitro and In Vivo in Nude Mice. PLoS ONE 6:e26191. https://doi.org/10.1371/journal.pone.0026191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  445. Santosh V, Arivazhagan A, Sreekanthreddy P, Srinivasan H, Thota B, Srividya MR, Vrinda M, Sridevi S, Shailaja BC, Samuel C, Prasanna KV, Thennarasu K, Balasubramaniam A, Chandramouli BA, Hegde AS, Somasundaram K, Kondaiah P, Rao MRS (2010) Grade-Specific Expression of Insulin-like Growth Factor-Binding Proteins-2, -3, and -5 in Astrocytomas: IGFBP-3 Emerges as a Strong Predictor of Survival in Patients with Newly Diagnosed Glioblastoma. Cancer Epidemiol Biomarkers Prev 19:1399–1408. https://doi.org/10.1158/1055-9965.EPI-09-1213

    Article  CAS  PubMed  Google Scholar 

  446. Chen C-H, Chen P-Y, Lin Y-Y, Feng L-Y, Chen S-H, Chen C-Y, Huang Y-C, Huang C-Y, Jung S-M, Chen LY, Wei K-C (2020) Suppression of tumor growth via IGFBP3 depletion as a potential treatment in glioma. J Neurosurg 132:168–179. https://doi.org/10.3171/2018.8.JNS181217

    Article  CAS  Google Scholar 

  447. Munster P, Mita M, Mahipal A, Nemunaitis J, Massard C, Mikkelsen T, Cruz C, Paz-Ares L, Hidalgo M, Rathkopf D, Blumenschein G Jr, Smith DC, Eichhorst B, Cloughesy T, Filvaroff EH, Li S, Raymon H, de Haan H, Hege K, Bendell JC (2019) First-In-Human Phase I Study Of A Dual mTOR Kinase And DNA-PK Inhibitor (CC-115) In Advanced Malignancy. Cancer Manag Res 11:10463–10476. https://doi.org/10.2147/CMAR.S208720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  448. Durant ST, Zheng L, Wang Y, Chen K, Zhang L, Zhang T, Yang Z, Riches L, Trinidad AG, Fok JHL, Hunt T, Pike KG, Wilson J, Smith A, Colclough N, Reddy VP, Sykes A, Janefeldt A, Johnström P, Varnäs K, Takano A, Ling S, Orme J, Stott J, Roberts C, Barrett I, Jones G, Roudier M, Pierce A, Allen J, Kahn J, Sule A, Karlin J, Cronin A, Chapman M, Valerie K, Illingworth R, Pass M (2018) The brain-penetrant clinical ATM inhibitor AZD1390 radiosensitizes and improves survival of preclinical brain tumor models. Sci Adv 4https://doi.org/10.1126/sciadv.aat1719

  449. Hwang K, Lee J-H, Kim SH, Go K-O, Ji SY, Han JH, Kim C-Y (2021) The Combination PARP Inhibitor Olaparib With Temozolomide in an Experimental Glioblastoma Model. In Vivo (Brooklyn) 35:2015–2023. https://doi.org/10.21873/invivo.12470

    Article  CAS  Google Scholar 

Download references

Funding

The author declares that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

The named author was the only person involved in the development of this review.

Corresponding author

Correspondence to Semer Maksoud .

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

There are no affiliations with or involvement in any organization or entity with any interest in the subject matter discussed in this manuscript. The author declares no competin.

Disclosure of potential conflicts of interest

The author declares no conflicts of interest.

Research involving human participants and/or animals

Not applicable.

Informed consent

Not applicable.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maksoud , S. The DNA Double-Strand Break Repair in Glioma: Molecular Players and Therapeutic Strategies. Mol Neurobiol 59, 5326–5365 (2022). https://doi.org/10.1007/s12035-022-02915-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-022-02915-2

Keywords

Navigation